Please show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:_

1. [5 pts] Set up the integral that computes the area shown to the right with respect to x.

DON'T COMPUTE IT!!!

Solution: Using the graph, we can see both lines intersect at x = 0, 3 which will be our bounds. [1 pt].

We can also see the top function is $y = -x^2 + 4x$ and the bottom function is y = x. [2 pts].

Hence if we put it all together

Area =
$$\int_0^3 (-x^2 + 4x - x) dx$$
 [2 pts]
= $\int_0^3 (-x^2 + 3x) dx$

2. [5 pts] Set up the integral that computes the area of the region bounded by

$$y = \sin(x)$$
, $y = \cos(x)$, $x = -\pi/4$ and $x = \pi/4$

with respect to x.

DON'T COMPUTE IT!!!

We are given the bounds for our integral

$$-\frac{\pi}{4} \le x \le \frac{\pi}{4} \quad [\mathbf{1} \ \mathbf{pt}]$$

Next we need to determine the "Top" and "Bottom" functions. From the graph on the left, we can see that $y = \cos(x)$ is the top function and $y = \sin(x)$ is the bottom function. [2 pts]

Hence if we put it all together

$$Area = \int_{-\pi/4}^{\pi/4} (\cos(x) - \sin(x)) dx$$
 [2 pts]