Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name: \qquad

1. [5 pts] Set up the integral that computes the area shown to the right with respect to x.

DON'T COMPUTE IT!!!

Solution: Using the graph, we can see both lines intersect at $x=0,3$ which will be our bounds. [1 pt].

We can also see the top function is $y=-x^{2}+4 x$ and the bottom function is $y=x$. [2 pts].

Hence if we put it all together

$$
\begin{aligned}
\text { Area } & =\int_{0}^{3}\left(-x^{2}+4 x-x\right) d x \quad[\mathbf{2} \mathbf{p t s}] \\
& =\int_{0}^{3}\left(-x^{2}+3 x\right) d x
\end{aligned}
$$

2. [5 pts] Set up the integral that computes the area of the region bounded by

$$
y=\sin (x), \quad y=\cos (x), \quad x=-\pi / 4 \quad \text { and } \quad x=\pi / 4
$$

with respect to x.

DON'T COMPUTE IT!!!

We are given the bounds for our integral

$$
-\frac{\pi}{4} \leq x \leq \frac{\pi}{4} \quad[\mathbf{1} \mathbf{~ p t}]
$$

Next we need to determine the "Top" and "Bottom" functions. From the graph on the left, we can see that $y=\cos (x)$ is the top function and $y=\sin (x)$ is the bottom function. [2 pts]

Hence if we put it all together

$$
\text { Area }=\int_{-\pi / 4}^{\pi / 4}(\cos (x)-\sin (x)) d x[\mathbf{2} \mathbf{p t s}]
$$

