Name: \qquad

1. [$5 \mathbf{p t s}$] What is the integrating factor of the following differential equation?

$$
2 y^{\prime}+\left(\frac{6}{x}\right) y=10 \ln (x)
$$

Solution: First get the differential equation in Standard Form. i.e.

$$
y^{\prime}+\left(\frac{3}{x}\right) y=5 \ln (x) \quad[\mathbf{1} \mathbf{p t}]
$$

So $P(x)=\frac{3}{x}[\mathbf{1} \mathbf{p t}]$.
Hence,

$$
u(x)=\exp \left[\int P(x) d x\right]=\exp \left[\int \frac{3}{x} d x\right]=\exp [3 \ln (x)]=\exp \left[\ln \left(x^{3}\right)\right]=x^{3} \quad[\mathbf{2} \mathbf{p t s}]
$$

2. [$\mathbf{5} \mathbf{~ p t s}$] What is the integrating factor of the following differential equation?

$$
(x+1) \frac{d y}{d x}-2\left(x^{2}+x\right) y=(x+1) e^{x^{2}}
$$

Solution: First get the differential equation in Standard Form. i.e.

$$
\frac{d y}{d x}-\frac{2\left(x^{2}+x\right)}{x+1} y=e^{x^{2}} \quad[\mathbf{1} \mathbf{~ p t}]
$$

So $P(x)=-\frac{2\left(x^{2}+x\right)}{x+1}=-\frac{2 x(x+1)}{x+1}=-2 x[\mathbf{1} \mathbf{~ p t}]$.
Hence,

$$
u(x)=\exp \left[\int P(x) d x\right]=\exp \left[\int-2 x d x\right]=\exp \left[-x^{2}\right]=e^{-x^{2}} \quad[\mathbf{2} \mathbf{p t s}]
$$

