Formula Sheet - MA 16020 Exam 3

Geometric Series:

The geometric series $\sum_{n=0}^{\infty} a r^{n}$ with common ratio r converges if $|r|<1$ with the sum

$$
S=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

Power Series/Maclaurin Series:

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n},|x|<1=1+x+x^{2}+x^{3}+\ldots \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
\end{aligned}
$$

