Reminders

- O NO CLASS ON MONDAY 7/3 or TUESDAY 7/4
- O CLASS RESUMES ON WEDNESDAY 7/5
- O 1-WEEK REMINDER
 - O Exam 2 on FRIDAY 7/7 @ 9:30 11 am
 - O Location: HAMP 3144
 - O Duration: 1 hour

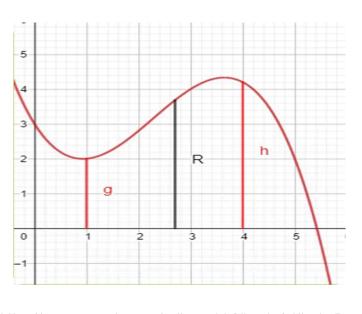
1

MA 16020: Lesson 13 Volume By Revolution Shell Method

By Alexandra Cuadra

So far...

- We have learned how to find the volume of a solid of revolution by integrating
 - In the same way, we calculate the area under a curve
 - Running a line segment of varying length across the region, and adding them up

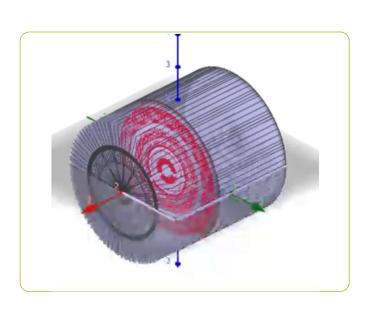


https://www.geogebra.org/m/tgceabb2#material/tnnhu7gz

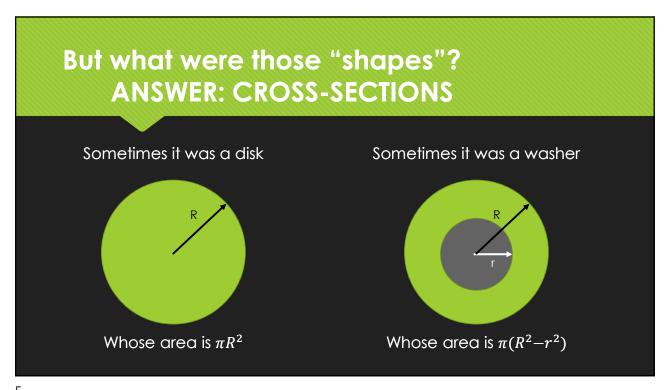
3

In other words,

- We learned to find the volume of a solid of revolution by
 - ORunning some area across a shape and add them up.
 - OLike in the case of the cylinder shown on the right.



https://www.geogebra.org/m/tgceabb2#material/qcwutumt



כ

In Today's Lecture, we will be covering the case, when neither method (Disk nor Washer) is easy.

Example 1: Find the volume obtained by revolving the region bounded by the curves

$$y = 2x^2 - x^3 \quad \text{and} \qquad y = 0$$

About the y-axis.

<u>https://www.geogebra.org/m/jqfyndpu</u>

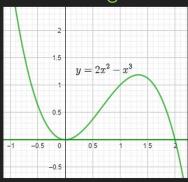
7

Example 1: Find the volume obtained by revolving the region bounded by the curves

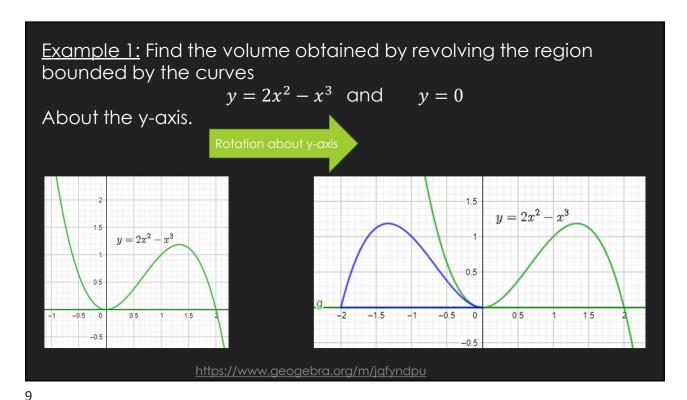
$$y = 2x^2 - x^3 \quad \text{and} \quad y = 0$$

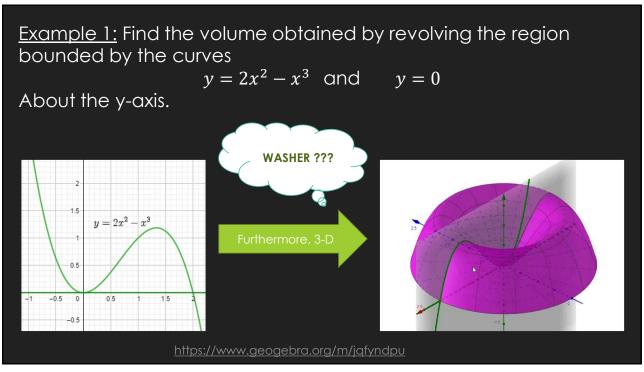
About the y-axis.

Draw the region.



https://www.geogebra.org/m/jqfyndpu

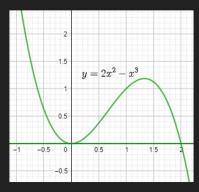




Example 1: Find the volume obtained by revolving the region bounded by the curves

$$y = 2x^2 - x^3 \quad \text{and} \quad y = 0$$

About the y-axis.



Technically, yes. It is a Washer Problem. But there are two issues:

1. Given we are revolving around y-axis, we want to solve our equations for x.

i.e. Solve
$$y = 2x^2 - x^3$$
 for x .

But that is easier said than done.

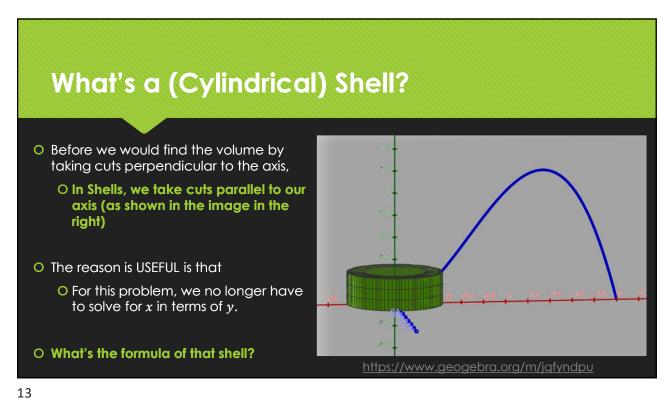
2. For washer problems, we need two equations for each radius.

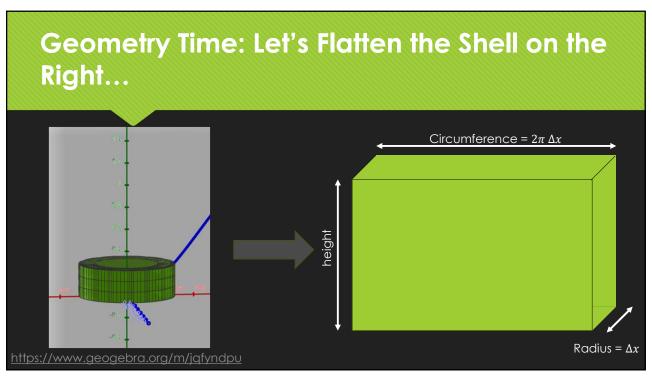
Here we have both radius depend on the same function. ttps://www.geogebra.org/m/jqfyndpu

11

So how can I do this kind of problem without giving myself a headache?

ANSWER: SHELL METHOD



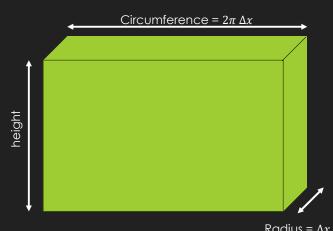


Geometry Time: Let's Flatten the Shell on the Right...

- O So the volume of the green image is $V = \text{circumference} \times \text{height} \times \text{thickness}$ $V = 2\pi \,\Delta x \cdot h \cdot \Delta x$
- O The height is determined if you have one or two functions.
 - o i.e. Top Bottom or Right Left
- So, in the dx case,

 $V = 2\pi x (Top - Bottom) dx \text{ over } [a, b].$

i.e.
$$V = 2\pi \int_a^b x \cdot (Top - Bottom) dx$$



Radius = Δx

15

One thing about Shell Method Formulas

Since we are just cutting out parallel to the axis, we choose dx or dy in the following way:

- O Rotating around y-axis
 - ⇒ "dx "problem
 - $V = 2\pi \int_{a}^{b} x \cdot (Top Bottom) dx \qquad V = 2\pi \int_{a}^{d} y \cdot (Right Left) dy$
- O Rotating around x-axis
 - ⇒ " dy " problem

$$V = 2\pi \int_{c}^{a} y \cdot (Right - Left) \, dy$$

GEOMETRY: Finding The Volume of A Hollow Cylinder

 To find the volume of this hollow cylinder, we used the same idea when washers were first introduced.

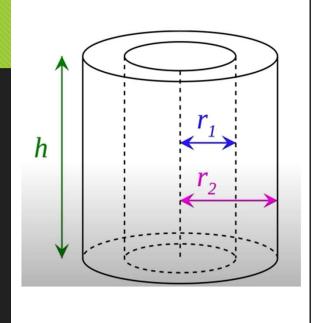
$$V_{total} = V_{outer} - V_{inner}$$

O Remember the volume of a cylinder is $\pi r^2 h$. So $V_{outer} = \pi (r_2)^2 h$ and $V_{inner} = \pi (r_1)^2 h$

O Hence
$$V_{total} = \pi r_2^2 h - \pi r_1^2 h$$

$$= \pi h (r_2^2 - r_1^2)$$

$$= \pi h (r_2 - r_1) (r_2 + r_1)$$



17

GEOMETRY: Finding The Volume of A Hollow Cylinder

So let's be clever

O Let's take the sum $r_2 + r_1$ and express it as an average.

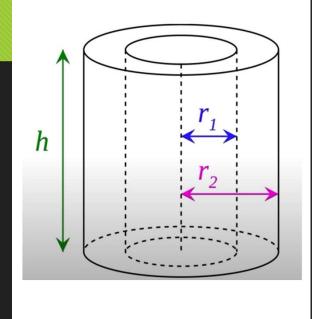
i.e.
$$(r_1 + r_2)/2$$

O To do that multiple the equation below by 2/2.

$$\begin{split} V_{total} &= \pi h (r_2 - r_1) (r_2 + r_1) \\ &= 2\pi h (r_2 - r_1) \left(\frac{r_2 + r_1}{2} \right) \end{split}$$

O Since we have the average radius in our equation, we can now call $r = \frac{r_1 + r_2}{2}$.

$$V_{total} = 2\pi h(r_2 - r_1)r$$



GEOMETRY: Finding The Volume of A Hollow Cylinder

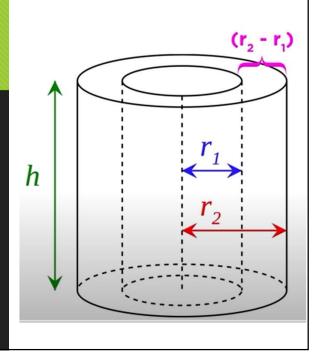
O Note that the difference of the radii gives us the thickness of the cylinder.

OLet Δr be that difference

$$\Delta r = r_2 - r_1$$

O Hence we can say that the volume of the hollow cylinder is

$$V_{total} = 2\pi r h \cdot \Delta r$$



19

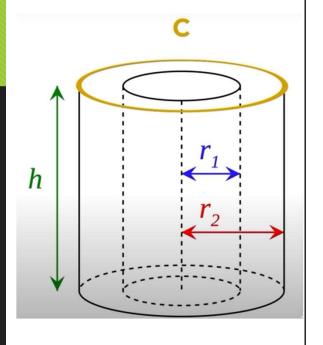
GEOMETRY: Finding The Volume of A Hollow Cylinder

One way to remember this

$$V_{total} = 2\pi r h \cdot \Delta r$$

is to see that $2\pi r$ is the same as the circumference, \mathcal{C} , (as shown in the image) of the cylinder.

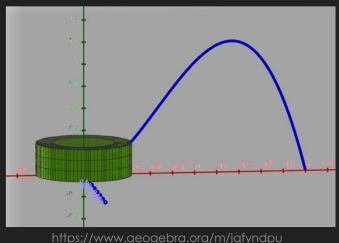
So this is just the circumference x height x thickness.



So how does this help us answer Example 1?

- O The reason is USEFUL is that
 - O For this problem, we no longer have to solve for x in terms of y.
- O If we picture one possible shell, it will have a
 - \bigcirc height = f(x)
 - \circ circumference = $2\pi x$
- O As this shell spans the volume, we then have

$$V = \int_{a}^{b} 2\pi x \cdot f(x) dx$$



21

One thing about Shell Method Formulas

Since we are just cutting out parallel to the axis, we choose dx or dy in the following way:

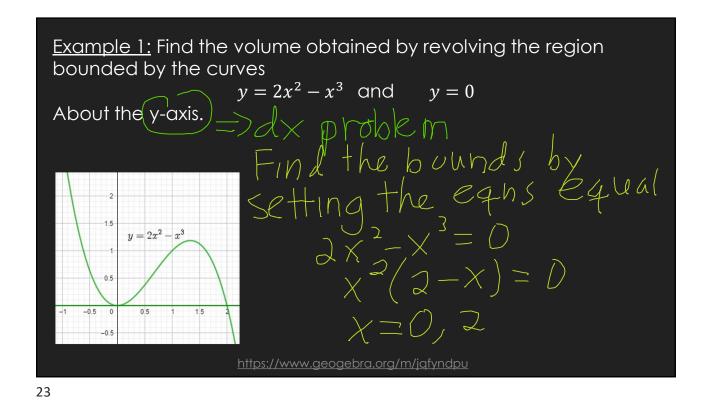
- O Rotating around y-axis
 - ⇒ "dx "problem

O Rotating around x-axis

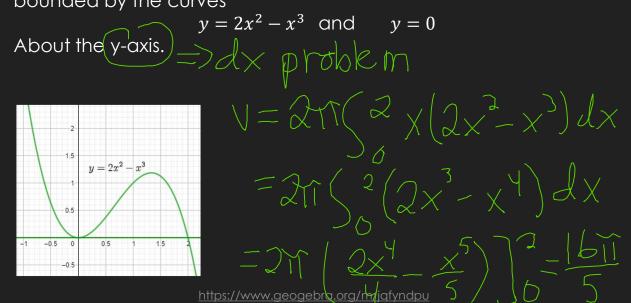
$$\Rightarrow$$
 " dy " problem

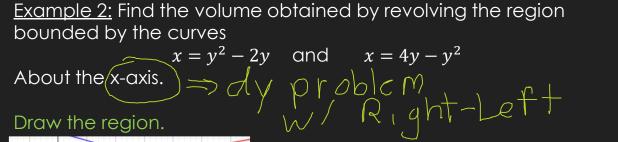
$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) \, dx$$

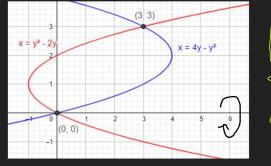
$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) dx \qquad V = 2\pi \int_{c}^{d} y \cdot (Right - Left) dy$$



Example 1: Find the volume obtained by revolving the region bounded by the curves







Find the bounds by setting the equal.

https://www.geogebra.org/m/f3wrypfh#material/qrar4br5

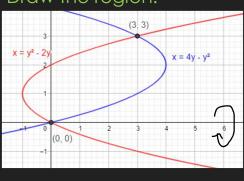
25

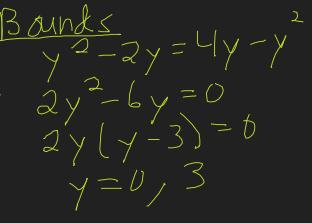
Example 2: Find the volume obtained by revolving the region bounded by the curves

 $x = y^2 - 2y \quad \text{and} \quad x = 4y - y^2$

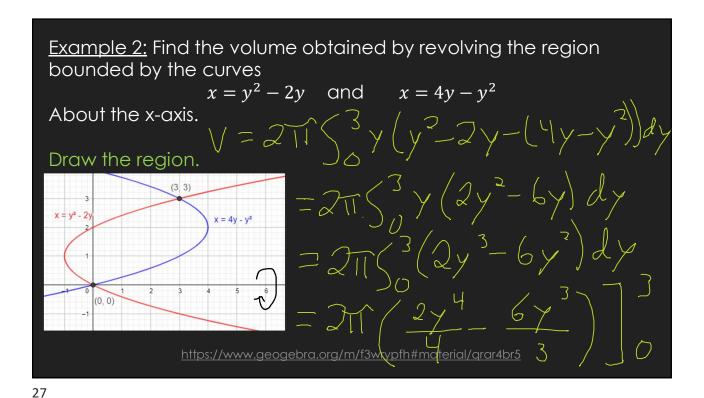
About the x-axis.

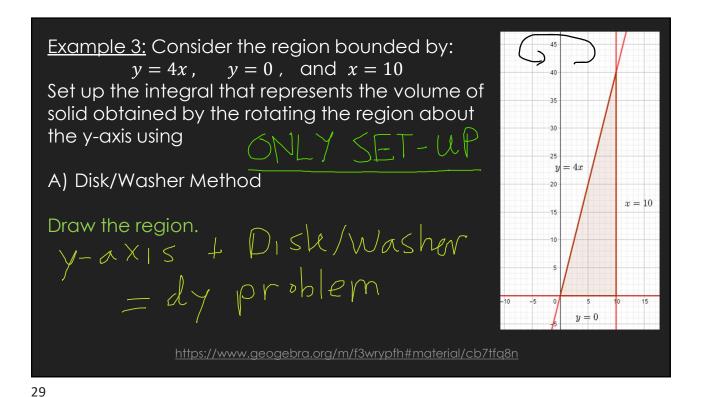
Draw the region.





https://www.aeoaebra.ora/m/f3wrvpfh#material/arar4br5

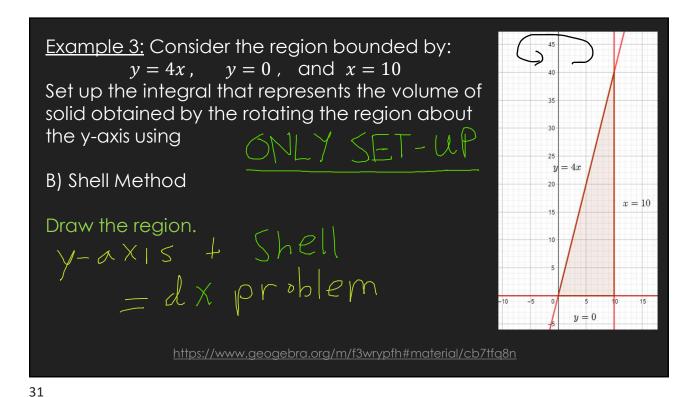




Example 3: Consider the region bounded by: y = 4x, y = 0, and x = 10Set up the integral that represents the volume of solid obtained by the rotating the region about the y-axis using

A) Disk/Washer Method

A) Disk/Washer



Example 3: Consider the region bounded by: y = 4x, y = 0, and x = 10Set up the integral that represents the volume of solid obtained by the rotating the region about the y-axis using

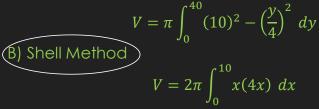
B) Shell Method x = 10 x = 10

x = 10

Example 3: Consider the region bounded by: y = 4x, y = 0, and x = 10Set up the integral that represents the volume of solid obtained by the rotating the region about the y-axis using

Interesting Question: Which integral is easier to compute?

A) Disk/Washer Method



https://www.geogebra.org/m/f3wrypfh#material/cb7tfq8n

33

What happens if we are revolving around non-Axes (like x = a or y = b)?

For the most part, everything stays the same except for the **RADIUS**.

Well there are more formulas...

- O Rotating around x = #
 - O If $a \ge \#$, then

$$V = 2\pi \int_{a}^{b} (x - \#) \times (Top - Bottom) \ dx$$

O If $b \le \#$, then

$$V = 2\pi \int_{a}^{b} (\# - x) \times (Top - Bottom) \ dx$$

- O Rotating around y = #
 - O If $a \ge \#$, then

$$V = 2\pi \int_{a}^{b} (y - \#) \times (Right - Left) \ dy$$

O If $b \le \#$, then

$$V = 2\pi \int_{a}^{b} (\# - y) \times (Right - Left) \ dy$$

where a is the bottom bound of the integral and b is the top bound of the integral

35

Remember radiis are always positive, so we need to ensure that.

Why do we need to consider whether x = # (or y = #) is less than a or more than b?

Example 4: Consider the region bounded by:

$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

a) about
$$x = 5$$
 $\rightarrow dx$ problem

Bounds $y = 54 = 2$ [0,2]

 $y = 0$

Since $x = 5$ is larger than [0,2]

 $\sqrt{2} = 27$ $\sqrt{2} (5-x)$ $\sqrt{2}$

https://www.geogebrd.org/m/f3wrypfh#material/thatysu

37

Example 4: Consider the region bounded by:

$$y=\sqrt{x}$$
, $y=0$, and $x=4$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

https://www.geogebra.org/m/f3wrypfh#material/q38jv7yy

Example 5: Consider the region bounded by:

$$x = y^2 + 1$$
, and $x = 2$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

a) about
$$y = 3$$
 = $2 \times problem$

But nks
 $y^2 + 1 = 2$
 $y^2 + 1 = 2$
 $y^2 + 1 = 2$
 $y = 1$
 $y = 1$

https://www.geogebra.org/m/f3wrypfh#material/gwgncmp2

39

Example 5: Consider the region bounded by:

$$x = y^2 + 1$$
, and $x = 2$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

a) about
$$y = 3$$

Since
$$y = 3$$
 is larger than $[-1,J]$
 $V = 2TI \left(\frac{1}{3-y} (2-(y^2+1)) \right) dy$

https://www.aeoaebra.ora/m/f3wrvpfh#material/awancmp2

Example 5: Consider the region bounded by:

$$x = y^2 + 1$$
, and $x = 2$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method

b) about
$$y = -2$$
Note the bounds are the Jame

Since $y = -2$ is smaller than $[-1/1]$

$$V = 275 \left((y-(-2))(2-(y^2+11)) dy$$

41

When do we apply Disk Method or **Washer Method or Shell Method?**

- O When the region "hugs" the axis of rotation
 - ⇒ Disk Method
- O When there is a "gap" between the region and axis of rotation
 - ⇒ Washer Method
- O But if you find solving for x or y, in either method, is hard
 - ⇒ Shell Method

Formulas from Lessons 10 and 11 and 13 Rotation around x-axis or y-axis

For rotation around x-axis:

O Disk Method:

$$V = \pi \int_a^b [f(x)]^2 dx$$

O Washer Method:

$$V = \pi \int_a^b (R^2 - r^2) \ dx$$

O Shell Method:

$$V = 2\pi \int_{C}^{d} y \cdot (Right - Left) \, dy$$

For rotation around y-axis:

O Disk Method:

$$V = \pi \int_{c}^{d} [g(y)]^{2} dy$$

O Washer Method:

$$V = \pi \int_c^d (R^2 - r^2) \, dy$$

O Shell Method:

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) \ dx$$

43

Formulas from Lesson 12 and 13 Rotation around any non-Axis Formulas

For rotation around the line y = #:

O Disk Method:

$$V = \pi \int_a^b [f(x) - \#]^2 dx$$

Washer Method:

$$V = \pi \int_{a}^{b} [(R - \#)^{2} - (r - \#)^{2}] dx$$

Shell Method:

O If
$$y = \#$$
 and $a \ge \#$, then
$$V = 2\pi \int_a^b (x - \#) \times (Top - Bottom) \ dx$$

O If y = # and $b \le \#$, then

$$V = 2\pi \int_{a}^{b} (\# - x) \times (Top - Bottom) \ dx$$

where a is the bottom bound of the integral and b is the top bound of the integral.

Note: That these formulas work for the case of x-axis (y = 0) and y-axis (x = 0).

Formulas from Lesson 12 and 13 Rotation around any non-Axis Formulas

For rotation around the line x = #:

O Disk Method:

$$V = \pi \int_{c}^{d} [g(y) - \#]^2 dy$$

O Washer Method:

$$V = \pi \int_{c}^{d} [(R - \#)^{2} - (r - \#)^{2}] dy$$

Shell Method:

O If x = # and $a \ge \#$, then

$$V = 2\pi \int_{a}^{b} (y - \#) \times (Top - Bottom) \ dy$$

O If x = # and $b \le \#$, then

$$V = 2\pi \int_{a}^{b} (\# - y) \times (Top - Bottom) \ dy$$

where a is the bottom bound of the integral and b is the top bound of the integral.

Note: That these formulas work for the case of x-axis (y = 0) and y-axis (x = 0).

45

GeoGebra Link for Lesson 13

- O https://www.geogebra.org/m/f3wrypfh
- O Note click on the play buttons on the left-most screen and the animation will play/pause.