Name:
Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Solutions

1. Determine if the following integral is proper or improper.

$$
\left.\int_{0}^{\pi / 2} \frac{\sin x}{1-\cos x} d x \quad \right\rvert\,-c 05 \times=0
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.

$$
1=\cos x
$$

2. Determine if the following integral is proper or improper.

$$
\int_{0}^{\pi / 2} \tan (x) d x
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.

$$
\tan x=\frac{\sin x}{\cos x}
$$

$$
\cos x=0
$$

$$
x=\frac{\pi}{2}, \frac{3 \pi}{2}, \cdots
$$

3. Determine if the following integral is proper or improper.

4. Evaluate the following integral;

$$
\begin{aligned}
\int_{1}^{\infty} \frac{5}{\sqrt{x}} d x= & \left.\lim _{N \rightarrow \infty} \int_{1}^{\int_{1}^{\infty} \frac{5}{\sqrt{x}} d x} 5 x^{1 / 2} d x=\lim _{N \rightarrow \infty}\left(5 \cdot 2 x^{1 / 2}\right)\right]_{1}^{N} \\
= & \lim _{N \rightarrow \infty}\left(10(N)^{1 / 2}-10\right)=\infty
\end{aligned}
$$

$$
\int_{1}^{\infty} \frac{5}{\sqrt{x}} d x=\infty
$$

5. Evaluate the following integral;

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{3}{x^{2}} d x=\lim _{N \rightarrow \infty} \int_{1} \frac{\int_{1}^{\infty}}{3 x^{\frac{3}{x^{2}}-2} d x} d x=\lim _{N \rightarrow \infty}\left(\frac{3 x^{-1}}{-1}\right]_{1}^{N} \\
&\left.=\lim _{N \rightarrow \infty}\left(-\frac{3}{x}\right)\right]_{1}^{N}=\lim _{N \rightarrow \infty}\left(-\frac{3}{N}+3\right)
\end{aligned}
$$

6. Evaluate the following integral;

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{16}{x} d x\left.=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{10^{\infty} \frac{10}{x} d x}{x} d x=\lim _{N \rightarrow \infty}(10 \ln |x|)\right]_{1}^{N} \\
&=\lim _{N \rightarrow \infty}(10 \ln |N|-0) \\
& y=\ln |x|
\end{aligned}
$$

$$
\int_{1}^{\infty} \frac{10}{x} d x=
$$

7. Evaluate the following integral;

$$
\left.\int_{0}^{\infty} 7 e^{-\frac{1}{3} x d x}=\lim _{N \rightarrow \infty} \int_{0}^{N} 7 e^{-\frac{1}{3} x} d x=\lim _{N \rightarrow \infty}\left(7 \frac{e^{-\frac{1}{3} x}}{-1 / 3}\right)\right]_{0}^{N}
$$

8. Evaluate the definite integral

$$
\begin{gathered}
\text { 8. Evaluate the definite integral } \\
\left.\lim _{N \rightarrow \infty} \int_{2}^{N} \frac{d x}{5 x+2} \frac{u=5 x+2}{\frac{d u}{5 d x}} \lim _{N \rightarrow \infty} \int \frac{\int_{2}^{\infty} \frac{d x}{5 x+d x_{2} 2}=}{} \lim _{N \rightarrow \infty} \frac{1}{5} \ln |u|=\lim _{N \rightarrow \infty} \frac{1}{5} \ln |5 x+2|\right]_{2}^{N} \\
\frac{d u}{5}=d x
\end{gathered}
$$

$$
=\lim _{N \rightarrow \infty}\left(\frac{1}{5} \ln |5 N+2|-\frac{1}{5} \ln |12|\right)=\infty
$$

In-function
9. Set up the integral that computes the AREA shown to the right with respect to x.

DON'T COMPUTE IT!!!

$$
\begin{aligned}
& \text { 10. Set up the integral that computes the AREA } \\
& \begin{array}{l}
\text { DON'T COMPUTE IT!!! } \\
\text { shown to the right wife respect to } y \text {. }
\end{array} \\
& \text { Area }=\int 2\left(\frac{y-8}{2}\right)-\frac{6}{y} d y
\end{aligned}
$$

Bounds: ${ }_{y=\frac{2}{x}}^{x}$ and $y=-x+3 \longrightarrow$ problem

$$
\begin{gathered}
\frac{2}{x}=-x+3 \\
2=-x^{2}+3 x \\
x^{2}-3 x+2=0 \\
(x-1)(x-2)=0 \\
x=1,2
\end{gathered}
$$

Test Pt. $x=1.5$

$$
\begin{aligned}
& \frac{\text { lest }+ \text { +. }}{y=\frac{2}{x} \Rightarrow y=1.5} \begin{array}{l}
1.5 \\
y=-x+3 \Rightarrow y=-1.5+3=1.5 \rightarrow \text { Top } \\
y=1.33 \rightarrow \text { B.tom } \\
\int_{1}^{2}\left(-x+3-\frac{2}{x}\right) d x
\end{array} .
\end{aligned}
$$

12. Find the area of the region bounded by $y=6 x^{2}$ and $y=12 x$.

Bounds: $6 x^{2}=12 x$

$$
\begin{gathered}
6 x^{2}-12 x=0 \\
6 x(x-2)=0 \\
x=0,2
\end{gathered}
$$

$$
\begin{aligned}
A & =\int_{0}^{2}\left(12 x-6 x^{2}\right) d x \\
& \left.=\left(\frac{10 x^{2}}{2}-\frac{6 x^{3}}{3}\right)\right]_{0}^{2} \\
& \left.=\left(6 x^{2}-2 x^{3}\right)\right]_{0}^{2}
\end{aligned}
$$

Test Pt: $x=1$

$$
y=6 x^{2} \rightarrow y=6 \rightarrow \text { Bottom }
$$

$$
y=12 x \rightarrow y=12 \rightarrow \text { Top }=8
$$

13. Find the area of the region bounded by $y=6 x-x^{2}$ and $y=2 x^{2}$.

$$
\begin{aligned}
& \frac{\text { Bounds }}{6 x-x^{2}=2 x^{2}} \\
& 6 x-3 x^{2}=0 \\
& 3 x(2-x)=0 \\
& x=0,2 \\
& \text { Lest pt } x=1 \\
& y=6 x-x^{2} \Rightarrow y=5 \rightarrow \text { Top } \\
& y=2 x^{2} \Rightarrow y=2 \rightarrow \text { Bottom }
\end{aligned}
$$

$$
\begin{aligned}
A & =\int_{0}^{2}\left[\left(6 x-x^{2}\right)-2 x^{2}\right] d x \\
& =\int_{0}^{2}\left(6 x-3 x^{2}\right) d x \\
& \left.=\left(3 x^{2}-x^{3}\right)\right]_{0}^{2}=4
\end{aligned}
$$

14. Calculate the AREA of the region bounded by the following curves.

$$
x=100-y^{2} \text { and } x=2 y^{2}-8
$$

Bounds:

$$
\begin{gathered}
100-y^{2}=2 y^{2}-8 \\
108=3 y^{2} \\
36=y^{2} \\
y= \pm 6
\end{gathered}
$$

Test Pf: $y=0$

$$
\begin{aligned}
A & =\int_{-6}^{6}\left(100-y^{2}\right)-\left(2 y^{2}-1\right) d y \\
& =\int_{-6}^{6}\left(108-3 y^{2}\right) d y \\
& \left.=\left(108 y-y^{3}\right)\right]_{-6}^{6} \\
& =864
\end{aligned}
$$

$x=100-y^{2} \rightarrow x=0 \rightarrow$ Right
$x=2 y^{2}-8 \rightarrow x=-8 \rightarrow$ Ld +

15. After t hours studying, one student is working $Q_{1}(t)=25+9 t-t^{2}$ problems per hour, and a second student is working on $Q_{2}(t)=5-t+t^{2}$ problems per hour. How many more problems will the first student have done than the second student after 10 hours?

16. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x+8, \quad \text { and } \quad y=(x-4)^{2}
$$

about the x -axis
Bounds:

$$
\begin{array}{rl}
x+8 & =(x-4)^{2} \\
x+8 & =x^{2}-8 x+16 \\
0 & =x^{2}-9 x+8 \\
0 & =(x-8)(x-1) \\
x & x 1,8
\end{array}
$$

17. Let R be the region shown below. Set up the integrab that computes he VOLUME as R is rotated around the x -axis.

DON'T COMPUTE IT!!!

18. Set up the integral that computes the VOLUME of the region bounded by

$$
y=\sqrt{16-x}, \quad y=0 \quad \text { and } \quad x=0
$$

about the vacate $\Rightarrow d y$ problem

$$
\begin{aligned}
& y=\sqrt{16-x} \\
& y=16-x \\
& x=16-y^{2}
\end{aligned}
$$

Bounds: Given $y=0$

Plug $x=0$ into $y=\sqrt{16-x}$

$$
\begin{aligned}
& y=\sqrt{16-x} \\
& y=\sqrt{16} \\
& y=4
\end{aligned}
$$

19. Set up the integral that computes the VOLUME of the region bounded by

$$
y=e^{-x}, \quad y=4 \quad x=0 \quad \text { and } \quad x=10
$$

about th $x-a x t \rightarrow d x$

$$
\pi \int_{0}^{2}\left(16-e^{-2 x}\right) d x
$$

$$
\begin{aligned}
& \text { Graph: } \\
& V=\pi \int_{0}^{2}\left[4^{2}-\left(e^{-x}\right)^{2}\right] d x \\
& \text { 路 }
\end{aligned}
$$

20. Find the VOLUME of the region bounded by

$$
y=7 x, \quad y=0 \quad x=1 \quad \text { and } \quad x=3
$$

around the x -axis

$$
V=\pi \int_{1}^{3}(7 x)^{2} d x
$$

$$
=\pi \int_{1}^{3} 49 x^{2} d x
$$

$$
\left.=\pi\left(\frac{49 x^{3}}{3}\right)\right]_{1}^{3}
$$

$$
=\frac{49 \pi}{3}\left(3^{3}-1\right)
$$

$$
\text { Volume }=\frac{127 y_{\pi}}{3}
$$

21. Find the VOLUME of the region bounded by

$$
y=7 x, \quad y=21 \quad x=1 \quad \text { and } \quad x=3
$$

around thex-axis $\rightarrow d x$

$$
\begin{aligned}
V & =\pi \int_{1}^{3}\left[21^{2}-(7 x)^{2}\right] d x \\
& =\pi \int_{1}^{3}\left(441-49 x^{2}\right) d x \\
& \left.=\pi\left(441 x-\frac{49 x^{3}}{3}\right)\right]_{1}^{3} \\
& =\frac{1274}{3} \pi
\end{aligned}
$$

$$
\text { Volume }=\frac{1274 \pi}{3}
$$

22. Find the VOLUME of the region bounded by

around the x -axis

$\frac{\text { Bounds: }}{x-x^{2}}=0$
$x(1-x)=0$ $x=0,1$

$$
\begin{aligned}
& y=x-x^{2}, \text { and } y=0 \\
& V=\pi \int_{0}^{1}\left(x-x^{2}\right)^{2} d x \\
&=\pi \int_{0}^{1}\left(x^{2}-2 x^{3}+x^{4}\right) d x \\
&\left.=\pi\left(\frac{x^{3}}{3}-\frac{2 x^{4}}{4}+\frac{x^{5}}{5}\right)\right]_{0}^{1} \\
&=\frac{\pi}{30}
\end{aligned}
$$

23. Find the VOLUME of the solid generate by revolving the given region about the x-axis:

24. Find the VOLUME of the solid generated by rotating the region bounded by

$$
y=x+3, \quad x=0, \quad y=9 \quad X=Y-3
$$

around the y-axis $\rightarrow d$ y problem.

$$
\begin{aligned}
v & =\pi \int_{3}^{9}(y-3)^{2} d y \\
& =\pi \int_{3}^{9}\left(y^{2}-6 y+9\right) d y \\
& \left.=\pi\left(\frac{y^{3}}{3}-3 y^{2}+9 y\right)\right]_{3}^{9}
\end{aligned}
$$

25. Find the VOLUME of the region bounded by

$$
y=10 x, \quad x=0, \quad y=10
$$

around the y-axis

Bul y-axis $\Rightarrow d y$ problem $y=10 x$
$y=x$
$10=x$

26. Find the VOLUME of the region bounded by

$$
x+3 y=9, \quad x=0, \quad y=0
$$

around the y-axis

$$
\begin{array}{ll}
x+3 y=9 \\
3 y=-x+9 & \text { But } y-a \times 15 \Rightarrow d y \\
y=\frac{-x}{3}+3 & \text { so } x+3 y=9 \\
x=9-3 y
\end{array}
$$

$$
\begin{aligned}
V & =\pi \int_{0}^{3}(9-3 y)^{2} d y \\
& =\pi \int_{0}^{3}\left(81-54 y+9 y^{2}\right) d y \\
& \left.=\pi\left(81 y-27 y^{2}+3 y^{3}\right)\right]_{0}^{3} \\
& =81 \pi
\end{aligned}
$$

27. Find the VOLUME of the region bounded by

$$
\text { Volume }=\square
$$

28. Let R be the region shown to the right. Set up the integral that computes the VOLUME as R is rotated around the line $x=4$.

DON'T COMPUTE IT!!!

29. Set up the integral needed to find the volume of the solid obtained when the region bounded by

$$
y=2-x^{2} \quad \text { and } \quad y=x^{2}
$$

is rotated about the line $y=3$.

30. Find the VOLUME of the region bounded by

$$
y=3 x^{2}, \quad x=0, \quad y=27
$$

around the line $y=27$
Graph Disk

$y=27 \Rightarrow d x$ problem

Disk

Bound: $\begin{aligned} x & =27 \\ x & =9\end{aligned}$
around the line $y=27 \rightarrow d x$

Bounds: Given $x=0$

$$
\begin{aligned}
27 & =3 x^{2} \\
9 & =x^{2} \rightarrow x=3
\end{aligned}
$$

31. Find the VOLUME of the region bounded by

$$
y=3 x, \quad x=0, \quad y=27
$$

Volume $=$

\qquad
32. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

$$
x=2 y-y^{2}, \quad \text { and } \quad x=0
$$

about the x-axis. $\rightarrow d y$
Bounds: $\begin{aligned} 0 & =2 y-y^{2} \\ 0 & =y(2-y) \\ y & =0,2\end{aligned}$

$$
V=2 \pi \int_{0}^{2} y\left(2 y-y^{2}\right) d y
$$

$$
2 \pi \int_{0}^{2} y\left(2 y-y^{2}\right) d y
$$

33. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

Bounds: $\sqrt{x}=x$

$$
\begin{gathered}
(\sqrt{x})^{2}=x^{2} \\
x=x^{2} \\
x-x^{2}=0 \\
x(1-x)=0 \\
x=0,1
\end{gathered}
$$

$$
y=\sqrt{x}, \quad \text { and } \quad y=x
$$

$$
\text { Volume }=\underbrace{W_{0}=\int_{0}^{1} x(\sqrt{x}-x) d x}
$$

34. Using the Shell Method set up the integral that computes the VOLUME of the region bounded by about the $\underset{\text { v-axis. } \rightarrow d x}{ }$ $y=2-x^{2}, \quad$ and $\quad y=x^{2}$

$$
\text { Bounds: } \begin{aligned}
2-x^{2} & =x^{2} \\
2 & =2 x^{2} \\
1 & =x^{2} \\
x & = \pm 1
\end{aligned}
$$

$$
V=2 \pi \int_{-1}^{1} x\left(2-x^{2}-x^{2}\right) d x
$$

Test Pt: $x=0$

$$
\begin{aligned}
& y=2-x^{2} \rightarrow y=2 \rightarrow T_{\text {op }} \\
& y=x^{2} \rightarrow y=0 \rightarrow \text { Bottom }
\end{aligned}
$$

$$
2 \pi \int_{-1}^{1} \times\left(2-2 x^{2}\right) d x
$$

35. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by

Bounds:

$$
\begin{aligned}
& x=x^{2} \\
& x-x^{2}=0 \\
& x(1-x)=0 \\
& x=0,1
\end{aligned}
$$

$$
y=x, \operatorname{aran} y=a^{2}
$$

Since $x=-2$ is smaller than the bounds,

$$
\text { Volume }=-
$$

36. Using the Shell Method, set up the integral that computes the VOLUME of the region bounded by about the $\operatorname{lin}(x \rightarrow 3 \rightarrow d x$ $y=7 x^{2}, \quad y=0$ and $\quad x=2$

$$
V=2 \pi \int_{0}^{2}\left(Z_{1}\right)\left(7 x^{2}\right) d x
$$

Since $x=3$ is larger than the bounds,

$$
V=2 \pi \int_{0}^{2}(3-x)\left(7 x^{2}\right) d x
$$

37. Using the Shell Method. set up the integral that computes the VOLUME of the region bounded by

Bounds:

$$
\begin{gathered}
y^{2}+1=2 \\
y^{2}=1 \\
y= \pm 1
\end{gathered}
$$

$$
\begin{gathered}
y^{2}=1 \\
y= \pm 1 \\
\text { Test Pt: } y=0 \\
x=y^{2}+1 \rightarrow x=1 \rightarrow \text { Left } \\
x=2 \rightarrow x=2 \rightarrow \text { Right }
\end{gathered}
$$

Since $y=-2$ is smaller than the bound 5 g

$$
V=2 \pi \int_{-1}^{1}(y-(-z))\left(2-\left(y^{2}+1\right)\right) d y
$$

