Name:

1. For the following function $f(x, y)$, evaluate $f_{y}(-2,-3)$.

$$
f(x, y)=8 x^{4} y^{5}+3 x^{3}-12 y^{2}
$$

$$
f_{y}(-2,-3)=
$$

\qquad
2. For the following function $f(x, y)$, evaluate $f_{x}(x, y)$.

$$
f(x, y)=-7 \cos \left(x^{7} y^{8}\right)
$$

$$
f_{x}(x, y)=
$$

\qquad
3. Compute $f_{x}(6,5)$ when

$$
f(x, y)=\frac{(6 x-6 y)^{2}}{\sqrt{y^{2}-1}}
$$

$$
f_{x}(6,5)=
$$

4. Find the first order partial derivatives of

$$
f(x, y)=\frac{3 x^{2} y^{3}}{(y-1)^{2}}
$$

$$
\begin{gathered}
f_{x}(x, y)= \\
f_{y}(x, y)=
\end{gathered}
$$

5. Find the first order partial derivatives of $f(x, y)=(x y-1)^{2}$

$$
\begin{aligned}
& f_{x}(x, y)= \\
& f_{y}(x, y)= \\
&
\end{aligned}
$$

6. Find the first order partial derivatives of $f(x, y)=x e^{x^{2}+x y+y^{2}}$

$$
\begin{aligned}
& f_{x}(x, y)= \\
& f_{y}(x, y)= \\
&
\end{aligned}
$$

7. Find the first order partial derivatives of $f(x, y)=y \cos \left(x^{2} y\right)$

$$
\begin{aligned}
& f_{x}(x, y)= \\
& f_{y}(x, y)= \\
&
\end{aligned}
$$

8. Given the function $f(x, y)=4 x^{5} \tan (3 y)$, compute $f_{x y}(2, \pi / 3)$

$$
f_{x y}(2, \pi / 3)=
$$

\qquad
9. Given the function $f(x, y)=3 y^{4} \sin (x)$, compute $f_{x y}(\pi, 3)$
$f_{x y}(\pi, 3)=$
10. A function $f(x, y)$ has 2 critical points. The partial derivatives of $f(x, y)$ are

$$
f_{x}(x, y)=8 x-16 y \quad \text { and } \quad f_{y}(x, y)=8 y^{2}-16 x
$$

One of the critical points is $(0,0)$. Find the second critical point of $f(x, y)$.

$$
(a, b)=
$$

11. Find the second order partial derivatives of

$$
f(x, y)=x^{2} y \ln (7 x)
$$

$$
\begin{aligned}
& f_{x x}(x, y)= \\
& f_{x y}(x, y)= \\
& f_{y y}(x, y)=
\end{aligned}
$$

12. Find the discriminant of

$$
f(x, y)=e^{x} \sin (y)
$$

Simplify your answer. Note: $\sin ^{2}(y)+\cos ^{2}(y)=1$.

$$
D(x, y)=
$$

\qquad
13. Using the information in the table below, classify the critical points for the function $g(x, y)$.

(a, b)	$g_{x x}(a, b)$	$g_{y y}(a, b)$	$g_{x y}(a, b)$
$(4,5)$	0	4	-2
$(5,-10)$	5	-10	6
$(10,10)$	-4	-6	-4
$(7,9)$	5	7	4
$(4,8)$	2	2	2

$(4,5)$ is \qquad
$(5,-10)$ is \qquad
$(10,10)$ is \qquad
$(7,9)$ is \qquad
$(4,8)$ is \qquad
14. Classify the critical points of the function $f(x, y)$ given the partial derivatives:

$$
f_{x}(x, y)=x-y \quad f_{y}(x, y)=y^{3}-x
$$

(a) Two saddle points and one local minimum
(b) Two saddle points and one local maximum
(c) One saddle point, one local maximum, and one local minimum
(d) Three saddle points
(e) Two local minimums and one saddle point

Answer:
15. The critical points for a function $f(x, y)$ are $(1,1)$ and $(2,4)$. Given that the partial derivatives of $f(x, y)$ are

$$
f_{x}(x, y)=7 x-3 y \quad f_{y}(x, y)=4 x^{2}-6 y
$$

Classify each critical point as a maximum, minimum, or saddle point.
$(1,1)$ is \qquad
$(2,4)$ is \qquad
16. Find all local maximum and minimum points of

$$
f(x, y)=4 x^{2}-x y+8 y^{2}-46 x-26 y+11
$$

Local max at \qquad

Local min at \qquad
17. Fleet feet stores two most sold running shoes brands are Aesics and Brookes. The total venue from selling x pairs of Aesics and y pairs of Brookes is given by

$$
R(x, y)=-10 x^{2}-16 y^{2}-4 x y+84+204 y
$$

where x and y are in thousands of units. Determine the number of Brookes shoes to be sold to maximize the revenue.
\qquad
18. Find the point(s) (x, y) where the function $f(x, y)=3 x^{2}+4 x y+6 x-15$ attains maximal value, subject to the constraint $x+y=10$.

$$
(x, y)=
$$

19. Find the minimum of the function using LaGrange Multipliers of the function $f(x, y)=2 x^{2}+4 y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.

Minimum Value $=$ \qquad
20. Find the minimum value of the function $f(x, y)=2 x^{2} y-3 y^{2}$ subject to the constraint $x^{2}+2 y=1$.

Minimum Value $=$

21. Locate and classify the points that maximize and minimize the function $f(x, y)=5 x^{2}+10 y$ subject to the constraint $5 x^{2}+5 y^{2}=5$.

Minimum Value occurs at \qquad

Maximum Value occurs at \qquad
22. Find the maximum value of the function $f(x, y)=8 x-11 y^{2}$ subject to the constraint $x^{2}+11 y^{2}=25$.

Max value is
23. We are baking a tasty treat where customer satisfaction is given by $S(x, y)=6 x^{3 / 2} y$. Here, x and y are the amount of sugar and spice respectively. If the sugar and spice we use must satisfy $9 x+y=4$, what is the maximum customer satisfaction we can achieve? (Note: the function is defined only for $x \geq 0$ and $y \geq 0$.) Round your answer to 2 decimal places.
24. A customer has $\$ 280$ to spend on two items, Item A, which costs $\$ 2$ per unit, and Item B, which costs $\$ 5$ per unit. If the enjoyment of each item by the customer is given by $f(A, B)=100 A B^{3}$, how many of each unit should be purchase to maximize the enjoyment of the customer?

Units of A: \qquad

Units of B:
25. Evaluate the following double integral.

$$
\int_{0}^{2} \int_{0}^{3}(x+y) d y d x
$$

$$
\int_{0}^{2} \int_{0}^{3}(x+y) d y d x=
$$

\qquad
26. Evaluate the double integral

$$
\int_{0}^{\pi / 3} \int_{0}^{2} 25 y^{4} \sec ^{2}(x) d y d x
$$

$$
\int_{0}^{\pi / 3} \int_{0}^{2} 25 y^{4} \sec ^{2}(x) d y d x=
$$

27. Evaluate the double integral

$$
\int_{0}^{\pi / 2} \int_{0}^{1} 12 x^{3} \sin (y) d x d y
$$

$$
\int_{0}^{1} \int_{0}^{\pi / 2} 12 x^{3} \sin (y) d x d y=
$$

28. Evaluate the double integral

$$
\int_{0}^{4} \int_{2}^{y}(y+x) d x d y
$$

$$
\int_{0}^{4} \int_{2}^{y}(y+x) d x d y=
$$

29. Evaluate the double integral

$$
\int_{1}^{2} \int_{1}^{x^{2}} \frac{x}{y^{2}} d y d x
$$

$$
\int_{1}^{2} \int_{1}^{x^{2}} \frac{x}{y^{2}} d y d x=
$$

30. Compute the following definite integral.

$$
\int_{0}^{7} \int_{1}^{x} 36 x d y d x
$$

$$
\int_{0}^{7} \int_{1}^{x} 36 x d y d x=
$$

\qquad
31. Find the bounds for the integral $\iint_{R} 5 e^{x} \sin (y) d A$ where R is a triangle with vertices $(0,0),(1,2)$, and $(0,2)$.
DON"T COMPUTE!!!

Answer:
32. Switch the order of integration on the follow integral

$$
\int_{0}^{6} \int_{x^{2}}^{36} f(x, y) d y d x
$$

Answer:

33. Switch the order of integration on the follow integral

$$
\int_{0}^{1} \int_{10 y}^{10} f(x, y) d x d y
$$

Answer:
34. Evaluate the double integral

$$
\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x
$$

(Hint: Change the order of integration)

$$
\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x=
$$

35. Evaluate the double integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y
$$

Round your answer to 2 decimal places.
(Hint: Change the order of integration)

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y=
$$

