MA 16020 EXAM 2 STUDY GUIDE: CALCULUS II

When to use substitution to integrate?

• When you have something containing a function (which we call u) and that something is multiplied by the derivative of u.

Ex.
$$\int f(u(x)) \cdot u'(x) dx = \int f(u) du$$

- How do you use substitution?
 - o Determine if there is an inner function and call that u.
 - o Take the derivative of u. So you have

$$du = u'(x) dx$$

- \circ Solve for dx.
- \circ Transform the integral using u and dx.

When to use partial fraction decomposition to integrate?

- When you have a fraction with polynomials on the numerator and denominator, and substitution doesn't work.
- How do you use partial fraction decomposition?
 - Decompose the fraction using the steps outlined in the Handout, METHOD OF DECOMPOSING INTO PARTIAL FRACTIONS.
- Note: Some integrals will yield ln|?| and others will need a substitution.

When to use by parts to integrate?

- When all else fails
- How do you use by parts?
 - Choose *u* to be the one to differentiate
 - Recall the acronym that tells how to choose u.
 - L Logarithmic
 - A Algebraic (like polynomials)
 - T Trigonometric
 - E Exponential
 - \circ Choose dv to be integrated
 - \circ Determine du and v and apply the following formula:

$$u \cdot v - \int v du$$

- Note:
 - 1. You may have to do a substitution within your problem.
 - 2. You may have to apply by parts more than once.

MA 16020 Exam 2 Study Guide & Cal 2

An improper integral is when

(1) we have $\pm \infty$ in the bounds, or

(2) we have a discontinuity within the bounds, Check if the integrand is undefined and check if that value is in the interval.

When computing them, rewrite with a limit ex. $\int_0^\infty e^{-x} dx = \lim_{N \to \infty} \int_0^N e^{-x} dx$

To review limit check MA 16020 Exam 2 Study Guide à Cal 1.

Area Between Two Curves The area between two curves can be described two ways. A= So (Top-Bottom) dx -> You want y= Something for Top and Bottom or A= Sc (Right-Left) dy -> You want x= something y for Right and Left

Volume of Solids of Revolution Read the problem to see if a particular method is asked for. Plus try to draw the regions, when the region "nugs the line of rotation =) Disk

• X-axis =) dx problem => V= (b \mathbb{H}(f(x))^2 dx · y-axis \Rightarrow dy problem \Rightarrow $V = \int_{c}^{d} \text{Tr}(g(y))^{2} dy$ • the line \Rightarrow dx problem \Rightarrow $V= \int_a^b \gamma (f(x)-H)^2 dx$ y=H• the line => dy problem => $V = \int_{e}^{d} T(g(y) - H)^{2} dy$ X = HWhen there is a "gap" between the region and the line of rotation \Rightarrow Washer \times -axis \Rightarrow dx problem \Rightarrow V= $\begin{cases} b & \text{Tr}(R^2-r^2) dx \end{cases}$ $\cdot y$ -axis =) dy problem =) $V = \int_{0}^{\infty} d \Upsilon(R^{2}-r^{2}) dy$ • the line \Rightarrow dx problem \Rightarrow $V=\begin{cases}b\\a\end{cases}$ $Tr((R-H)^2-(r-H)^2)dx$ Y=H· the line => dy problem => V= \(\frac{d}{c} \tau \left[(R-#)^2 - (r-#)^2 \right] dy where R is the farthest from the line of rotation and r is the closest to the line of rotation

E2 pg.a