MA 16020: Lesson 14 Volume By Revolution Disk Method

By: Alexandra Cuadra

In Geometry,

When we first talked about the concept of area, we did this by going over all the formulas for the area of different polygons.

In Calculus I,

We learned about integration as a new technique for calculating area under a curve.

$$
\text { i.e. } \int_{a}^{b} f(x) d x=F(b)-F(a)
$$

In Geometry,

O We also learned about 3-D figures, like cubes and prisms.
O We described the volume of these objects by the amount of 3-D space that they contained.
O We calculated the volume with formulas like the ones on the right.

$V=\pi r^{2} h$

$$
V=\frac{b \cdot h \cdot l}{2}
$$

$V=\frac{4}{3} \pi r^{3}$

5

But once curves, like the one below, get involved all these formulas are USELESS.

O In the same way, we run a line segment across a 2-D region to calculate its area, we can run a plane region, or a cross section, across a 3D region to calculate its volume.
O i.e. Running a 2-D plane across a 3-D volume.

So we have integration again; just with an extra dimension.

O Instead of adding up tiny rectangles under a curve, we are adding up infinitely thin cross sections, which we can call
O Disks (Lessons $14+16$), or
O Washers (Lessons $15+16$), or
O Shells (Lessons 17 +18)

O Since each of these cross sections are 2-D, taking the integral of an area function will gives us volume.

Let's look at a cylinder.

Remember a

 cylinder is made up of many circles like the red circle.So, we can think of our integral to be sum of all these circles.

9

Volume of that Cylinder

O Geometry Way:
O The formula for a Cylinder is

$$
V=\pi r^{2} h
$$

O Since our Cylinder has radius 2 and height 4,

$$
V=\pi 2^{2} 4=16 \pi
$$

O Calculus Way:

$$
V=\int_{-2}^{2} 2^{2} \pi d x=16 \pi
$$

where \int_{-2}^{2} refers to the height, and

$$
2^{2} \pi \text { refers to the area of a circle. }
$$

Purpose of oll of this...

O So in the case of a cylinder, this might be overkill.

O But this is the way we want to think of these questions.

O Essentially find the cross section by graphing the lines given and apply the appropriate formula (found on the next slide.)

Disk Method Formula(s)

For rotation around x-axis:
O If the volume of the solid is obtained by rotating $f(x)$ about the x-axis on the interval $a \leq x \leq b$ is given by

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

For rotation around y-axis:
O If the volume of the solid is obtained by rotating $g(y)$ about the y-axis on the interval $\mathrm{c} \leq y \leq d$ is given by

$$
V=\pi \int_{c}^{d}[g(y)]^{2} d y
$$

Why π in the

 formula?Note the π in both formulas comes from the fact we are playing with Disks.

So you can see the graph on the left shows the radius and the right shows the Disks.

Examples

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x, \quad y=0, \quad x=1, \quad x=3
$$

About the x-axis.

First draw the region.

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x, \quad y=0, \quad x=1, \quad x=3
$$

About the x-axis.

Rotation about x-axis

https://www.geogebra.org/m/tgceabb2\#material/w8mk9dgp

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x, \quad y=0, \quad x=1, \quad x=3
$$

About the x-axis.

https://www.geogebra.org/m/tgceabb2\#material/w8mk9dgp

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sec (x), \quad y=0, \quad x=0, \quad x=1
$$

About the x-axis.
First draw the region.

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sec (x), \quad y=0, \quad x=0, \quad x=1
$$

About the x-axis.

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sec (x), \quad y=0, \quad x=0, \quad x=1
$$

About the x-axis.

https://www.geogebra.org/m/tgceabb2\#material/vte3zdix

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sec (x), \quad y=0, \quad x=0, \quad x=1
$$

Mi s

$$
=\pi+\pi x
$$

$$
(: x i n): 1: 1: 1: 1: 1
$$

$$
=11
$$ $-\pi \tan (1)$

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{6 x}+\sqrt{\frac{x}{6}} \quad x=2, \quad x=4
$$

About the x-axis.
First draw the region.

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{6 x}+\sqrt{\frac{x}{6}}, \quad x=2, \quad x=4
$$

About the x-axis.

25

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{6 x}+\sqrt{\frac{x}{6}}, \quad x=2, \quad x=4
$$

About the x-axis.

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{6 x}+\sqrt{\frac{x}{6}}, \quad x=2, \quad x=4
$$

About the x-axis.

$$
V=\pi \int_{2}^{4}\left(\sqrt{6 x}+\sqrt{\frac{x}{6}}\right)^{2} d x
$$

$$
\because,
$$

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{6 x}+\sqrt{\frac{x}{6}} \quad x=2, \quad x=4
$$

About the x-axis.

Example 4: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=4 x^{2}, \quad x=0, \quad y=4
$$

About the y-axis.
First draw the region.

Example 4: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=4 x^{2}, \quad x=0, \quad y=4
$$

About the y-axis.

https://www.geogebra.org/m/tgceabb2\#material/afywnvhr

Example 4: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=4 x^{2}, \quad x=0, \quad y=4
$$

About the y-axis.

https://www.geogebra.org/m/tgceabb2\#material/afywnvhr
31

Example 4: Find the volume of the solid that results by revolving the region enclosed by the curves

[^0]Example 4: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=4 x^{2}, \quad x=0, \quad y=4
$$

$=\pi \cdot \frac{1}{4}$

$$
=2 \pi
$$

Example 5: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{144-x^{2}}, \quad x=0, \quad y=0
$$

About the y-axis.
First draw the region.

Example 5: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{144-x^{2}}, \quad x=0, \quad y=0
$$

About the y-axis.

Rotation about y-axis

https://www.geogebra.org/m/tgceabb2\#material/a5s4n8u7
35

Example 5: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{144-x^{2}}, \quad x=0, \quad y=0
$$

About the y-axis.

https://www.geogebra.org/m/tgceabb2\#material/a5s4n8u7

Example 5: Find the volume of the solid that results by revolving the region enclosed by the curves

Example 5: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\sqrt{144-x^{2}}, \quad x=0, \quad y=0
$$

About the y-axis.

https://www.geogebra.org/m/tgceabb2\#material/a5s4n8u7

GeoGebra link for Lesson 14

O https://www.geogebra.org/m/tgceabb2

O Note click on the play buttons on the left-most screen and the animation will play/pause.

[^0]: https://www.geogebra.org/m/tgceabb2\#material/afywnvhr

