MA 16020: Lesson 15 Volume By Revolution Washer Method

By: Alexandra Cuadra

• How Geometry gave us formulas for simple shapes and solids to find their area or volume, and

O How Integration can allow us to find area or volume of ANYTHING!

How?

- We introduced this notion of cross-sections which can be of the form of
 - O Disks (Lessons 14 + 16), or
 - O Washers (Lessons 15 + 16), or
 - O Shells (Lessons 17 + 18)

Geometry: How to Calculate The Area of a Shaded Region

Suppose we are asked to find the area of a rectangle with a triangle missing from the middle.

How do we calculate that area?

Geometry: How to Calculate The Area of a Shaded Region

Then we would subtract these two values ...

What if we did this with disks?

Let's find the area of the red annulus.

The area of the red circle is πR^2 , and the area of the gray circle is πr^2 .

So if we subtract the two, we get $\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$

Washer Method Formula

Since we are just cutting out the middle of the solid, we choose dx or dy in the same way as the disk method.

- O Rotating around x-axis ⇒ " dx " problem
- O Rotating around y-axis ⇒ " dy " problem

$$V = \pi \int_a^b (R^2 - r^2) \, dx$$

where a and b are bounds of the region we are rotating.

- O R is the farthest from the axis rotation
- Or is the closest

How to Proceed with Washer Problems

- 1. Draw the region
- 2. Determine which axis you are rotating on
 - a. If x axis: Determine Top and Bottom Function
 - i. R is Top
 - ii. r is Bottom
 - b. If y axis: Determine Right and Left Function
 - i. R is Right
 - ii. r is Left
- 3. Finally, apply the washer formula

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves $y = x^2$, x = 2, and y = 0About the y-axis. First draw the region.

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^2 + y^2 = 9$ and to the right of the line x = 1 about the y-axis.

GeoGebra Link for Lesson 15

O https://www.geogebra.org/m/f73zjxfe

• Note click on the play buttons on the left-most screen and the animation will play/pause.