MA 16020: Lesson 15 Volume By Revolution Washer Method

By: Alexandra Cuadra

1

Last Time, we falked about...

O How Geometry gave us formulas for simple shapes and solids to find their area or volume, and

O How Integration can allow us to find area or volume of ANYTHING !
How?

O We introduced this notion of cross-sections which can be of the form of

O Disks (Lessons $14+16$), or
O Washers (Lessons $15+16$), or
O Shells (Lessons $17+18$)

Geometry: How to Calculate the Area of a Shaded Region

Suppose we are asked to find the area of a rectangle with a triangle missing from the middle.

How do we calculate that area?

Geometry: How to Calculate The Area of a Shaded Region

First, we would find the area of the rectangle and the area of the triangle separately.

Geometry: How to Calculate The Area of a Shaded Region

Then we would subtract these two values ...

5

Geometry: How to Calculate The Area of a Shaded Region

... to find the remaining area.

4=

\square

What if we did this with disks?

Let's find the area of the red annulus.

The area of the red circle is πR^{2}, and the area of the gray circle is πr^{2}.

So if we subtract the two, we get

$$
\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)
$$

Today's Lecłure

O In this lesson, we are going to play with disks, but remove a portion of it.

O This method is called the washer method.

https://www.geogebra.org/m/uym6dwyd

Washer Method Formula

Since we are just cutting out the middle of the solid, we choose dx or dy in the same way as the disk method.

O Rotating around x-axis \Rightarrow " $d x$ " problem

O Rotating around y-axis \Rightarrow " dy " problem

$$
V=\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x
$$

where a and b are bounds of the region we are rotating.
$O R$ is the farthest from the axis rotation
Or is the closest

9

Let's talk a bit more about

 R and rO Recall Lessons $12+13$ which were about finding the area between 2 curves.
O The same principle applies here.

O For rotation around the x-axis,
$O R$ is the "Top" Function
Or is the "Bottom" Function

O Just remember the formula is

$$
V=\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x
$$

Let's talk a bit more about

R and r

O For rotation around the y-axis,
O R is the "Right" Function
Or is the "Left" Function

O Just remember the formula is

$$
V=\pi \int_{c}^{d}\left(R^{2}-r^{2}\right) d y
$$

How to Proceed with Washer Problems

1. Draw the region
2. Determine which axis you are rotating on
a. If x-axis: Determine Top and Bottom Function
i. R is Top
ii. r is Bottom
b. If y - axis: Determine Right and Left Function
i. R is Right
ii. r is Left
3. Finally, apply the washer formula

Examples

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\frac{x}{2}, \quad y=3 x, \quad \text { and } \quad x=2
$$

About the x-axis.

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\frac{x}{2}, \quad y=3 x, \quad \text { and } \quad x=2
$$

About the x-axis.

First draw the region.

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\frac{x}{2}, \quad y=3 x, \quad \text { and } \quad x=2
$$

About the x-axis.

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\frac{x}{2}, \quad y=3 x, \quad \text { and } \quad x=2
$$

About the x-axis.

Example 1: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=\frac{x}{2}, \quad y=3 x, \quad \text { and } \quad x=2
$$

About the x-axis.

\qquad

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=e^{-x}, \quad y=2, \text { and } \quad x=3
$$

About the x-axis.

First draw the region.

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=e^{-x}, \quad y=2, \text { and } \quad x=3
$$

About the x-axis.

https://www.geogebra.org/m/jfta4b52

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=e^{-x}, \quad y=2, \text { and } \quad x=3
$$

About the x-axis.

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=e^{-x}, \quad y=2, \text { and } \quad x=3
$$

About the x-axis.

Example 2: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=e^{-x}, \quad y=2, \text { and } \quad x=3
$$

About the x-axis.

23

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x^{2}, \quad x=2, \text { and } \quad y=0
$$

About the y-axis.
First draw the region.

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x^{2}, \quad x=2, \text { and } \quad y=0
$$

About the y-axis.

https://www.geogebra.org/m/znzmhqq7
25

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x^{2}, \quad x=2, \text { and } \quad y=0
$$

About the y-axis.
 quadrant

Example 3: Find the volume of the solid that results by revolving the region enclosed by the curves

$$
y=x^{2}, \quad x=2, \text { and } \quad y=0
$$

About the y-axis.

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

First draw the region.

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

First draw the region.

https://www.geogebra.org/m/c2wzbrbf

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

https://www.geogebra.org/m/c2wzbrbf
34

Example 4: Find the volume of the solid that results by revolving the region inside the circle $x^{2}+y^{2}=9$ and to the right of the line $x=1$ about the y axis.

https://www.geogebra.org/m/c2wzbrbf
35

Example 5: Find the volume of the solid obtained by revolving the region enclosed by the curves

$$
y^{2}=x, \quad \text { and } \quad x=y
$$

a) About the y-axis

First draw the region.

Example 5: Find the volume of the solid obtained by revolving the region enclosed by the curves

$$
y^{2}=x, \quad \text { and } \quad x=y
$$

a) About the y-axis

https://www.geogebra.org/m/att49cax
37

Example 5: Find the volume of the solid obtained by revolving the region enclosed by the curves

$$
y^{2}=x, \quad \text { and } \quad x=y
$$

a) About the y-axis

Example 5: Find the volume of the solid obtained by revolving the region enclosed by the curves

$$
y^{2}=x, \quad \text { and } \quad x=y
$$

b) About the x-axis

Example 5: Find the volume of the solid obtained by revolving the region enclosed by the curves

$$
y^{2}=x, \quad \text { and } \quad x=y
$$

b) About the x-axis

Example 5: Find the volume of the solid obtained by revolving the region enclosed by the curves

$$
y^{2}=x, \quad \text { and } \quad x=y
$$

b) About the x-axis

RECAP: Disk vs. Washer Method

When do apply Disk Method or Washer Method?

Disk Method

Washer Method

When do we apply Disk Method or Washer Method?

OWhen the region "hugs" the axis of rotation \Rightarrow Disk Method

OWhen there is a "gap" between the region and axis of rotation
\Rightarrow Washer Method

GeoGebra link for Lesson 15

O https://www.geogebra.org/m/f73zixfe

O Note click on the play buttons on the left-most screen and the animation will play/pause.

