MA 16020: Lesson 16 Volume By Revolution Rotation around any non-Axis

By Alexandra Cuadra

RECAP of Formulas from Lessons 14 and 15

For rotation around x-axis:
O Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

O Washer Method:

$$
V=\pi \int_{a}^{b}\left[R^{2}-r^{2}\right] d x
$$

For rotation around y-axis:
O Disk Method:

$$
V=\pi \int_{c}^{d}[g(y)]^{2} d y
$$

O Washer Method:

$$
V=\pi \int_{c}^{d}\left[R^{2}-r^{2}\right] d y
$$

RECAP: When do we apply Disk Method or Washer Method?

O When the region "hugs" the axis of rotation
\Rightarrow Disk Method

O When there is a "gap" between the region and axis of rotation
\Rightarrow Washer Method

3

Today's Lecłure

O In the previous two lessons, we looked at rotations around the x-axis or y-axis.

O Today we are going to rotate about ANY arbitrary axis.
o Don't worry. We are going to limit ourselves to any vertical or horizontal line parallel to the x-axis or y-axis

Let's Backłrack a Bit...

Remember when we first described Washers, we talked about farthest and closest.

Consider the case of x-axis rotation.
In terms of distance,

- R is the length that is FARTHEST from x-axis
- i.e. $\mathrm{R}=f$
- r is the length that is CLOSEST to x-axis - i.e. $r=g$

5

When rotating around the line $y=\#$...

O Since f is the FARTHEST,
O Distance $\mathrm{b} / \mathrm{w} f$ and $y=\#$ is

$$
R=f-\#
$$

O Since g is the CLOSEST,
Distance $\mathrm{b} / \mathrm{w} g$ and $y=\#$ is

$$
r=g-\#
$$

O Washer Method for around $y=\#$:

$$
V=\pi \int_{a}^{b}\left[(R-\#)^{2}-(r-\#)^{2}\right] d x
$$

Note this formula is also true for the x-axis case, because the x-axis is simply the line $y=0$

GOOD NEWS EVERYBODY:

When rotating around the line $x=\#$...

O The same formulas, for R and r, from the case of $y=\#$ applies.

Washer Method for around $x=\#$:

$$
V=\pi \int_{a}^{b}\left[(R-\#)^{2}-(r-\#)^{2}\right] d y
$$

Note this formula is also true for the y-axis case, because the y-axis is simply the line $x=0$

Note that though we did all these calculations for the Washer Problems; this idea also applies for the Disk Problems.

Rotation around any non-Axis Formulas

For rotation around the line $y=$ \#:
O Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)-\#]^{2} d x
$$

O Washer Method:

$$
V=\pi \int_{a}^{b}\left[(R-\#)^{2}-(r-\#)^{2}\right] d x
$$

For rotation around the line $x=\#$:
O Disk Method:

$$
V=\pi \int_{c}^{d}[g(y)-\#]^{2} d y
$$

O Washer Method:

$$
V=\pi \int_{c}^{d}\left[(R-\#)^{2}-(r-\#)^{2}\right] d y
$$

Note that

- If you replace \# with 0 , and
- Remember that
- x -axis $=>y=0$
- y -axis $=>x=0$
you get the formulas from Lessons 14 and 15 which are...

Rotation around any Axis Formulas

For rotation around x-axis:
O Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

O Washer Method:

$$
V=\pi \int_{a}^{b}\left[R^{2}-r^{2}\right] d x
$$

AGAIN: When do we apply Disk Method or Washer Method?

O When the region "hugs" the axis of rotation \Rightarrow Disk Method

O When there is a "gap" between the region and axis of rotation
\Rightarrow Washer Method

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

Draw the region.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around A) the x-axis

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

https://www.geogebra.org/m/wri2euhf
15

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around A) the x-axis $\Rightarrow d x$ problem

$$
\begin{aligned}
& \text { Far } \Rightarrow x^{2} y=4 \Rightarrow y=\frac{4}{x^{2}} \\
& \text { close } \Rightarrow y=1 \\
& V=\overparen{I} \int_{1}\left(\frac{4}{x^{2}}\right)^{2}-1^{2} d x
\end{aligned}
$$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis Now the bounds
bounds we are

https://www.geogebra.org/m/wri2euhf
17

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
A) the x-axis

$$
x= \pm 2
$$

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R ground
A) the x-axis

https://www.geogebra.org/m/wri2euhf

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the line $y=1$

Draw the region.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the line $y=1$

Rotation about $y=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the line $y=1$

https://www.geogebra.org/m/n2jzwh8f

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around

Ax problem
B) the line $\sqrt{=}=1$

But now it is a disk
 problem So

Note our bound are the

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
B) the line $y=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the y-axis

Draw the region.

25

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the y-axis

httos://www.geogebra.org/m/wzbm2xbt

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the y-axis

https://www.geogebra.org/m/wzbm2xbt

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around C) the y-axis

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around Now the bounds we are given
C) the y-axis

the smallest one $y=1$ Next Find

putting

https://www.geogebra.org/m/wzbm2xbt

29

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
C) the y-axis

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

Draw the region.

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

https://www.geogebra.org/m/cppyhnak

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around
D) the line $x=1$

Furthermore, 3-D

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around

$$
\begin{aligned}
& \text { dy problem } \\
& \text { But now is a disk } \\
& \text { problem } S_{0} \\
& V=\pi \int_{1}^{4}\left(\sqrt{\frac{4}{y}}-1\right)^{2} d y \\
& \text { Note our } b \text { ounl are the } \\
& \text { same as (c) }
\end{aligned}
$$

D) the line $x=1$

Example 1: Let R be the region of the $x y$-plane bounded by the curves $x^{2} y=4$ below by the line $y=1$, on the left by the line $x=1$. Find the volume of the solid obtained by rotating R around

$\int d>$
D) the line $x=1$

$$
=\pi \int_{1}^{4}\left(\frac{4}{y}\right.
$$

$$
\left.-\frac{2 \cdot 2}{y^{1 / 2}}+1\right) d y
$$

 $\left.-4 y^{-1 / 2}+1\right) d y$

https://www.geogebra.org/m/cppyhnqk
35

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

Draw the region.

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

Rotation about $x=6$

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

$x=6 \Rightarrow d y$ problem

Far $\Rightarrow y=\sqrt{x} \Rightarrow x=y$
Close $\Rightarrow x=4$
BUT we are going
Far $\Rightarrow x=y^{2}-6 \quad$ Close $\Rightarrow x=4-6$
httos://www.geogebra.org/m/eyabfyya

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

B/
c \qquad I want greater than $y=0 \mathrm{~b} / \mathrm{c}$
that a

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

Example 2: Find the volume of the solid generated by revolving the given region about the line $x=6$:

$$
y=\sqrt{x}, \quad y=0, \quad x=4
$$

Example 3: Find the volume of the solid generated by revolving the given region about the line $y=2$:

$$
y=2 x, \quad x=0, \quad y=2
$$

Draw the region.

Example 3: Find the volume of the solid generated by revolving the given region about the line $y=2$:

$$
y=2 x, \quad x=0, \quad y=2
$$

Rotation about $y=2$

Example 3: Find the volume of the solid generated by revolving the given region about the line $y=2$:

$$
y=2 x, \quad x=0, \quad y=2
$$

$$
y=2 \Rightarrow d x \text {-problem }
$$

$=4$

GeoGebra Link for Lesson 16

Ohttps://www.geogebra.org/m/y4pqm3mr

O Note click on the play buttons on the left-most screen and the animation will play/pause.

