

So far...

- O We have learned how to find the volume of a solid of revolution by integrating
 - O In the same way, we calculate the area under a curve
 - O Running a line segment of varying length across the region, and adding them up

In Today's Lecture, we will be covering the case, when neither method (Disk nor Washer) is easy.

5

Example 1: Find the volume obtained by revolving the region bounded by the curves

 $y = 2x^2 - x^3 \quad \text{and} \qquad y = 0$

About the y-axis.

https://www.geogebra.org/m/jqfyndpu

Example 1: Find the volume obtained by revolving the region bounded by the curves $y = 2x^2 - x^3$ and y = 0About the y-axis. Technically, yes. It is a Washer Problem. But there are two issues: 1. Given we are revolving around y-axis, we want to solve our equations for x. 1.5 $y = 2x^2 - x^3$ i.e. Solve $y = 2x^2 - x^3$ for x. But that is easier said than done. 0.5 2. For washer problems, we need two equations for each 0.5 -0.5 radius. Here we have both radius depend on the same function. https://www.geogebra.org/m/jqfyndpu

So how can I do this kind of problem without giving myself a headache?

ANSWER: SHELL METHOD

GEOMETRY: Finding The Volume of A Hollow Cylinder

• To find the volume of this hollow cylinder, we used the same idea when washers were first introduced.

$$V_{total} = V_{outer} - V_{inner}$$

- O Remember the volume of a cylinder is $\pi r^2 h$. So $V_{outer} = \pi (r_2)^2 h$ and $V_{inner} = \pi (r_1)^2 h$
- O Hence $V_{total} = \pi r_2^2 h \pi r_1^2 h$ = $\pi h (r_2^2 - r_1^2)$ = $\pi h (r_2 - r_1) (r_2 + r_1)$

(4, 32) Example 3: Find the volume obtained by revolving (130p the region bounded by the curves $y = \sqrt{256x}$, and $y = 2x^2$ $y = \sqrt{256x}$ About the y-axis = dx problem Draw the region. From the graph we can figure out the Top and Bottom, and get $V = 2\pi \int_{0}^{4} x(\sqrt{256x} - 2x^{2}) dx$ 20 $= 2x^{2}$ 15 Bottom 10 $= 2\pi \left(\sqrt{\sqrt{256}} \sqrt{1} - 2x^{2} \right) dx$ https://www.geogebra.org/m/f3wrypfh#material/wyuzfqwb 0 -5

