MA 16020: Lesson 18

Volume By Revolution Shell Method

Pł 2: Rotation around any non-Axis

By Alexandra Cuadra

1

RECAP: When should I use Shell Method? How do I use Shell Method?

If you find solving for x or y, for either Disk or Washer Method, is hard \Rightarrow Shell Method

For rotation around x-axis:

$$
V=2 \pi \int_{c}^{d} y \cdot(\text { Right }-L e f t) d y
$$

For rotation around y-axis:

$$
V=2 \pi \int_{a}^{b} x \cdot(\text { Top }- \text { Bottom }) d x
$$

O	Disk/Washer	$d x$	dy
$\sum^{(1)}$	Shells	dy	$d x$

What happens if we are revolving around non-Axes (like $x=a$ or $y=b$) ?

For the most part, everything stays the same except for the RADIUS.

3

How did I find the radius, $r(x)$, last class?

O To find $r(x)$, we need to find the distance of the shell from the axis of rotation

O The shell is x units away from the y-axis. So,

$$
r(x)=x
$$

O So, the formula:

$$
\begin{gathered}
V=2 \pi \int_{a}^{b} r(x) \cdot(\text { Top }- \text { Bottom }) d x \\
V=2 \pi \int_{a}^{b} x \cdot(\text { Top }- \text { Bottom }) d x
\end{gathered}
$$

How did I find the radius, $r(x)$, last class?

O To find $r(x)$, we need to find the distance of the shell from the axis of rotation

O The shell is x units away from the y-axis. So,

$$
r(x)=x
$$

O So, the formula:

$$
\begin{gathered}
V=2 \pi \int_{a}^{b} r(x) \cdot(\text { Top }- \text { Bottom }) d x \\
V=2 \pi \int_{a}^{b} x \cdot(\text { Top }- \text { Bottom }) d x
\end{gathered}
$$

5

What is $r(x)$ when we are rotating around something other than y-axis?

O Again, to find $r(x)$, we need to find the distance of the shell from the axis of rotation

- From the picture we see, \# is the distance from the y-axis and the line of rotation. So,

$$
x+r(x)=\# \quad \Rightarrow \quad r(x)=\#-x
$$

O If the axis of rotation is on the right of your region,

$$
\begin{gathered}
V=2 \pi \int_{a}^{b} r(x) \cdot(\text { Top }- \text { Bottom }) d x \\
V=2 \pi \int_{a}^{b}(\#-x) \cdot(\text { Top }- \text { Bottom }) d x
\end{gathered}
$$

What if the axis of rotation is on the left of the region? Is it the same formula?

Take the example below:

- If $r(x)=\#-x$, then $r(x)=-3-x$.
- Choose a value in the region (i.e. triangle).
- Is $r(x)$ still positive? No.

What if $r(x)=x-\#$? Yes.

O Almost.... If the axis of rotation $x=\#$ is on the left, then

$$
r(x)=x-\#
$$

O Why? The radius needs to always positive

O If the axis of rotation is on the left of your region,

$$
V=2 \pi \int_{a}^{b} r(x) \cdot(\text { Top }- \text { Bottom }) d x
$$

$$
V=2 \pi \int_{a}^{b}(x-\#) \cdot(T o p-\text { Bottom }) d x
$$

7

Overall, the Shell Method Formulas around any non-axis are...

O Rotating around $\mathrm{x}=$ \#
O If the axis of rotation is on the right of your region,

$$
V=2 \pi \int_{a}^{b}(\#-x) \times(\text { Top }- \text { Bottom }) d x
$$

O If the axis of rotation is on the left of your region,

$$
V=2 \pi \int_{a}^{b}(x-\#) \times(\text { Top }- \text { Bottom }) d x
$$

O Rotating around $\mathrm{y}=$ \#
O If the axis of rotation is above of your region

$$
V=2 \pi \int_{a}^{b}(\#-y) \times(\text { Right }-L e f t) d y
$$

O If the axis of rotation is below of your region,

$$
V=2 \pi \int_{a}^{b}(y-\#) \times(\text { Right }-L e f t) d y
$$

Example 1: Using the Shell Method, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at $(0,0),(2,0)$, and $(2,3)$ about the line indicated
a) about $x=3 \Rightarrow \begin{aligned} & d x \text { problem and } x=3 \\ & \text { is to the right of our }\end{aligned}$ region
$S_{t} V=2 \pi<(3-x)\left(T \Delta p-B_{o}\right.$ tom $) d x$
From the graph, the bounds are 0 to 2.
and $T_{o p}=\frac{3}{2} \times$ Bottom $=0$
$V=2 \pi \int_{0}^{2}(3-x)\left(\frac{3}{2} x-0\right) d x$
Draw the region.

https://www.geogebra.org/m/knnfvjub\#material/abjaakfk
9

Example 1: Using the Shell Method, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at $(0,0),(2,0)$, and $(2,3)$ about the line indicated
b) about $x=-1 \Rightarrow d x$ problem and $x=-1$ is So $V=2 \pi \int(x-(-1))($ Top - Bottom $) d x$
From the graph, the bounds are o to 2 and lop $=\frac{3}{2} \times$ and Bottom $=0$

$$
V=2 \pi \int_{0}^{2}(x+1)\left(\frac{3}{2} x-0\right) d x
$$

https://www.geogebra.org/m/knnfviub\#material/kcw32ctc
Draw the region.

Example 2: Using the Shell Method, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at $(0,0),(5,0)$, and $(5,6)$ about the line indicated
a) About $y=6 \rightarrow$ dy problem and $y=6$ is
above our region.
So $V=2 \pi \int_{(6-y)}$ (Right-Left)dy
From the graph, the bounds are 0 to 6
and Right $=5$ and Left $=\frac{5}{6} y$
$V V=2 \pi \int_{0}^{6}(6-y)\left(S-\frac{5}{6} y\right) d y$

Draw the region.

Example 2: Using the Shell Method, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at $(0,0),(5,0)$, and $(5,6)$ about the line indicated
b) About $y=-2 \Rightarrow d y$ problem and $y=-2$ is
ext er cher

$$
\text { So } \quad V=2 \pi \int(y-(-2))(\text { Right -Left }) d y
$$

From the graph, the bounds are 0 to 6

$$
V=2 \pi \int_{0}^{6}(y+2)\left(5-\frac{5}{6} y\right) d y
$$

Example 3: Consider the region bounded by:

$$
y=\sqrt{x}, \quad y=0, \quad \text { and } x=4
$$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method
a) $\Rightarrow d x$ problem and $x=5$ is to
a) about $(x=5$ the right of our region

So $v=2 \pi \int(5-x)\left(T_{\text {op }}-\right.$ Bottom $) d x$
Draw the region.
From the graph, the bounds are 0 to 4
and $T_{o p}=\sqrt{x}$ and Broom $=0$

$$
V=2 \pi \int_{0}^{4}(5-x)(\sqrt{x}-0) d x
$$

Example 3: Consider the region bounded by:

$$
y=\sqrt{x}, \quad y=0, \quad \text { and } x=4
$$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method
$\Rightarrow d x$ problem and $x=-1$ is
b) about $x=-1 \Rightarrow$ on the let of our region, Draw the region.

So $V=2 \pi \int(x-(-1))($ Tap -Bottom $) d x$
From the graph, the bounds are 0 to 4 and $T_{o p}=\sqrt{x}$ and Bottom $=0$

$$
V=2 \pi \int_{0}^{4}(x+1)(\sqrt{x}-0) d x
$$

Example 4: Consider the region bounded by:

$$
x=y^{2}+1, \quad \text { and } \quad x=2
$$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method a) about problem and $y=3$ is above a) about $y=3$ our region

$$
\text { So } V=2 \pi \int(3-y)(\text { Right }- \text { Left }) d y
$$

From the graph, the bounds are -1 to 1
and Right $=2$ and Left $=y^{2}+1$

$$
V=2 \pi \int_{-1}^{1}(3-y)\left[2-\left(y^{2}+1\right)\right] d y
$$

Example 4: Consider the region bounded by:

$$
x=y^{2}+1, \quad \text { and } \quad x=2
$$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method
\Rightarrow dy problem and $y=-2$ is below
b) about $(y=-2)$ our region

So $V=2 \pi \int(y-(-2))\left(\right.$ Right $\left.-L_{\text {eft }}\right) d y$
From the graph, the bounds are -1 to 1
and Right $=2$ and Lett $=y^{2}+1$

$$
V=2 \pi \int_{-1}^{1}(y+2)\left(2-\left(y^{2}+1\right)\right) d y
$$

When do we apply Disk Method or Washer Method or Shell Method?

O When the region "hugs" the axis of rotation
\Rightarrow Disk Method

O When there is a "gap" between the region and axis of rotation
\Rightarrow Washer Method

But if you find solving for x or y, in either method, is hard
\Rightarrow Shell Method

17

Formulas from Lessons 14 and 15 and 17 Rotation around x -axis or y -axis

For rotation around x -axis:

- Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

O Washer Method:

$$
V=\pi \int_{a}^{b}\left(R^{2}-r^{2}\right) d x
$$

O Shell Method:

$$
V=2 \pi \int_{c}^{d} y \cdot(\text { Right }- \text { Left }) d y
$$

For rotation around y-axis:
O Disk Method:

$$
V=\pi \int_{c}^{d}[g(y)]^{2} d y
$$

O Washer Method:

$$
V=\pi \int_{c}^{d}\left(R^{2}-r^{2}\right) d y
$$

O Shell Method:

$$
V=2 \pi \int_{a}^{b} x \cdot(T o p-\text { Bottom }) d x
$$

Formulas from Lesson 15 and 18 Rotation around any non-Axis Formulas

For rotation around the line $\mathrm{x}=$ \#:

O Disk Method:

$$
V=\pi \int_{a}^{b}[f(x)-\#]^{2} d x
$$

O Washer Method:

$$
V=\pi \int_{a}^{b}\left[(R-\#)^{2}-(r-\#)^{2}\right] d x
$$

O Shell Method:
O If the axis of rotation is on the left of your region,

$$
V=2 \pi \int_{a}^{b}(x-\#) \times(T o p-\text { Bottom }) d x
$$

O If the axis of rotation is on the right of your region,

$$
V=2 \pi \int_{a}^{b}(\#-x) \times(\text { Top }- \text { Bottom }) d x
$$

Note: That these formulas work for the case of x -axis $(y=0)$ and y -axis $(x=0)$.

Formulas from Lesson 15 and 18 Rotation around any non-Axis Formulas

For rotation around the line $\mathrm{y}=$ \#:

O Disk Method:

$$
V=\pi \int_{c}^{d}[g(y)-\#]^{2} d y
$$

O Washer Method:

$$
V=\pi \int_{c}^{d}\left[(R-\#)^{2}-(r-\#)^{2}\right] d y
$$

O Shell Method:
O If the axis of rotation is below your region,

$$
V=2 \pi \int_{a}^{b}(y-\#) \times(\text { Right }- \text { Left }) d y
$$

O If the axis of rotation is above your region,

$$
V=2 \pi \int_{a}^{b}(\#-y) \times(\text { Right }- \text { Left }) d y
$$

Note: That these formulas work for the case of x-axis $(y=0)$ and y-axis $(x=0)$.

GeoGebra Link for Lesson 18

O https://www.geogebra.org/m/knnfvjub

O Note click on the play buttons on the left-most screen and the animation will play/pause.

