# MA 16020 LESSONS 9+10: PARTIAL FRACTIONS 

## METHOD OF DECOMPOSING INTO PARTIAL FRACTIONS

Given a rational function $\frac{N(x)}{D(x)}$

1. Factor the denominator as much as possible.
2. Write the fraction into decomposition form.
a) Distinct linear terms like $x-a$ decompose to

$$
\frac{A}{x-a}
$$

b) Repeated linear terms like $(x-a)^{3}$ decompose to

$$
\frac{A}{x-a}+\frac{B}{(x-a)^{2}}+\frac{C}{(x-a)^{3}}
$$

c) Distinct irreducible quadratic terms like $x^{2}+a^{2}$ decompose to

$$
\frac{A x+B}{x^{2}+a^{2}}
$$

d) Repeated irreducible quadratic terms like $\left(x^{2}+a^{2}\right)^{2}$ decompose to

$$
\frac{A x+B}{x^{2}+a^{2}}+\frac{C x+D}{\left(x^{2}+a^{2}\right)^{2}}
$$

3. Combine your decomposition from (2) as 1 fraction.
4. Set the original numerator, $N(x)$, equal to the numerator from (3).
5. Equate the coefficients of the terms, to yield a system of equations. Then solve the constants.
i.e. Find $A, B, C, \ldots$
6. Plug the values found in (5) in (2).
