Name:

1. Evaluate the definite integral.

$$
\int_{0}^{\pi / 2}(x-1) \sin (x) d x
$$

$$
\int_{0}^{\pi / 2}(x-1) \sin (x) d x=
$$

2. Evaluate

$$
\int 3 x \ln \left(x^{7}\right) d x
$$

$$
\int 3 x \ln \left(x^{7}\right) d x=
$$

3. Evaluate

$$
\int x^{3} \ln (2 x) d x
$$

$$
\int x^{3} \ln (2 x) d x=
$$

4. Evaluate the definite integral.

$$
\int_{0}^{3} 5 x e^{3 x} d x
$$

$$
\int_{0}^{3} 5 x e^{3 x} d x=
$$

5. Evaluate the indefinite integral.

$$
\int_{0}^{\pi / 4} 5 x \sin (2 x) d x
$$

$$
\int_{0}^{\pi / 4} 5 x \sin (2 x) d x=
$$

6. Evaluate the indefinite integral.

$$
\int 4 t \sqrt{2 t+5} d t
$$

$$
\int 4 t \sqrt{2 t+5} d t=
$$

\qquad
7. The velocity of a cyclist during an hour-long race is given by the function

$$
v(t)=166 t e^{-2.2 t} \mathrm{mi} / \mathrm{hr}, \quad 0 \leq t \leq 1
$$

Assuming the cyclist starts from rest, what is the distance in miles he traveled during the first hour of the race?
8. After t days, the growth of a plant is measured by the function $2000 t e^{-20 t}$ inches per day. What is the change in the height of the plant (in inches) after the first 14 days?

Answer:
9. A model for the ability of a child to memorize information, measured on a scale from 1 to 100 , is given by

$$
M(t)=1.9 t \ln (t)
$$

$2 \leq t \leq 8$, where t is the child's age in years. Find the child's average memorization ability between ages 2 and 7 years. Round to threee decimal places.

[^0]10. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.
$$
f(x)=\frac{3 x+1}{x^{2}(x+1)^{2}\left(x^{2}+1\right)}
$$
(A) $\frac{A}{x^{2}}+\frac{B}{(x+1)^{2}}+\frac{C}{x^{2}+1}$
(B) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}+\frac{E}{x^{2}+1}$
(C) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}}+\frac{E x+F}{x^{2}+1}$
(D) $\frac{A}{x}+\frac{B x+C}{x^{2}}+\frac{D}{x+1}+\frac{E x+F}{(x+1)^{2}}+\frac{G x+H}{x^{2}+1}$
(E) $\frac{A}{x}+\frac{B}{(x+1)^{2}}+\frac{C}{x^{2}+1}$
11. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.
$$
f(x)=\frac{7 x-5}{x^{2}\left(x^{2}+9\right)}
$$
(A) $\frac{A}{x}+\frac{B}{x}+\frac{C x+D}{x^{2}+9}$
(B) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(C) $\frac{A}{x}+\frac{B x+C}{x^{2}}+\frac{D x+E}{x^{2}+9}$
(D) $\frac{A x+B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(E) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+3}+\frac{D}{x-3}$
(F) $\frac{A x+B}{x^{2}}+\frac{C}{x+3}+\frac{D}{x-3}$
12. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.
$$
f(x)=\frac{x^{2}+2 x+3}{(x-1)^{2}(x-2)\left(x^{2}+4\right)}
$$
(A) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D x+E}{x^{2}+4}$
(B) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D}{x^{2}+4}$
(C) $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D}{x-2}+\frac{E}{x^{2}+4}$
(D) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D x}{x^{2}+4}$
(E) $\frac{A}{x-1}+\frac{B x}{(x-1)^{2}}+\frac{C}{x-2}+\frac{D x+E}{x^{2}+4}$
13. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.
$$
f(x)=\frac{24}{\left(x^{2}-16\right)^{2}}
$$
(A) $\frac{A}{x-4}+\frac{B x+C}{(x-4)^{2}}+\frac{D}{x+4}+\frac{E x+F}{(x+4)^{2}}$
(B) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}+\frac{E}{x+4}+\frac{F}{(x+4)^{2}}$
(C) $\frac{A x+B}{(x-4)^{2}}+\frac{C x+D}{(x+4)^{2}}$
(D) $\frac{A}{x-4}+\frac{B}{(x-4)^{2}}+\frac{C}{x+4}+\frac{D}{(x+4)^{2}}$
(E) $\frac{A x+B}{x^{2}-16}+\frac{C x+D}{\left(x^{2}-16\right)^{2}}$
(F) $\frac{A}{\left(x^{2}-16\right)^{2}}+\frac{B x+C}{\left(x^{2}-16\right)^{2}}$
14. Determine the partial fraction decomposition of
$$
\frac{7 x^{2}+9}{x\left(x^{2}+3\right)}
$$

Answer:
15. Determine the partial fraction decomposition of

$$
\frac{4 x-11}{x^{2}-7 x+10}
$$

Answer:
16. Evaluate $\int \frac{5 x^{2}+9}{x^{2}(x+3)} d x$

$$
\int \frac{5 x^{2}+9}{x^{2}(x+3)} d x=
$$

17. Evaluate $\int \frac{x^{2}+2}{x^{3}+3 x^{2}+2 x} d x$

$$
\int \frac{x^{2}+2}{x^{3}+3 x^{2}+2 x} d x=
$$

18. Evaluate $\int \frac{9 x^{2}-4 x+5}{(x-1)\left(x^{2}+1\right)} d x$

$$
\int \frac{x^{2}+2}{x^{3}+3 x^{2}+2 x} d x=
$$

19. Evaluate $\int \frac{3 x^{2}+3 x+15}{x^{3}+5 x^{2}} d x$

$$
\int \frac{3 x^{2}+3 x+15}{x^{3}+5 x^{2}} d x=
$$

20. Determine if the following integral is proper or improper.

$$
\int_{0}^{\pi / 2} \frac{\sin x}{1-\cos x} d x
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.
21. Determine if the following integral is proper or improper.

$$
\int_{0}^{\pi / 2} \tan (x) d x
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.
22. Determine if the following integral is proper or improper.

$$
\int_{0}^{\pi / 2} \cos (x) d x
$$

(A) It is improper because of a discontinuity at $x=\pi / 6$
(B) It is improper because of a discontinuity at $x=\pi / 4$
(C) It is improper because of a discontinuity at $x=\pi / 3$
(D) It is improper because of a discontinuity at $x=0$
(E) It is improper because of a discontinuity at $x=\pi / 2$
(F) It is proper since it is defined on the interval $[0, \pi / 2]$.
23. Which of the following integrals are diverges?
I. $\int_{1}^{\infty} \frac{5}{\sqrt{x}} d x$
II. $\int_{1}^{\infty} \frac{3}{x^{2}} d x$
III. $\int_{1}^{\infty} \frac{10}{x} d x$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
(F) I, II, and III
24. Which of the following integrals are improper?
I. $\int_{0}^{\pi / 4} \cos (x) d x$
II. $\int_{0}^{\pi / 4} \tan (2 x) d x$
III. $\int_{\pi / 4}^{\pi / 2} \csc (x) d x$
IV. $\int_{\pi / 4}^{\pi / 2} \sec \left(\frac{x}{2}\right) d x$
(A) II and IV only
(B) I and II only
(C) I and IV only
(D) I and III only
(E) II, III and IV only
(F) II only
25. Evaluate the following integral;

$$
\int_{0}^{\infty} e^{-x / 6} d x
$$

$$
\int_{0}^{\infty} e^{-x / 6} d x=
$$

26. Evaluate the following integral;

$$
\int_{0}^{\infty} \frac{7}{e^{10 x}} d x
$$

$$
\int_{0}^{\infty} \frac{7}{e^{10 x}} d x=
$$

27. Evaluate the definite integral

$$
\int_{2}^{\infty} \frac{d x}{5 x+2}
$$

$$
\int_{2}^{\infty} \frac{d x}{5 x+2}=
$$

28. Evaluate the definite integral

$$
\int_{4}^{13} \frac{d x}{\sqrt{x-4}}
$$

$$
\int_{4}^{13} \frac{d x}{\sqrt{x-4}}=
$$

29. Set up the integral that computes the AREA shown to the right with respect to x.

DON'T COMPUTE IT!!!

Area $=$ \qquad
30. Set up the integral that computes the AREA shown to the right with respect to y.

DON'T COMPUTE IT!!!

Area $=$ \qquad

31. Set up the integral that computes the AREA with respect to x of the region bounded by

$$
y=\frac{2}{x} \quad \text { and } \quad y=-x+3
$$

Area $=$ \qquad
32. Set up the integral that computes the AREA with respect to x of the region bounded by

$$
y=x \quad \text { and } \quad y=7 x-x^{2}
$$

Area =

33. Find the area of the region bounded by $y=6 x-x^{2}$ and $y=2 x^{2}$.

$$
\text { Area }=
$$

34. Find the area bounded by the following curves.

$$
x=y^{2}+24 \text { and } x=10 y
$$

Area $=$

35. Find the area of the region bounded by $y=2 x-x^{2}$ and $y=x^{2}$.

$$
\text { Area }=
$$

36. Calculate the AREA of the region bounded by the following curves.

$$
x=100-y^{2} \text { and } \quad x=2 y^{2}-8
$$

Area $=$

37. Calculate the AREA of the region bounded by the following curves.

$$
y=x^{3} \quad \text { and } \quad y=x^{2}
$$

Area =
38. After t hours studying, one student is working $Q_{1}(t)=25+9 t-t^{2}$ problems per hour, and a second student is working on $Q_{2}(t)=5-t+t^{2}$ problems per hour. How many more problems will the first student have done than the second student after 10 hours?
39. The birthrate of a particular population is modeled by $B(t)=1000 e^{0.036 t}$ people per year, and the death rate is modeled by $D(t)=725 e^{0.019 t}$ people per year. How much will the population increase in the span of 10 years? $(0 \leq t \leq 20)$ Round to the nearest whole number.

Answer:
40. Let R be the region shown below. Set up the integral that computes the VOLUME as R is rotated around the x -axis.

DON’T COMPUTE IT!!!

Volume $=$

41. Set up the integral that computes the VOLUME of the region bounded by

$$
y=\sqrt{16-x}, \quad y=0 \quad \text { and } \quad x=0
$$

about the y-axis
42. Set up the integral that computes the VOLUME of the region bounded by

$$
y=e^{-x}, \quad y=4 \quad x=0 \quad \text { and } \quad x=10
$$

about the x -axis

Volume $=$
43. Find the volume of the solid that results by revolving the region enclosed by the curves $y=\frac{5}{x}, y=0$, $x=5$, and $x=7$ about the x -axis.

$$
\text { Volume }=
$$

44. Find the VOLUME of the region bounded by

$$
y=7 x, \quad y=21 \quad x=1 \quad \text { and } \quad x=3
$$

around the x -axis

Volume $=$
45. Find the VOLUME of the region bounded by

$$
y=7 x, \quad y=0 \quad x=1 \quad \text { and } \quad x=3
$$

around the x -axis

Volume $=$
46. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x^{2}, \quad \text { and } \quad y=\sqrt{x}
$$

about the y-axis

Volume $=$
47. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x^{2}, \quad \text { and } \quad y^{2}=x
$$

about the x -axis
48. Set up the integral that computes the VOLUME of the region generated by revolving the region in Quadrant I bounded by the following curves about the y-axis using the disk/washer method.

$$
y=4-x^{2}, \quad y=0 \quad \text { and } \quad x=0
$$

$$
\text { Volume }=
$$

49. Find the volume of the solid generated by revolving the region bounded by $x+y=2$ in Quadrant I about the y-axis.
50. Find the VOLUME of the region bounded by

$$
y=x-x^{2}, \quad \text { and } \quad y=0
$$

around the x -axis

Volume $=$

\qquad
51. Find the VOLUME of the solid generate by revolving the given region about the x -axis:

$$
y=8 \sqrt{x}, \quad y=0, \quad x=3, \quad x=6
$$

52. Find the VOLUME of the region bounded by

$$
y=4 x^{2}, \quad x=0, \quad y=4
$$

around the y-axis.

Volume $=$ \qquad
53. Set up the integral that computes the VOLUME of the region bounded by

$$
y=x+8, \quad \text { and } \quad y=(x-4)^{2}
$$

about the x -axis

$$
\text { Volume }=
$$

54. Find the VOLUME of the region bounded by

$$
y=10 x, \quad x=0, \quad y=10
$$

around the y-axis

Volume $=$
55. Find the VOLUME of the solid generated by rotating the region bounded by

$$
y=x+2, \quad x=0, \quad y=6
$$

around the y-axis
56. Find the volume of the solid generated by revolving the region bounded by the following curves about the x-axis.

$$
y=2 x, \quad, y=5 x, \quad \text { and } x=1
$$

Volume $=$ \qquad
57. Find the volume of the solid generated by revolving the region bounded by the following curves about the line $x=2$

$$
y=2 x, \quad, y=0, \quad \text { and } \quad x=1
$$

Volume $=$
58. Find the VOLUME of the region bounded by

$$
x+3 y=9, \quad x=0, \quad y=0
$$

around the y-axis

$$
\text { Volume }=
$$

59. Let R be the region shown to the right. Set up the integral that computes the VOLUME as R is rotated around the line $x=4$.

DON'T COMPUTE IT!!!

\qquad

60. SET-UP using the washer method. the VOLUME of the region bounded by

$$
y=x^{2}, \quad y=2 x
$$

around the x -axis
(A) $\pi \int_{0}^{2}\left(2 x-x^{2}\right)^{2} d x$
(B) $\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x$
(C) $\pi \int_{0}^{2}\left(2 x-x^{2}\right) d x$
(D) $\pi \int_{0}^{2}\left(x^{2}-2 x\right) d x$
(E) $\pi \int_{0}^{2}\left(x^{4}-4 x^{2}\right) d x$
(F) $2 \pi \int_{0}^{2}\left(x^{3}-2 x^{2}\right) d x$
61. Set up the integral needed to find the volume of the solid obtained when the region bounded by

$$
y=2-x^{2} \quad \text { and } \quad y=x^{2}
$$

is rotated about the line $y=3$.
62. SET-UP using the disk/washer method. the VOLUME of the region bounded by

$$
y=3 x, \quad x=0, \quad y=27
$$

around the line $y=27$
(A) $\pi \int_{0}^{27}\left(729-162 x+9 x^{2}\right) d x$
(B) $\pi \int_{0}^{27} 9 x^{2} d x$
(C) $\pi \int_{0}^{9} 9 x^{2} d x$
(D) $\pi \int_{0}^{9}\left(9 x^{2}-162 x\right) d x$
(E) $\pi \int_{0}^{27}\left(729-9 x^{2}\right) d x$
(F) $\pi \int_{0}^{9}\left(729-162 x+9 x^{2}\right) d x$

[^0]: Answer:

