Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:

1. Evaluate the definite integral.

$$\int_0^{\pi/2} (x-1)\sin(x)\,dx$$

$$\int_0^{\pi/2} (x-1)\sin(x) \, dx = \underline{\qquad}$$

2. Evaluate

$$\int 3x \ln(x^7) \, dx$$

3. Evaluate

$$\int x^3 \ln(2x) \, dx$$

$$\int x^3 \ln(2x) \, dx = \underline{\qquad}$$

4. Evaluate the definite integral.

$$\int_0^3 5xe^{3x} \, dx$$

$$\int_0^3 5xe^{3x} \, dx = \underline{\qquad}$$

5. Evaluate the indefinite integral.

$$\int_0^{\pi/4} 5x \sin(2x) \, dx$$

$$\int_0^{\pi/4} 5x \sin(2x) \, dx = \underline{\qquad}$$

6. Evaluate the indefinite integral.

$$\int 4t\sqrt{2t+5}\,dt$$

$$\int 4t\sqrt{2t+5}\,dt = \underline{\hspace{1cm}}$$

7. The velocity of a cyclist during an hour-long race is given by the function

$$v(t) = 166te^{-2.2t}$$
 mi/hr, $0 \le t \le 1$

Assuming the cyclist starts from rest, what is the distance in miles he traveled during the first hour of the race?

Answer:

8.	After t days, the growth of a plant is measured change in the height of the plant (in inches) af	by the	functio	n $2000te^{-}$ days?	$^{-20t}$ incl	nes per day.	What i	is the
		Answ	er:					

0	A model for the chility of a child to memoring information was a sub-from 1 to 100 to 1
9.	A model for the ability of a child to memorize information, measured on a scale from 1 to 100, is given by
	$M(t) = 1.9t \ln(t),$
	$2 \le t \le 8$, where t is the child's age in years. Find the child's average memorization ability between ages 2 and 7 years. Round to three decimal places.

Answer:____

10. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{3x+1}{x^2(x+1)^2(x^2+1)}$$

(A)
$$\frac{A}{x^2} + \frac{B}{(x+1)^2} + \frac{C}{x^2+1}$$

(B)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} + \frac{E}{x^2+1}$$

(C)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} + \frac{Ex+F}{x^2+1}$$

(D)
$$\frac{A}{x} + \frac{Bx + C}{x^2} + \frac{D}{x+1} + \frac{Ex + F}{(x+1)^2} + \frac{Gx + H}{x^2 + 1}$$

(E)
$$\frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x^2+1}$$

11. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{7x - 5}{x^2(x^2 + 9)}$$

(A)
$$\frac{A}{x} + \frac{B}{x} + \frac{Cx + D}{x^2 + 9}$$

(B)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 9}$$

(C)
$$\frac{A}{x} + \frac{Bx + C}{x^2} + \frac{Dx + E}{x^2 + 9}$$

(D)
$$\frac{Ax+B}{x^2} + \frac{Cx+D}{x^2+9}$$

(E)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+3} + \frac{D}{x-3}$$

(F)
$$\frac{Ax+B}{x^2} + \frac{C}{x+3} + \frac{D}{x-3}$$

12. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{x^2 + 2x + 3}{(x-1)^2(x-2)(x^2+4)}$$

(A)
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx+E}{x^2+4}$$

(B)
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{D}{x^2+4}$$

(C)
$$\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{D}{x-2} + \frac{E}{x^2+4}$$

(D)
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx}{x^2+4}$$

(E)
$$\frac{A}{x-1} + \frac{Bx}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx+E}{x^2+4}$$

13. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{24}{(x^2 - 16)^2}$$

(A)
$$\frac{A}{x-4} + \frac{Bx+C}{(x-4)^2} + \frac{D}{x+4} + \frac{Ex+F}{(x+4)^2}$$

(B)
$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-2} + \frac{D}{(x-2)^2} + \frac{E}{x+4} + \frac{F}{(x+4)^2}$$

(C)
$$\frac{Ax+B}{(x-4)^2} + \frac{Cx+D}{(x+4)^2}$$

(D)
$$\frac{A}{x-4} + \frac{B}{(x-4)^2} + \frac{C}{x+4} + \frac{D}{(x+4)^2}$$

(E)
$$\frac{Ax+B}{x^2-16} + \frac{Cx+D}{(x^2-16)^2}$$

(F)
$$\frac{A}{(x^2 - 16)^2} + \frac{Bx + C}{(x^2 - 16)^2}$$

14. Determine the partial fraction decomposition of

$$\frac{7x^2 + 9}{x(x^2 + 3)}$$

Answer:____

15. Determine the partial fraction decomposition of

$$\frac{4x - 11}{x^2 - 7x + 10}$$

Answer:____

16. Evaluate $\int \frac{5x^2 + 9}{x^2(x+3)} dx$

$$\int \frac{5x^2 + 9}{x^2(x+3)} \, dx = \underline{\hspace{1cm}}$$

17. Evaluate
$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} dx$$

$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} \, dx = \underline{\hspace{1cm}}$$

18. Evaluate
$$\int \frac{9x^2 - 4x + 5}{(x - 1)(x^2 + 1)} \, dx$$

$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} \, dx = \underline{\hspace{1cm}}$$

19. Evaluate $\int \frac{3x^2 + 3x + 15}{x^3 + 5x^2} \, dx$

20. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \frac{\sin x}{1 - \cos x} \, dx$$

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.
- 21. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \tan(x) \, dx$$

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.
- 22. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \cos(x) \, dx$$

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.

23. Which of the following integrals are diverges?

I.
$$\int_{1}^{\infty} \frac{5}{\sqrt{x}} \, dx$$

II.
$$\int_{1}^{\infty} \frac{3}{x^2} dx$$

III.
$$\int_{1}^{\infty} \frac{10}{x} dx$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only
- (F) I, II, and III
- 24. Which of the following integrals are improper?

I.
$$\int_0^{\pi/4} \cos(x) dx$$

II.
$$\int_0^{\pi/4} \tan(2x) \, dx$$

III.
$$\int_{\pi/4}^{\pi/2} \csc(x) \, dx$$

I.
$$\int_0^{\pi/4} \cos(x) dx$$
 II. $\int_0^{\pi/4} \tan(2x) dx$ III. $\int_{\pi/4}^{\pi/2} \csc(x) dx$ IV. $\int_{\pi/4}^{\pi/2} \sec\left(\frac{x}{2}\right) dx$

- (A) II and IV only
- (B) I and II only
- (C) I and IV only
- (D) I and III only
- (E) II, III and IV only
- (F) II only

25. Evaluate the following integral;

$$\int_0^\infty e^{-x/6} \, dx$$

$$\int_0^\infty e^{-x/6} \, dx = \underline{\hspace{1cm}}$$

26. Evaluate the following integral;

$$\int_0^\infty \frac{7}{e^{10x}} \, dx$$

$$\int_0^\infty \frac{7}{e^{10x}} \, dx = \underline{\hspace{1cm}}$$

27. Evaluate the definite integral

$$\int_{2}^{\infty} \frac{dx}{5x+2}$$

$$\int_{2}^{\infty} \frac{dx}{5x+2} = \underline{\hspace{1cm}}$$

28. Evaluate the definite integral

$$\int_{4}^{13} \frac{dx}{\sqrt{x-4}}$$

$$\int_{4}^{13} \frac{dx}{\sqrt{x-4}} = -$$

29. Set up the integral that computes the **AREA** shown to the right with respect to x.

DON'T COMPUTE IT!!!

 $Area = \underline{\hspace{1cm}}$

30. Set up the integral that computes the **AREA** shown to the right with respect to y.

DON'T COMPUTE IT!!!

Area =

31. Set up the integral that computes the **AREA** with respect to x of the region bounded by

$$y = \frac{2}{x} \quad \text{and} \quad y = -x + 3$$

Area =

32. Set up the integral that computes the **AREA** with respect to x of the region bounded by

$$y = x$$
 and $y = 7x - x^2$

rea = _____

33. Find the area of the region bounded by $y = 6x - x^2$ and $y = 2x^2$.

34. Find the area bounded by the following curves.

$$x = y^2 + 24$$
 and $x = 10y$

 $Area = \underline{\hspace{1cm}}$

35. Find the area of the region bounded by $y = 2x - x^2$ and $y = x^2$.

36. Calculate the **AREA** of the region bounded by the following curves.

$$x = 100 - y^2$$
 and $x = 2y^2 - 8$

Area = _____

37. Calculate the **AREA** of the region bounded by the following curves.

$$y = x^3$$
 and $y = x^2$

38. After t hours studying, one student is working $Q_1(t) = 25 + 9t - t^2$ problems per hour, and a second student is working on $Q_2(t) = 5 - t + t^2$ problems per hour. How many more problems will the first student have done than the second student after 10 hours?

Answer:____

39.	The birthrate of a particular population is modeled by $B(t) = 1000e^{0.036t}$ people per year, and the death rate is modeled by $D(t) = 725e^{0.019t}$ people per year. How much will the population increase in the span of 10 years? $(0 \le t \le 20)$ Round to the nearest whole number.
	Angwore

40. Let R be the region shown below. Set up the integral that computes the **VOLUME** as R is rotated around the x-axis.

Volume = ____

41. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = \sqrt{16 - x}, \quad y = 0 \text{ and } x = 0$$

about the y-axis

42. Set up the integral that computes the \mathbf{VOLUME} of the region bounded by

$$y = e^{-x}$$
, $y = 4$ $x = 0$ and $x = 10$

about the x-axis

Volume =

43. Find the volume of the solid that results by revolving the region enclosed by the curves $y = \frac{5}{x}$, y = 0, x = 5, and x = 7 about the x-axis.

Volume = ____

44. Find the \mathbf{VOLUME} of the region bounded by

$$y = 7x$$
, $y = 21$ $x = 1$ and $x = 3$

around the x-axis

45. Find the \mathbf{VOLUME} of the region bounded by

$$y = 7x$$
, $y = 0$ $x = 1$ and $x = 3$

around the x-axis

46. Set up the integral that computes the \mathbf{VOLUME} of the region bounded by

$$y = x^2$$
, and $y = \sqrt{x}$

about the y-axis

47. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = x^2$$
, and $y^2 = x$

about the x-axis

48. Set up the integral that computes the **VOLUME** of the region generated by revolving the region in Quadrant I bounded by the following curves about the y-axis using the disk/washer method.

$$y = 4 - x^2$$
, $y = 0$ and $x = 0$

Volume = ____

49. Find the volume of the solid generated by revolving the region bounded by x + y = 2 in Quadrant I about the y-axis.

Volume = ____

50. Find the **VOLUME** of the region bounded by

$$y = x - x^2$$
, and $y = 0$

around the x-axis

51. Find the **VOLUME** of the solid generate by revolving the given region about the x-axis:

$$y = 8\sqrt{x}, \quad y = 0, \quad x = 3, \quad x = 6$$

Volume = ____

52. Find the \mathbf{VOLUME} of the region bounded by

$$y = 4x^2, \quad x = 0, \quad y = 4$$

around the y-axis.

53. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = x + 8$$
, and $y = (x - 4)^2$

about the x-axis

54. Find the **VOLUME** of the region bounded by

$$y = 10x, \quad x = 0, \quad y = 10$$

around the y-axis

55. Find the **VOLUME** of the solid generated by rotating the region bounded by

$$y = x + 2, \quad x = 0, \quad y = 6$$

around the y-axis

56. Find the volume of the solid generated by revolving the region bounded by the following curves about the x-axis.

$$y = 2x$$
, $y = 5x$, and $x = 1$

57. Find the volume of the solid generated by revolving the region bounded by the following curves about the line x=2

$$y = 2x$$
, $y = 0$, and $x = 1$

Volume = _____

58. Find the **VOLUME** of the region bounded by

$$x + 3y = 9$$
, $x = 0$, $y = 0$

around the y-axis

Volume = ____

59. Let R be the region shown to the right. Set up the integral that computes the **VOLUME** as R is rotated around the line x = 4.

DON'T COMPUTE IT!!!

Volume = ____

60. SET-UP using the washer method. the VOLUME of the region bounded by

$$y = x^2$$
, $y = 2x$

around the x-axis

(A)
$$\pi \int_0^2 (2x - x^2)^2 dx$$

(B)
$$\pi \int_0^2 (4x^2 - x^4) dx$$

(C)
$$\pi \int_0^2 (2x - x^2) dx$$

(D)
$$\pi \int_0^2 (x^2 - 2x) dx$$

(E)
$$\pi \int_0^2 (x^4 - 4x^2) dx$$

(F)
$$2\pi \int_0^2 (x^3 - 2x^2) dx$$

61. Set up the integral needed to find the volume of the solid obtained when the region bounded by

$$y = 2 - x^2 \quad \text{and} \quad y = x^2$$

is rotated about the line y = 3.

62. SET-UP using the disk/washer method. the VOLUME of the region bounded by

$$y = 3x, \quad x = 0, \quad y = 27$$

around the line y = 27

(A)
$$\pi \int_0^{27} (729 - 162x + 9x^2) dx$$

(B)
$$\pi \int_0^{27} 9x^2 dx$$

(C)
$$\pi \int_0^9 9x^2 dx$$

(D)
$$\pi \int_0^9 (9x^2 - 162x) dx$$

(E)
$$\pi \int_0^{27} (729 - 9x^2) dx$$

(F)
$$\pi \int_0^9 (729 - 162x + 9x^2) dx$$