Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Solutions

Name:

1. Evaluate the definite integral.

1. Evaluate the definite integral.

$$\int_{0}^{\pi/2} (x-1)\sin(x) dx$$

$$\frac{|u=x-1|}{|u=dx|} \frac{|dv=\sin(x)|dx}{|v=-\cos(x)|} = -(x-1)\cos(x) \int_{0}^{\pi/2} (-\cos(x)) dx$$

$$= -(x-1)\cos(x) \int_{0}^{\pi/2} (-\cos(x)) dx$$

$$\int_0^{\pi/2} (x-1)\sin(x) \, dx =$$

2. Evaluate

$$\int 3x \ln(x^7) \, dx$$

= - | + | = 0

$$\int 3 \times (7 \ln x) dx = \int 2 \ln x \ln x dx$$

$$\underline{u = 2 \ln x} dx = x dx \qquad uv - \int v du$$

$$\underline{du = 2 \ln x} dx = \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - \int \frac{x^{2}}{2} \cdot \frac{2 \ln x}{2} dx$$

$$= 2 \ln x^{2} \ln x - \frac{2 \ln x}{2} + \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - \frac{2 \ln x^{2}}{2} + \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - 2 \ln x^{2} + \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - 2 \ln x^{2} + \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - 2 \ln x^{2} + \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - 2 \ln x^{2} + \sqrt{\frac{2}{2}} dx$$

$$= 2 \ln x^{2} \ln x - 2 \ln x^{2} + \sqrt{\frac{2}{2}} dx$$

3. Evaluate
$$\int x^{3} \ln(2x) dx$$

$$\underline{u = \ln(2x)} \quad \underline{dv = x^{2}dx} \quad \underline{uv} - \int v du = \frac{x^{4} \ln(2x)}{4} - \int \frac{x^{4}}{4} \cdot \frac{1}{x^{4}} dx$$

$$= \frac{x^{4} \ln(2x)}{4} - \frac{1}{4} \cdot \int x^{2} dx$$

$$= \frac{x^{4} \ln(2x)}{4} - \frac{1}{4} \cdot \int x^{4} dx$$

5. Evaluate the indefinite integral.

$$\frac{\int_{0}^{\pi/4} 5x \sin(2x) dx}{\int_{0}^{\pi/4} 5x \sin(2x) dx} = \frac{\int_{0}^{\pi/4} 5x \sin(2x) dx}{\int_{0}^{\pi/4} 5x \sin(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \sin(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) + \frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4} 5x \cos(2x) dx}$$

$$= -\frac{\int_{0}^{\pi/4} 5x \cos(2x) dx}{\int_{0}^{\pi/4$$

$$= -\frac{5(\pi/4)\cos(2\pi/4)}{2} + \frac{5\sin(2\pi/4)}{4} - \frac{5(3\cos(3) + \frac{5}{4}\sin(3))}{2}$$

$$= \frac{5/4}{2}$$

6. Evaluate the indefinite integral.

$$\frac{u=2t+5}{du=2dt}$$

$$\frac{du}{du}=dt$$

6. Evaluate the indefinite integral.

$$\frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{$$

 $\int_{0}^{\infty} \mathbf{S}x \sin(2x) dx = \underline{\qquad}$

$$\int 4t\sqrt{2t+5} \, dt = \frac{10}{2} \left(2t+5\right)^{5/2} + \frac{10}{2} \left(2t+5\right)^{3/2} + \frac{10}{2} \left(2t+5\right)^{3/2}$$

$$\frac{2}{5}(2+5)^{5/2}-\frac{10}{3}(2+5)^{3/2}+C$$

7. The velocity of a cyclist during an hour-long race is given by the function

$$v(t) = 166te^{-2.2t}$$
 mi/hr, $0 \le t \le 1$

Assuming the cyclist starts from rest, what is the distance in miles he traveled during the first hour of the race?

$$\begin{array}{ll}
\text{(1)} & \int |66+e^{-2.2+}| dt \\
 & u = 166t \\
 & du = 166t$$

8. After t days, the growth of a plant is measured by the function $2000te^{-20t}$ inches per day. What is the change in the height of the plant (in inches) after the first 14 days?

$$\int_{0}^{14} 2000 + e^{-20t} dt$$

$$\frac{u = 2000 + dv = e^{-20t} dt}{du = 2000 dt} = \frac{dv = e^{-20t} dt}{v = e^{-20t}} = \frac{dv - 20}{2000 dt}$$

$$= 2000 + \left(\frac{e^{-20t}}{-20}\right) + \left(\frac{e^{-20t}}{+20}\right) = 2000 dt$$

$$= -100 + e^{-20t} + 100 = \left(\frac{e^{-20t}}{-20}\right)$$

$$= (-100 + e^{-20t} - 5 e^{-20t}) \Big]_{0}^{14}$$

$$= 5$$

9. A model for the ability of a child to memorize information, measured on a scale from 1 to 100, is given by

$$M(t) = 1.9t \ln(t),$$

 $2 \le t \le 8$, where t is the child's age in years. Find the child's average memorization ability between ages 2 and 7 years. Round to three decimal places.

AVE (+) = 1 - 2 (+ 1.9+ In(+) d+ $= \langle \frac{7}{5} + | n(4) | dt$ $=\frac{1.9}{5}\ln(4)\left(\frac{12}{2}\right)-\left(\frac{1.9}{5}\left(\frac{1}{4}\right)\right)$ 13,315 Answer

10. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{3x+1}{x^2(x+1)^2(x^2+1)}$$

(A)
$$\frac{A}{x^2} + \frac{B}{(x+1)^2} + \frac{C}{x^2+1}$$

(B)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} + \frac{E}{x^2+1}$$

(C)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} + \frac{Ex+F}{x^2+1}$$

(D)
$$\frac{A}{x} + \frac{Bx + C}{x^2} + \frac{D}{x+1} + \frac{Ex + F}{(x+1)^2} + \frac{Gx + H}{x^2 + 1}$$

(E)
$$\frac{A}{x} + \frac{B}{(x+1)^2} + \frac{C}{x^2+1}$$

11. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{7x - 5}{x^2(x^2 + 9)}$$

(A)
$$\frac{A}{x} + \frac{B}{x} + \frac{Cx + D}{x^2 + 9}$$

(B)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+9}$$

(C)
$$\frac{A}{x} + \frac{Bx + C}{x^2} + \frac{Dx + E}{x^2 + 9}$$

(D)
$$\frac{Ax+B}{x^2} + \frac{Cx+D}{x^2+9}$$

(E)
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+3} + \frac{D}{x-3}$$

(F)
$$\frac{Ax+B}{x^2} + \frac{C}{x+3} + \frac{D}{x-3}$$

12. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{x^2 + 2x + 3}{(x - 1)^2(x - 2)(x^2 + 4)}$$
(A) $\frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{x - 2} + \frac{Dx + E}{x^2 + 4}$

(B)
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{D}{x^2+4}$$

(C)
$$\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{D}{x-2} + \frac{E}{x^2+4}$$

(D)
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx}{x^2+4}$$

(E)
$$\frac{A}{x-1} + \frac{Bx}{(x-1)^2} + \frac{C}{x-2} + \frac{Dx+E}{x^2+4}$$

13. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$f(x) = \frac{24}{(x^2 - 16)^2}$$

(A)
$$\frac{A}{x-4} + \frac{Bx+C}{(x-4)^2} + \frac{D}{x+4} + \frac{Ex+F}{(x+4)^2}$$

(B)
$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-2} + \frac{D}{(x-2)^2} + \frac{E}{x+4} + \frac{F}{(x+4)^2}$$

(C)
$$\frac{Ax+B}{(x-4)^2} + \frac{Cx+D}{(x+4)^2}$$

(D)
$$\frac{A}{x-4} + \frac{B}{(x-4)^2} + \frac{C}{x+4} + \frac{D}{(x+4)^2}$$

(E)
$$\frac{Ax+B}{x^2-16} + \frac{Cx+D}{(x^2-16)^2}$$

(F)
$$\frac{A}{(x^2 - 16)^2} + \frac{Bx + C}{(x^2 - 16)^2}$$

$$= (x-16)$$

$$= (x-16)(x+4)^{2}$$

$$= (x-4)^{2}(x+4)^{2}$$

14. Determine the partial fraction decomposition of

$$\frac{7x^2 + 9}{x(x^2 + 3)}$$

$$\frac{A}{X} + \frac{Bx+c}{X^{2}+3} = \frac{A(x^{2}+3)+X(Bx+c)}{X(x^{2}+3)}$$

$$= \frac{Ax^{2}+3A+Bx^{2}+cx}{X(x^{2}+3)}$$

$$= \frac{(A+B)x^{2}+cx+3A}{X(x^{2}+3)}$$

$$(A+B)x^{2}+Cx+3A = 7x^{2}+0x+9$$

 $A+B=7$
 $C=0$
 $3A=9-7A=3$
So $B=4$

Answer:
$$\frac{3}{\times} + \frac{4 \times}{\times^2 + 3}$$

15. Determine the partial fraction decomposition of

Factor
$$x^2 - 7x + 10 = (x - 3)(x - 5)$$

$$\frac{4x - 11}{(x - 2)(x - 5)} = \frac{A}{x - 2} + \frac{B}{x - 5}$$

$$= \frac{A(x - 5) + B(x - 2)}{(x - 2)(x - 5)}$$

$$= \frac{(A + B)x + (-5A - 2B)}{(x - 2)(x - 5)}$$
So $4x - 11 = (A + B)x + (-5A - 2B)$

$$\begin{cases} 4 = A + B \\ (-11 = -5A - 2B) \end{cases}$$

$$\begin{cases} 4 = A + B \\ (-11 = -5A - 2B) \end{cases}$$
Multiply $(x - 3)(x - 5)$
Multiply $(x - 3)(x - 5)$

$$\begin{cases} 4 = A + B \\ (-11 = -5A - 2B) \end{cases}$$

$$\Rightarrow 3$$
Plug $(x - 3)(x - 5)$

$$\begin{cases} 4 = A + B \\ (-11 = -5A - 2B) \end{cases}$$

$$\Rightarrow 3$$
Plug $(x - 3)(x - 5)$

$$\begin{cases} 4 = A + B \\ (-11 = -5A - 2B) \end{cases}$$

$$\Rightarrow 3$$

$$\Rightarrow 4 = A + B$$

$$\Rightarrow 4 = A + 3$$

10

16. Evaluate
$$\int \frac{5x^2 + 9}{x^2(x+3)} dx$$

$$\frac{A}{X} + \frac{B}{X^2} + \frac{C}{X+3} = \frac{A_X(x+3) + B(x+3) + C_X^2}{X^2(x+3)}$$

$$= \frac{Ax^{2} + 3Ax + Bx + 3B + Cx^{2}}{x^{2}(x+3)}$$

$$= \frac{(A+c)x^2 + (3A+B)x + 3B}{x^2(x+3)}$$

$$(A+C)x^{2}+(3A+B)x+3B = 5x^{2}+0x+9$$

$$A+C=5$$

$$3A+B=0$$

$$3B=9 \rightarrow B=3$$

$$\begin{cases} 3A + B = \emptyset \\ 3B = 9 \rightarrow B = 3 \end{cases}$$

$$3A+B=0$$
 $A+C=5$
 $3A+3=0$ $-1+C=5$
 $3A=-3$ $A=-1$

$$\int \frac{1}{x} dx + \int \frac{3}{x^2} dx + \int \frac{6}{x+3} dx = -|n|x| - \frac{3}{x} + 6|n|x+3| + c$$

$$\int \frac{5x^2 + 9}{x^2(x+3)} dx = \frac{- |n| \times |-\frac{3}{x} + 6 |n| \times + 3 + 6}{- |n| \times + 3 + 6}$$

Factor
$$x^3 + 3x^2 + 2x = x(x^2 + 3x + 2) = x(x + 1)(x + 2)$$

So $\frac{A}{x} + \frac{B}{x + 1} + \frac{C}{x + 2} = \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x^2 + 3x + 2) + B(x^2 + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x^2 + 3x + 2) + B(x^2 + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x^2 + 3x + 2) + B(x^2 + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x^2 + 3x + 2) + B(x^2 + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2) + Bx(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{x(x + 1)(x + 2)}$
 $= \frac{A(x + 1)(x + 2)}{$

$$\frac{A}{X} + \frac{B}{X+1} + \frac{C}{X+2} = \frac{A(x+1)(x+2) + B \times (x+2) + C \times (x+1)}{X(x+1)(x+2)}$$

$$= A(x^2 + 3x+2) + B(x^2 + 2x) + C(x^2 + x)$$

$$= (A+B+C) + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B + C + (3A+2B+C) + 2A$$

$$\frac{A}{X} + 2B$$

18. Evaluate
$$\int \frac{9x^2 - 4x + 5}{(x - 1)(x^2 + 1)} dx$$

$$\begin{array}{c|cccc}
 & Bx & C \\
\hline
 & Bx^2 & Cx \\
\hline
 & -1 & -Bx & -C
\end{array}$$

$$S_{0} \frac{A}{x-1} + \frac{Bx+C}{x^{2}+1} = \frac{A(x^{2}+1)+(Bx+c)(x-1)}{(x-1)(x^{2}+1)}$$

$$= \frac{Ax^{2}+A+Bx^{2}-Bx+Cx-C}{(x-1)(x^{2}+1)}$$

$$= (A+B)x^{2}+(C-B)x+(A-C)$$

$$(x-1)(x^{2}+1)$$

$$\begin{cases} A + B = 9 & 0 \\ C - B = -4 & 0 \\ A - C = 5 & 0 \end{cases} = \begin{cases} 50 & \frac{5}{X-1} + \frac{4X}{X^{\frac{3}{4}}1} \end{cases}$$

Ald (i) and (ii)

$$A + B' = 9$$

 $+ -B + C = -4$
 $A + C = 5$ (iv)

Add (ii) and (iv)
$$A-d=5$$

$$+A+k=5$$

$$2A = 10$$

$$A=5$$

$$\begin{cases}
C - B = -4 & \text{CO} \\
A - C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
S_0 = \frac{5}{X^2 + 1} \\
A + B = 9 \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{5}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{5}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{5}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A + C = 5 & \text{CO}
\end{cases} \qquad \begin{cases}
\frac{4}{X^2 + 1} \\
A +$$

$$= 5 \ln |x-1| + 2 \ln |x^2+1| + C$$

$$\int \frac{x^2 + 2}{x^3 + 3x^2 + 2x} dx = \frac{5 |n| \times -1}{+2 |n| \times^2 + 1} + C$$

19. Evaluate
$$\int \frac{3x^2 + 3x + 15}{x^3 + 5x^2} dx$$

(1) Factor denominator
$$x^3+5x^2=x^2(x+5)$$

$$\frac{X}{A} + \frac{X_3}{B} + \frac{X+5}{5}$$

$$\textcircled{9}$$
 Old numerator = New numerator $3x^2 + 3x + 15 = (A+c)x^2 + (5A+B)x + 5B$

6 Plug A=0, B=3, <=3 into @
$$\frac{3}{x^2} + \frac{3}{x+5}$$

$$= \int \frac{3}{x^{2}} + \frac{3}{x+5} dx$$

$$= \int 3x^{-2} + \frac{3}{x+5} dx$$

$$= -3x^{-1} + 3\ln|x+5| + 6$$

$$= -\frac{3}{x} + 3\ln|x+5| + 6$$

$$\int \frac{3x^2 + 3x + 15}{x^3 + 5x^2} dx = \frac{-\frac{3}{x} + 3 \ln|x + 5| + C}{-\frac{3}{x} + 3 \ln|x + 5|}$$

20. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \frac{\sin x}{1 - \cos x} \, dx$$

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.
- -CDSX = 0 |=CDSX X = 0/11/211
- 21. Determine if the following integral is proper or improper.

$$\int_0^{\pi/2} \tan(x) \, dx$$

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.

$$tan X = \frac{\sin X}{\cos X}$$

$$Cos X = 0$$

$$X = \frac{1}{2} \frac{3\pi}{3}$$

22. Determine if the following integral is proper or improper.

er or improper.

$$\int_{0}^{\pi/2} \cos(x) dx \rightarrow \cos(x) \text{ is defined}$$
every where.

- (A) It is improper because of a discontinuity at $x = \pi/6$
- (B) It is improper because of a discontinuity at $x = \pi/4$
- (C) It is improper because of a discontinuity at $x = \pi/3$
- (D) It is improper because of a discontinuity at x = 0
- (E) It is improper because of a discontinuity at $x = \pi/2$
- (F) It is proper since it is defined on the interval $[0, \pi/2]$.

Bonus do this question w/ all trie

23. Which of the following integrals are diverges?

I.
$$\int_{1}^{\infty} \frac{5}{\sqrt{x}} \, dx$$

II.
$$\int_{1}^{\infty} \frac{3}{x^2} \, dx$$

III.
$$\int_{1}^{\infty} \frac{10}{x} \, dx$$

(A) I only

- => diverges
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only
- (F) I, II, and III
- => diverges
- 24. Which of the following integrals are improper?

I.
$$\int_0^{\pi/4} \cos(x) \, dx$$

I.
$$\int_0^{\pi/4} \cos(x) dx$$
 II. $\int_0^{\pi/4} \tan(2x) dx$ III. $\int_{\pi/4}^{\pi/2} \csc(x) dx$ IV. $\int_{\pi/4}^{\pi/2} \sec\left(\frac{x}{2}\right) dx$

$$dx$$
 IV.
$$\int_{\pi/4}^{\pi/2} \sec\left(\frac{x}{2}\right) dx$$

Y = II / I

(1) cos/x) is defined everywhere => proper

In
$$tan(ax) = sin(ax) \Rightarrow cos(ax) = 0$$
 when $2x = \frac{\pi}{2}$

(B) I and II only

and 17/4 is a bound = improper

(C) I and IV only

(D) I and III only

which are none of the bounds => proper

(E) II, III and IV only
$$(X) = \frac{1}{\cos(X)} \implies \cos(\frac{X}{2}) = 0 \text{ when } \frac{X}{2} = \frac{1}{2}$$
(F) II only

(F) II only

and 17/4 is a bound = improper

25. Evaluate the following integral;

$$= \lim_{N \to \infty} \left(N e^{-x/6} dx - \lim_{N \to \infty} \left(-6e^{-x/6} \right) \right)$$

$$= \lim_{N \to \infty} \left(N e^{-x/6} dx - \lim_{N \to \infty} \left(-6e^{-x/6} \right) \right)$$

$$= \lim_{N \to \infty} \left(-6e^{-x/6} + 6 \right) = 6$$

$$\frac{1}{y=e}$$
-x/6

$$\int_0^\infty e^{-x/6} \, dx =$$

26. Evaluate the following integral;

$$\int_0^\infty \frac{7}{e^{10x}} \, dx$$

$$\int_{0}^{\infty} 7e^{-10x} dx = \lim_{N \to \infty} \int_{0}^{N} 7e^{-10x} dx = \lim_{N \to \infty} \left(7e^{-10x}\right) \int_{0}^{N} dx = \lim_{N \to \infty} \left(7e^{-10x}\right) \int_{0}^{N}$$

$$y = e^{-10x}$$

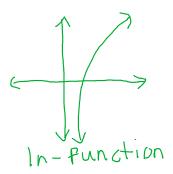
$$\int_0^\infty \frac{7}{e^{10x}} dx = \frac{7}{10}$$

27. Evaluate the definite integral

$$\int_{2}^{\infty} \frac{dx}{5x+2}$$

$$\lim_{N \to \infty} \int_{2}^{N} \frac{dx}{5x+2} \frac{u=5x+2}{du=5dx} \lim_{N \to \infty} \int_{5}^{1} \frac{1}{u} du = \lim_{N \to \infty} \frac{1}{5} \ln |u| = \lim_{N \to \infty} \frac{1}{5} \ln |5x+2| \int_{2}^{N} \frac{1}{5} \ln |5x+2| = 0$$

$$= \lim_{N \to \infty} \left(\frac{1}{5} \ln |5N+2| - \frac{1}{5} \ln |12| \right) = \infty$$



$$\int_{2}^{\infty} \frac{dx}{5x+2} =$$

28. Evaluate the definite integral

$$\int_{4}^{13} \frac{dx}{\sqrt{x-4}}$$

$$= \int_{4}^{13} (x-4)^{1/2} dx$$

$$= 2(x-4)^{1/2} \int_{4}^{13} 4$$

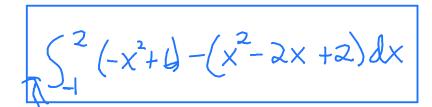
$$= 2/(3-4)^{1/2} - 2($$

$$= 2(13-4)^{1/2} - 2(4-4)^{1/2}$$

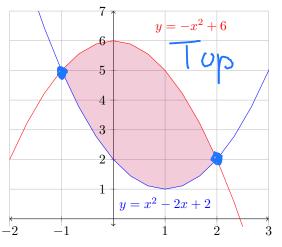
$$\int_{4}^{13} \frac{dx}{\sqrt{x-4}} =$$

29. Set up the integral that computes the AREA shown to the right with respect to x.

DON'T COMPUTE IT!!!

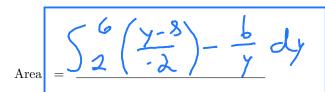


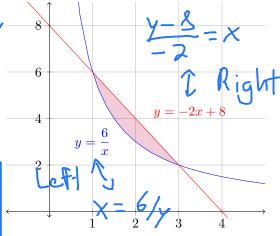
Area



30. Set up the integral that computes the AREA shown to the right with respect to y.

DON'T COMPUTE IT!!!





31. Set up the integral that computes the **AREA** with respect to x of the region bounded by

Bounds:

$$\frac{2}{x} = -x + 3$$

 $2 = -x^2 + 3 \times 2$
 $x^2 - 3x + 2 = 0$
 $(x - 1)(x - 2) = 0$
 $x = 1, 2$

unds:

$$\frac{2}{x} = -x + 3$$

 $\frac{2}{x} = -x + 3$
 $2 = -x + 3 \times 2$
 $-3x + 2 = 0$
 $x - 1)(x - 2) = 0$
 $y = \frac{2}{x} \text{ and } y = -x + 3$
 $y = -x + 3 \times 2$
 $y = -x + 3 \times 3$
 $y = -x + 3 \times 3$

Area =
$$\frac{2 \left(-x + 3 - \frac{2}{x}\right) dx}{ }$$

32. Set up the integral that computes the **AREA** with respect to x of the region bounded by

Bounds:
$$x = 7x - x^{2}$$

 $0 = 6x - x^{2}$
 $0 = x(6 - x)$
 $x = 0, 6$
Test Pt: $x = 1$
 $y = x \xrightarrow{x=1} y = 1 - x = 1$
 $y = 7x - x^{2} \xrightarrow{x=1} y = 6 \rightarrow 3$
 $x = 0, 6$
 $x = 0$

$$y = x \text{ and } y = 7x - x^{2}$$

$$= \begin{cases} 6 & (6x - x^{3}) \\ 3x - \frac{x^{3}}{3} \end{cases}$$

$$= 36$$

33. Find the area of the region bounded by $y = 6x - x^2$ and $y = 2x^2$.

Bounds:

$$6x-x^2=2x^2$$

 $6x-3x^2=0$
 $3x(2-x)=0$
 $x=0,2$
Test Pt: $x=1$
 $y=6x-x^2 \Rightarrow y=5-1$ op
 $y=2x^2 \Rightarrow y=2-3$ Bottom

$$A = \begin{cases} 2 \left[(6x - x^{2}) - 2 x^{2} \right] dx \\ = \begin{cases} 2 \left((6x - 3 x^{2}) dx \right) \\ 3x^{2} - x^{3} \end{cases} = 4$$

34. Find the area bounded by the following curves.

Bounds:
$$y^2 + 24 = 10y$$

 $y^2 - 10y + 24 = 0$
 $(y - 6)(y - 4) = 0$
 $y = 4/6$
Test Pt: $y = 5$
 $x = y^2 + 24 - \frac{y - 5}{2} \times = 49 \times 5mall$
 $x = 10y - \frac{y - 5}{2} \times 250 - 16.9$
 $A = 54 + 10y - (y^2 - 24) dy$
 $= (6 + 10y - y^2 + 24) dy$
Are

$$x = y^{2} + 24 \text{ and } x = 10y$$

$$= \left(5y^{2} - \frac{3}{3} + 24\right) \left[\frac{6}{3}\right]$$

$$= \frac{292}{3}$$

$$= \frac{3}{3}$$

$$= \frac{3}{3}$$

$$= \frac{3}{3}$$

$$= \frac{3}{3}$$

35. Find the area of the region bounded by $y = 2x - x^2$ and $y = x^2$.

Bounds:
$$2x-y^2=x^2$$

$$2x-2x^1=0$$

$$2x(x-1)=0$$

$$x=0,1$$

$$=(2x^2-2x^3)$$

$$=(3x^2-2x^3)$$

$$=(3x^2-2x^2)$$

$$=(3x^2-2x^2$$

36. Calculate the **AREA** of the region bounded by the following curves.

Bounds:

$$|00-y^2| = 2y^2 - 8$$

 $|00-y^2| = 2y^2 - 8$
 $|00-y^2| =$

37. Calculate the **AREA** of the region bounded by the following curves.

$$y = x^3$$
 and $y = x^2$

38. After t hours studying, one student is working $Q_1(t) = 25 + 9t - t^2$ problems per hour, and a second student is working on $Q_2(t) = 5 - t + t^2$ problems per hour. How many more problems will the first student have done than the second student after 10 hours?

Answer: 100/3

39. The birthrate of a particular population is modeled by $B(t)=1000e^{0.036t}$ people per year, and the death rate is modeled by $D(t)=725e^{0.019t}$ people per year. How much will the population increase in the span of 10 years? $(0 \le t \le 20)$ Round to the nearest whole number.

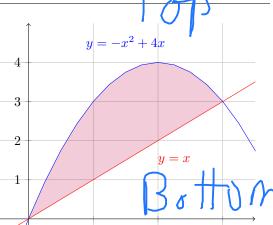
$$S_{6}^{10} B(+)-P(+) d+ = S_{0}^{10} 1800e^{0.836t} - 735e^{0.019t} d+$$

$$= \left(\frac{1000}{0.836}e^{0.036t} - \frac{725}{0.019}e^{0.019t}\right)_{0}^{10}$$

$$\times 4052$$

Answer: 4052

40. Let R be the region shown below. Set up the integral that computes the **VOLUME** as R is rotated around the x-axis.



DON'T COMPUTE IT!!!

$$\int_{0}^{3} \left[\left(-x^{2} + \left| \left| x \right|^{2} - \left(x \right)^{2} \right] dx \right]^{2}$$
Volume = ______

41. Set up the integral that computes the VOLUME of the region bounded by

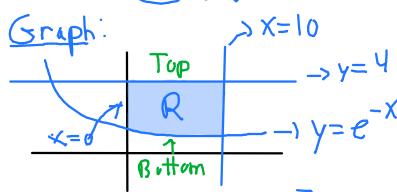
 $y = \sqrt{16 - x}, y = 0 \text{ and } x = 0$ dy problem

Bounds: Given y=0

Volume

42. Set up the integral that computes the **VOLUME** of the region bounded by

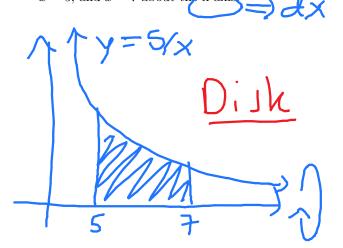
$$y = e^{-x}$$
, $y = 4$ $x = 0$ and $x = 10$



$$V = T \int_{0}^{Q} \left[4^{2} - (e^{-x})^{2} \right] dx$$

$$TT \int_{0}^{2} (16 - e^{-2x}) dx$$

- Volume
- 43. Find the volume of the solid that results by revolving the region enclosed by the curves $y = \frac{5}{x}$, y = 0, x = 5, and x = 7 about the x-axis



$$V = II \left(\frac{7}{x} \left(\frac{5}{x} \right)^{2} dx \right)$$

$$= II \left(\frac{7}{x} + \frac{25}{x^{2}} dx \right)$$

$$= 25 II \left(\frac{7}{x} + \frac{25}{x^{2}} dx \right)$$

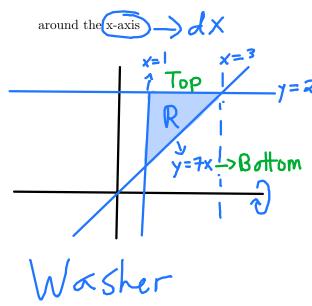
$$= 25 II \left(-\frac{1}{x} \right) \frac{7}{5}$$

$$= 10 II$$

$$= 10 II$$

Volume

$$y = 7x$$
, $y = 21$ $x = 1$ and $x = 3$



$$V = \prod_{1}^{3} \left[21^{2} - (7x)^{2} \right] dx$$

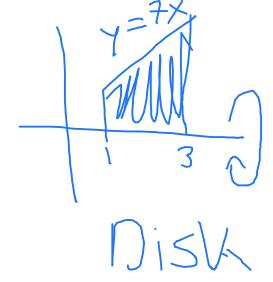
$$= \prod_{2}^{3} \left[441 - 49x^{2} \right] dx$$

$$= \prod_{3}^{3} \left[441 - 49x^{2} \right] dx$$

Volume =
$$\frac{127411}{3}$$

45. Find the **VOLUME** of the region bounded by

$$y = 7x$$
, $y = 0$ $x = 1$ and $x = 3$



$$V = \prod_{x = 3}^{3} (3^{3} - 1)^{2} dx$$

$$= \prod_{x = 3}^{3} (3^{3} - 1)^{3}$$

$$= \frac{127}{3} \prod_{x = 3}^{3} (3^{3} - 1)^{3}$$

$$= \frac{127}{3} \prod_{x = 3}^{3} (3^{3} - 1)^{3}$$

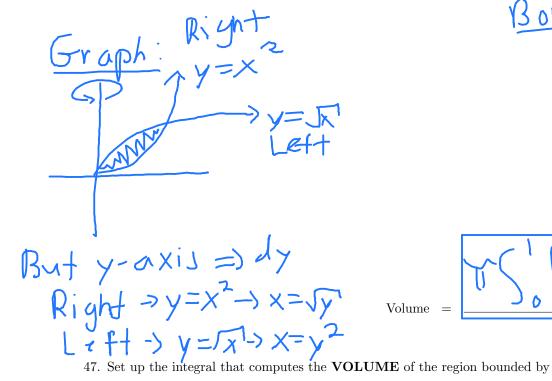
$$= \frac{127}{3} \prod_{x = 3}^{3} (3^{3} - 1)^{3}$$

Volume =
$$= \frac{127}{3} \hat{\parallel}$$

46. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = x^2$$
, and $y = \sqrt{x}$

about the y-axis



about the x-axis
$$y = x^2$$
, and $y = x^2$ and $y = x^2$ $y = x^2$

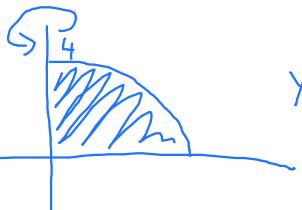
$$\Lambda = 11 \left(\frac{1}{2} \left(\frac{1}{2} \right)^{3} - \left(\frac{1}{2} \right)^{3} \right) = 1$$

Volume

 $y = x^2$, and $y^2 = x$

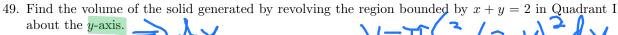
48. Set up the integral that computes the **VOLUME** of the region generated by revolving the region in Quadrant I bounded by the following curves about the *y*-axis using the disk/washer method.

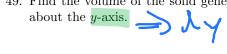
wing curves about the y-axis using the disk/wasner method.
$$y = 4 - x^2$$
, $y = 0$ and $x = 0$



Volume =
$$\frac{1}{1} \left(\frac{4}{4 - y} \right) d$$

Volu





$$x+y=2\rightarrow x=2-y$$

$$= \mathbb{L}(\lambda - \gamma)_{3}$$

$$= 11 (2-a)^{3} - (a-2)^{3}$$

$$= 3$$

Bounds:

$$X-X^2=0$$

 $X(1-X)=0$
 $X=0,1$

$$y = x - x^{2}, \text{ and } y = 0$$

$$V = \prod_{i=1}^{n} \int_{0}^{1} (x - x^{2}) dx$$

$$= \prod_{i=1}^{n} \int_{0}^{1} (x^{2} - 2x^{3} + x^{4}) dx$$

$$= \prod_{i=1}^{n} \left(\frac{x^{3}}{3} - \frac{2x^{4}}{4} + \frac{x^{5}}{5} \right) \Big|_{0}^{1}$$

$$= \prod_{i=1}^{n} \int_{0}^{1} (x - x^{2}) dx$$

$$= \prod_{i=1}^{n} \int_{0}^{1} (x - x^{2}) dx$$

$$= \prod_{i=1}^{n} \int_{0}^{1} (x - x^{2}) dx$$

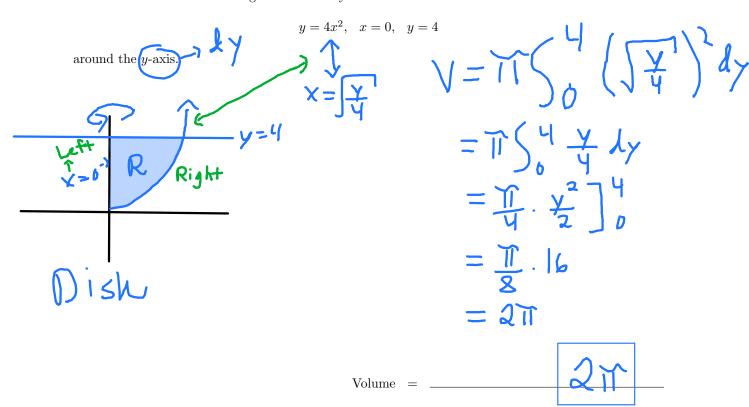
Volume =
$$\sqrt{30}$$

51. Find the **VOLUME** of the solid generate by revolving the given region about the x-axis:

$$V = \prod_{y=8\sqrt{x}, y=0, x=3, x=6}$$

$$V = \prod_{y=8\sqrt{x}, y=0, x=3}$$

Volume =
$$264\%$$



53. Set up the integral that computes the **VOLUME** of the region bounded by

$$y = x + 8$$
, and $y = (x - 4)^2$

about the x-axis

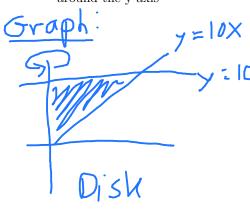
Bounds:

$$X+8=(x-4)^2$$

 $x+8=x^2-8x+16$
 $0=x^2-9x+8$
 $0=(x-8)(x-1)$
 $x=1,8$

Graph:
$$y = (x-4)^2$$

Volume =
$$\frac{1158 \left[(x+8)^2 - (x-4)^4 \right] dx}{115}$$



$$y = 10x, \quad x = 0, \quad y = 10$$

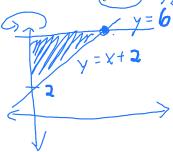
$$V = T \begin{cases} 10 & (4)^{3} dy \\ = T \end{cases} \end{cases}$$

$$y = 10x$$

55. Find the **VOLUME** of the solid generated by rotating the region bounded by

$$y = x + 2, \quad x = 0, \quad y = 6$$

around the y-axis -> Ly problem.

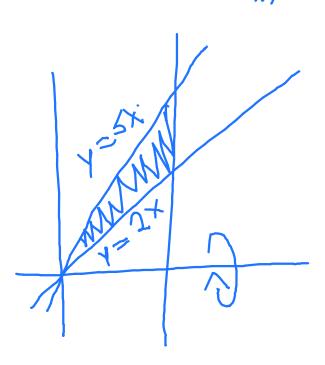


$$=\pi(6(y^2-4y+4)dy$$

$$= \widetilde{I} \left(\frac{y^3}{3} - \frac{4y^2}{2} + 4y \right)$$

Volume =
$$64\%/3$$

56. Find the volume of the solid generated by revolving the region bounded by the following curves about the x-axis.



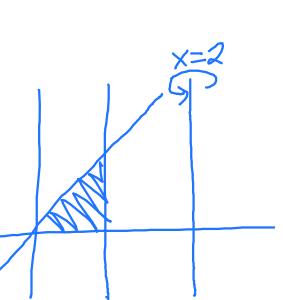
, y = 5x, $V=\prod \left(\frac{1}{5} \left(5x \right)^{2} - \left(2x \right)^{2} dx$ =1151, 25x - 4x dx

$$= \pi \int_{0}^{1} 2bx - 4x dx$$

$$= \pi \int_{0}^{1} 2bx^{2} dx$$

$$= \text{Tral}_{3} \times \text{J}_{0} = \text{Fir}$$

57. Find the volume of the solid generated by revolving the region bounded by the following curves about the line x = 2



$$\begin{array}{c}
y - 2x, & y \\
\vdots \\
X = \frac{1}{2}
\end{array}$$

y = 0, and x = 1 $\frac{1}{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \prod_{j=1}^{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} - \left(\frac{1}{2} - \frac{1}{2} \right)^$ 3-2y-4 dy

$$= \prod \left(3y - \frac{2y^2}{3} - \frac{1}{3} \cdot \frac{y^3}{3} \right)$$

Volume

$$x + 3y = 9$$

 $3y = -x + 9$
 $y = -\frac{x}{3} + 3$

Graph:

Disk

$$x + 3y = 9$$
, $x = 0$, $y = 0$

$$V = T \left(\frac{3}{6} \left(9 - 3 \right)^{2} dy$$

$$= T \left(\frac{3}{6} \left(8 \right) - 54 y + 9 y^{2} \right) dy$$

$$= T \left(\frac{8}{9} \right) - 27 y^{2} + 3 y^{3} \right)^{3}$$

$$= \frac{8}{17}$$

But y-axis
$$\Rightarrow dp$$

So $x+3y=1$
 $x=9-3y$

59. Let R be the region shown to the right. Set up the integral that computes the **VOLUME** as R is rotated around the line x = 4.

DON'T COMPUTE IT!!!

 $y = \sqrt{x}$ x = 4 y = 0 y = 0

Volume

60. SET-UP using the washer method. the VOLUME of the region bounded by

$$y = x^2, \quad y = 2x$$

(A)
$$\pi \int_0^2 (2x - x^2)^2 dx$$

Note the bounds for all choices

are the same.

(B)
$$\pi \int_0^2 (4x^2 - x^4) dx$$

(B)
$$\pi \int_{0}^{2} (4x^{2} - x^{4}) dx$$
 Test Pt: $X = 1$

(C)
$$\pi \int_0^2 (2x - x^2) dx$$

(D)
$$\pi \int_0^2 (x^2 - 2x) dx$$

(E)
$$\pi \int_0^2 (x^4 - 4x^2) dx$$

(E)
$$\pi \int_{0}^{2} (x^{4} - 4x^{2}) dx$$
 $V = \prod_{0}^{2} \left(2x\right)^{2} - \left(x^{2}\right)^{2} dx$

(F)
$$2\pi \int_0^2 (x^3 - 2x^2) dx$$

61. Set up the integral needed to find the volume of the solid obtained when the region bounded by

and
$$y = x^2$$

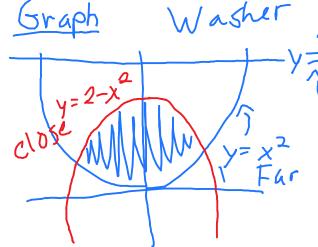
 $y = 2 - x^2$ and $y = x^2$ y = 3 \Rightarrow Apruhlem

is rotated about the line y = 3.

Bounds: 2-x2=x2

$$2 = 2 \times^{2}$$

$$|= X^{2}$$



 $(2-x^2-3)^2-(x^2-3)^2dx$ Volume

62. SET-UP using the disk/washer method. the VOLUME of the region bounded by

Disk

around the line y = 27

(A)
$$\pi \int_0^{27} (729 - 162x + 9x^2) dx$$

(B)
$$\pi \int_0^{27} 9x^2 dx$$

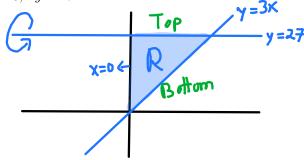
(C)
$$\pi \int_0^9 9x^2 dx$$

(D)
$$\pi \int_0^9 (9x^2 - 162x) \, dx$$

(E)
$$\pi \int_0^{27} (729 - 9x^2) dx$$

(F)
$$\pi \int_0^9 (729 - 162x + 9x^2) dx$$

 $y = 3x, \quad x = 0, \quad y = 27$



$$V = Ti \begin{cases} 9 & (3x - 27)^2 dx \\ = Ti \begin{cases} 9 & (9x^2 - 162x + 729) dx \end{cases}$$