Name:

1. Evaluate the indefinite integral.

$$
\int 18 x \cos \left(x^{2}\right) d x
$$

$$
\int 18 x \cos \left(x^{2}\right) d x=
$$

\qquad
2. Evaluate the indefinite integral.

$$
\int 11 x^{2} e^{-4 x^{3}} d x
$$

$$
\int 11 x^{2} e^{-4 x^{3}} d x=
$$

3. A forestry company estimates that acres of forest available for logging will increase at a rate given by $R^{\prime}(t)=\frac{56}{\sqrt{t+7}}$ for $0 \leq t \leq 20$ where $R^{\prime}(t)$ is the rate of new acreage becoming available in thousands of acres per year, t years after the current year. How many acres of forest will become available for logging over the first 5 years? Round your answer to the nearest thousand acres.

Answer:
4. Find the area under the curve $y=7 \cos (4 x)$ for $0 \leq x \leq \pi / 2$.

$$
\text { Area }=
$$

\qquad
5. Evaluate the indefinite integral

$$
\int \frac{\ln (7 x)}{x} d x
$$

$$
\int \frac{\ln (7 x)}{x} d x=
$$

6. Evaluate the definite integral.

$$
\int_{1}^{e} \frac{\ln (x)}{x} d x
$$

$$
\int_{1}^{e} \frac{\ln (x)}{x} d x=
$$

7. Evaluate the indefinite integral.

$$
\int x^{3} \ln (9 x) d x
$$

$$
\int x^{3} \ln (9 x) d x=
$$

8. Evaluate

$$
\int 3 x \ln \left(x^{6}\right) d x
$$

$$
\int 3 x \ln \left(x^{6}\right) d x=
$$

9. Evaluate the indefinite integral.

$$
\int 20 x \sin (2 x) d x
$$

$$
\int 20 x \sin (2 x) d x=
$$

10. Evaluate the indefinite integral.

$$
\int 18 x \cos (3 x) d x
$$

$$
\int 18 x \cos (3 x) d x=
$$

11. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$
f(x)=\frac{7 x-5}{x^{2}\left(x^{2}+9\right)}
$$

(A) $\frac{A}{x}+\frac{B}{x}+\frac{C x+D}{x^{2}+9}$
(B) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(C) $\frac{A}{x}+\frac{B x+C}{x^{2}}+\frac{D x+E}{x^{2}+9}$
(D) $\frac{A x+B}{x^{2}}+\frac{C x+D}{x^{2}+9}$
(E) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+3}+\frac{D}{x-3}$
(F) $\frac{A x+B}{x^{2}}+\frac{C}{x+3}+\frac{D}{x-3}$
12. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant.

$$
f(x)=\frac{2 x}{(x-1)^{2}\left(x^{2}+5\right)}
$$

(A) $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D}{x^{2}+5}$
(B) $\frac{A}{(x-1)^{2}}+\frac{B x+C}{x^{2}+5}$
(C) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+5}$
(D) $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D x+E}{x^{2}+5}$
(E) $\frac{A}{x-1}+\frac{B x+C}{x^{2}+5}$
(F) $\frac{A x+B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+5}$
13. Evaluate the improper integral or state that it is divergent.

$$
\int_{3}^{\infty} \frac{4}{x^{5}} d x
$$

$$
\int_{3}^{\infty} \frac{4}{x^{5}} d x=
$$

14. Evaluate the following integral;

$$
\int_{0}^{\infty} e^{-x / 6} d x
$$

$$
\int_{0}^{\infty} e^{-x / 6} d x=
$$

15. Evaluate the definite integral.

$$
\int_{2}^{\infty} \frac{d x}{3 x+1}
$$

$$
\int_{2}^{\infty} \frac{d x}{3 x+1}=
$$

\qquad
16. Set up the integral that represents the AREA of the region bounded by the following curves:

$$
y=\frac{1}{2} x^{2}, \quad y=-x^{2}+6
$$

Area $=$ \qquad
17. Find the AREA of the region bounded by $y=2 x-x^{2}$ and $y=x^{2}$.

$$
\text { Area }=
$$

18. Find the VOLUME of the solid that results by revolving the region enclosed by the following curves about the x-axis.

$$
y=3 x, x=1, x=4, \text { and } y=0
$$

19. Find the VOLUME of the solid generated by rotating the region bounded by

$$
y=x+2, \quad x=0, \quad y=6
$$

around the y-axis

Volume $=$ \qquad
20. SET-UP using the washer method. the VOLUME of the region bounded by

$$
y=x^{2}, \quad y=2 x
$$

around the x -axis
(A) $\pi \int_{0}^{2}\left(2 x-x^{2}\right)^{2} d x$
(B) $\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x$
(C) $\pi \int_{0}^{2}\left(2 x-x^{2}\right) d x$
(D) $\pi \int_{0}^{2}\left(x^{2}-2 x\right) d x$
(E) $\pi \int_{0}^{2}\left(x^{4}-4 x^{2}\right) d x$
(F) $2 \pi \int_{0}^{2}\left(x^{3}-2 x^{2}\right) d x$
21. Set-up the definite integral that would calculate the VOLUME of the region bounded by the following curves when rotated about the x-axis.

$$
y=5 x \text { and } y=15 \sqrt{x}
$$

VOLUME =

22. Find the VOLUME of the solid obtained by revolving the region bounded by the following curves about the y-axis.

$$
x+2 y=4, x=0, \text { and } y=0
$$

\qquad
23. Find the general solution of the given differential equation.

$$
\frac{d y}{d x}=\frac{4 x}{y}
$$

$y=$ \qquad
24. Find the particular solution to the given differential equation if $y(2)=3$

$$
\frac{d y}{d x}=\frac{x}{y^{2}}
$$

25. Find the particular solution of the equation.

$$
\frac{d y}{d x}-5 y=0, y(1)=7
$$

26. The rate of change of the population $N(t)$ of a sample of bacteria is directly proportional to the number of bacteria, so $N^{\prime}(t)=k N$, where time t is measured in minutes. Initially, there are 270 bacteria present. If the number of bacteria after 7 minutes is 770 , find the growth rate k in terms of minutes. Round to four decimal places.
27. What is the integrating factor of the following differential equation?

$$
y^{\prime}+\left(\frac{2 x+3}{x}\right) y=10 \ln (x)
$$

$$
u(x)=
$$

28. Find the general solution of the following differential equation.

$$
\frac{d y}{d x}+\frac{4 y}{x}=2 x+20
$$

$$
y=
$$

29. Compute the following sum.

$$
\sum_{n=0}^{\infty}\left(\frac{(-1)^{n}}{3^{n}}+\frac{2^{n+1}}{3^{n}}\right)
$$

Answer:

30. Evaluate the sum of the following infinite series.

$$
\sum_{n=1}^{\infty} \frac{4(3)^{n-1}}{5^{n}}
$$

Answer:
31. Find the sum of the following series:

$$
\sum_{n=0}^{\infty} \frac{(-2)^{n}}{3^{2 n+1}}
$$

Answer:

32. Express $f(x)=\frac{x}{3+x}$ as a power series.

$$
\frac{x}{3+x}=
$$

33. Express $f(x)=\frac{x}{4+3 x^{2}}$ as a power series.

$$
\frac{x}{4+3 x^{2}}=
$$

34. What are the first 3 non-zero terms of the Maclaurin series representation of the follow?

$$
\int e^{-3 x} d x
$$

$$
\int e^{-3 x} d x=
$$

35. Find the Maclaurin representation of the following:

$$
\int \cos (\sqrt{x}) d x
$$

$$
\int \cos (\sqrt{x}) d x=
$$

36. Given $f(x, y)=3 x^{3} y^{2}-x^{2} y^{1 / 3}$, evaluate $f(3,-8)$.

$$
f(3,-8)=
$$

37. What do the level curves for the following function look like?

$$
f(x, y)=12 \ln \left(6(x-3)^{2}+6(y-2)^{2}\right)
$$

(a) Lines
(b) Parabolas
(c) Circles
(d) Point at the origin
(e) Ellipses
(f) Hyperbolas
38. What do the level curves for the following function look like?

$$
f(x, y)=\sqrt{y+4 x^{2}}
$$

(a) Lines
(b) Parabolas
(c) Circles
(d) Point at the origin
(e) Ellipses
(f) Hyperbolas
39. What do the level curves for the following function look like?

$$
f(x, y)=\ln \left(y-e^{5 x}\right)
$$

(a) Increasing exponential functions
(b) Rational Functions with x-axis symmetry
(c) Natural logarithm functions
(d) Decreasing exponential functions
(e) Rational Functions with y-axis symmetry
40. What do the level curves for the following function look like?

$$
f(x, y)=\cos \left(y+4 x^{2}\right)
$$

(a) Lines
(b) Parabolas
(c) Circles
(d) Point at the origin
(e) Ellipses
(f) Hyperbolas
41. Given $f(x, y)=x \sin \left(x y^{2}\right)$, evaluate $f_{y}(3,7)$. Round to 4 decimal places.

$$
f_{y}(3,7)=
$$

42. Find the first order partial derivatives of $f(x, y)=x e^{x y}$

$$
\begin{gathered}
f_{x}(x, y)= \\
f_{y}(x, y)=
\end{gathered}
$$

43. For the given function $f(x, y)$, find $f_{x}(x, y)$.

$$
f(x, y)=5 \cos \left(x^{7} y^{8}\right)
$$

$$
f_{x}(x, y)=
$$

44. Given the function $f(x, y)=x^{3} y^{2}-3 x+5 y-5 x^{2} y^{3}$, compute $f_{x x}(x, y)$

$$
f_{x x}(x, y)=
$$

\qquad
45. Given the function $f(x, y)=x^{3} \sin (y)$, compute $f_{x y}(2,0)$

$$
f_{x y}(2,0)=
$$

46. For the function $f(x, y)$, find $f_{x y}(\pi, 2)$.

$$
f(x, y)=8 y^{5} \sin (x)
$$

$$
f_{x y}(\pi, 2)=
$$

47. At what point (x, y) does the function $f(x, y)$ have a local minimum?

$$
f(x, y)=7 x^{2}-x y+5 y^{2}+75 x+84 y+2
$$

Local min occurs at \qquad
48. Given the information below, which critical point(s) (a, b) would be classified as a relative maximum?

(a, b)	$f_{x x}(a, b)$	$f_{y y}(a, b)$	$f_{x y}(a, b)$
$(7,8)$	-5	-5	10
$(-8,-1)$	-4	-7	-2
$(1,7)$	-10	-1	6

Answer:
49. Given the table below,

(a, b)	$f_{x x}(a, b)$	$f_{y y}(a, b)$	$f_{x y}(a, b)$
$(9,4)$	-1	-1	-1
$(-2,2)$	4	3	-4
$(4,5)$	8	5	6

Which statements are true?
I. $f(x, y)$ has exactly 1 saddle points
II. $f(x, y)$ has exactly 1 relative minimum
III. $f(x, y)$ has exactly 1 relative maximum
IV. $f(x, y)$ has exactly 1 inconclusive critical point

Answer: \qquad
50. The critical points for a function $f(x, y)$ are $(0,0)$ and $(8,4)$. Given that the partial derivatives of $f(x, y)$ are

$$
f_{x}(x, y)=3 x-6 y \quad f_{y}(x, y)=3 y^{2}-6 x
$$

Classify each critical point as a maximum, minimum, or saddle point.
$(0,0)$ is \qquad
$(8,4)$ is \qquad
51. Classify the critical points of the function $f(x, y)$ given the partial derivatives

$$
f_{x}(x, y)=x-2 y \quad f_{y}(x, y)=y^{2}-2 x
$$

A) 2 Local Minima
B) 2 Saddle Points
C) 1 Saddle Point and 1 Local Minimum
D) 1 Saddle Point and 1 Local Maximum
E) 1 Local Maximum and 1 Local Minimum
F) 2 Local Maxima
52. Find the minimum of the function using LaGrange Multipliers of the function $f(x, y)=x^{2}+2 y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.
\qquad
53. Find the maximum value of the function $f(x, y)=18 x-19 y^{2}$ subject to the constraint $x^{2}+19 y^{2}=81$.

Maximum Value $=$

54. A factory can produce a chocolate bar with a weight of $W(x, y)=\frac{x y}{100}$ with the weight W in ounces and x and y are the percentages of cocoa and sugar respectively. The percentage of cocoa and sugar are constrained to $2 x+y=75$. What is the weight, in ounces, of the largest chocolate bar that can be produced? Round to 2 decimal places.
\qquad
55. Evaluate the double integral

$$
\int_{0}^{\pi / 2} \int_{0}^{1} 16 y^{3} \cos (x) d y d x
$$

$$
\int_{0}^{1} \int_{0}^{\pi / 2} 16 y^{3} \cos (x) d y d x=
$$

56. Evaluate the double integral

$$
\int_{0}^{7} \int_{0}^{\pi / 2} 20 y^{4} \cos (x) d x d y
$$

$$
\int_{0}^{7} \int_{0}^{\pi / 2} 20 y^{4} \cos (x) d x d y=
$$

57. Evaluate the definite integral.

$$
\int_{0}^{4} \int_{3}^{x} \frac{6 x}{y^{2}} d y d x
$$

$$
\int_{0}^{4} \int_{3}^{x} \frac{6 x}{y^{2}} d y d x=
$$

58. Evaluate the definite integral.

$$
\int_{0}^{6} \int_{2}^{x} 30 x d y d x
$$

$$
\int_{0}^{6} \int_{2}^{x} 30 x d y d x=
$$

59. Find the bounds for the integral $\iint_{R} f(x, y) d A$ where R is a triangle with vertices $(0,0),(1,0)$, and $(1,2)$.

Answer:

\qquad
60. Switch the order of integration for the following integral

$$
\int_{0}^{1} \int_{9 y}^{9} f(x, y) d x d y
$$

Answer:
61. Switch the order of integration on the follow integral

$$
\int_{0}^{1} \int_{10 y}^{10} f(x, y) d x d y
$$

Answer:

\qquad
62. Evaluate the double integral

$$
\int_{0}^{1} \int_{y}^{1} 2 e^{x^{2}} d x d y
$$

(Hint: Change the order of integration)

$$
\int_{0}^{1} \int_{y}^{1} 2 e^{x^{2}} d x d y=
$$

63. Evaluate the double integral

$$
\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x
$$

(Hint: Change the order of integration)

$$
\int_{0}^{2} \int_{x}^{2} 4 e^{y^{2}} d y d x=
$$

64. Evaluate the double integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y
$$

(Hint: Change the order of integration)

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y=
$$

