Please show **all** your work! Answers without supporting work will not be given credit. Write answers in spaces provided.

Name:_

1. Evaluate the indefinite integral.

 $\int 18x\cos(x^2)\,dx$

 $\int 18x \cos(x^2) \, dx = \underline{\qquad}$

2. Evaluate the indefinite integral.

 $\int 11x^2 e^{-4x^3} \, dx$

 $\int 11x^2 e^{-4x^3} \, dx = _$

3. A forestry company estimates that acres of forest available for logging will increase at a rate given by $R'(t) = \frac{56}{\sqrt{t+7}}$ for $0 \le t \le 20$ where R'(t) is the rate of new acreage becoming available in thousands of acres per year, t years after the current year. How many acres of forest will become available for logging over the first 5 years? Round your answer to the nearest thousand acres.

Answer:_____

4. Find the area under the curve $y = 7\cos(4x)$ for $0 \le x \le \pi/2$.

Area =_____

5. Evaluate the indefinite integral

$$\int \frac{\ln(7x)}{x} \, dx$$

$$\int \frac{\ln(7x)}{x} \, dx = \underline{\qquad}$$

6. Evaluate the definite integral.

$$\int_{1}^{e} \frac{\ln(x)}{x} \, dx$$

$$\int_{1}^{e} \frac{\ln(x)}{x} \, dx = \underline{\qquad}$$

7. Evaluate the indefinite integral.

 $\int x^3 \ln(9x) \, dx$

 $\int x^3 \ln(9x) \, dx = _$

8. Evaluate

 $\int 3x \ln(x^6) \, dx$

 $\int 3x \ln(x^6) \, dx = \underline{\qquad}$

9. Evaluate the indefinite integral.

 $\int 20x\sin(2x)\,dx$

 $\int 20x \sin(2x) \, dx = \underline{\qquad}$

10. Evaluate the indefinite integral.

 $\int 18x\cos(3x)\,dx$

 $\int 18x \cos(3x) \, dx = \underline{\qquad}$

- 11. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant. $f(x) = \frac{7x - 5}{x^2(x^2 + 9)}$
 - (A) $\frac{A}{x} + \frac{B}{x} + \frac{Cx+D}{x^2+9}$ (B) $\frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+9}$ (C) $\frac{A}{x} + \frac{Bx+C}{x^2} + \frac{Dx+E}{x^2+9}$ (D) $\frac{Ax+B}{x^2} + \frac{Cx+D}{x^2+9}$ (E) $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+3} + \frac{D}{x-3}$ (F) $\frac{Ax+B}{x^2} + \frac{C}{x+3} + \frac{D}{x-3}$
- 12. Which of the following is a partial fraction decomposition of the rational expression show? Do not explicitly solve for the constant. $f(x) = \frac{2x}{(x-1)^2(x^2+5)}$

$$f(x) = -\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{D}{x^2+5}$$
(B) $\frac{A}{(x-1)^2} + \frac{Bx+C}{x^2+5}$
(C) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+5}$
(D) $\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{Dx+E}{x^2+5}$
(E) $\frac{A}{x-1} + \frac{Bx+C}{x^2+5}$

(F)
$$\frac{Ax+B}{(x-1)^2} + \frac{Cx+D}{x^2+5}$$

13. Evaluate the improper integral or state that it is divergent.

$$\int_3^\infty \frac{4}{x^5} \, dx$$

$$\int_{3}^{\infty} \frac{4}{x^5} \, dx = \underline{\qquad}$$

14. Evaluate the following integral;

$$\int_0^\infty e^{-x/6} dx$$

$$\int_0^\infty e^{-x/6} dx = -$$

15. Evaluate the definite integral.

$$\int_2^\infty \frac{dx}{3x+1}$$

16. Set up the integral that represents the **AREA** of the region bounded by the following curves:

$$y = \frac{1}{2}x^2$$
, $y = -x^2 + 6$

17. Find the **AREA** of the region bounded by $y = 2x - x^2$ and $y = x^2$.

Area = _____

18. Find the **VOLUME** of the solid that results by revolving the region enclosed by the following curves about the *x*-axis.

y = 3x, x = 1, x = 4, and y = 0

Volume = _____

19. Find the **VOLUME** of the solid generated by rotating the region bounded by

$$y = x + 2, \quad x = 0, \quad y = 6$$

around the y-axis

Volume = _____

20. SET-UP using the washer method. the VOLUME of the region bounded by

$$y = x^2, \quad y = 2x$$

around the x-axis

(A)
$$\pi \int_{0}^{2} (2x - x^{2})^{2} dx$$

(B) $\pi \int_{0}^{2} (4x^{2} - x^{4}) dx$
(C) $\pi \int_{0}^{2} (2x - x^{2}) dx$
(D) $\pi \int_{0}^{2} (x^{2} - 2x) dx$
(E) $\pi \int_{0}^{2} (x^{4} - 4x^{2}) dx$
(F) $2\pi \int_{0}^{2} (x^{3} - 2x^{2}) dx$

21. Set-up the definite integral that would calculate the **VOLUME** of the region bounded by the following curves when rotated about the *x*-axis.

y = 5x and $y = 15\sqrt{x}$

VOLUME = _____

22. Find the **VOLUME** of the solid obtained by revolving the region bounded by the following curves about the y-axis.

x + 2y = 4, x = 0, and y = 0

VOLUME = _____

23. Find the general solution of the given differential equation.

$$\frac{dy}{dx} = \frac{4x}{y}$$

24. Find the particular solution to the given differential equation if y(2) = 3

$$\frac{dy}{dx} = \frac{x}{y^2}$$

y = -

y = -

25. Find the particular solution of the equation.

$$\frac{dy}{dx} - 5y = 0, y(1) = 7$$

26. The rate of change of the population N(t) of a sample of bacteria is directly proportional to the number of bacteria, so N'(t) = kN, where time t is measured in minutes. Initially, there are 270 bacteria present. If the number of bacteria after 7 minutes is 770, find the growth rate k in terms of minutes. Round to four decimal places.

y = -

k =

27. What is the **integrating factor** of the following differential equation?

$$y' + \left(\frac{2x+3}{x}\right)y = 10\ln(x)$$

u(x) = ______

28. Find the general solution of the following differential equation.

$$\frac{dy}{dx} + \frac{4y}{x} = 2x + 20$$

 $y = _$

29. Compute the following sum.

$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{3^n} + \frac{2^{n+1}}{3^n} \right)$$

Answer:_____

30. Evaluate the sum of the following infinite series.

$$\sum_{n=1}^{\infty} \frac{4(3)^{n-1}}{5^n}$$

Answer:_____

31. Find the sum of the following series:

$$\sum_{n=0}^{\infty} \frac{(-2)^n}{3^{2n+1}}$$

Answer:_____

32. Express $f(x) = \frac{x}{3+x}$ as a power series.

33. Express $f(x) = \frac{x}{4+3x^2}$ as a power series.

 $\frac{x}{4+3x^2} =$

34. What are the first 3 non-zero terms of the Maclaurin series representation of the follow?

$$\int e^{-3x} \, dx$$

$$\int e^{-3x} dx = _$$

35. Find the Maclaurin representation of the following:

$$\int \cos(\sqrt{x}) \, dx$$

 $\int \cos(\sqrt{x}) \, dx = \underline{\qquad}$

36. Given $f(x,y) = 3x^3y^2 - x^2y^{1/3}$, evaluate f(3,-8).

37. What do the level curves for the following function look like?

$$f(x,y) = 12\ln(6(x-3)^2 + 6(y-2)^2)$$

- (a) Lines
- (b) Parabolas
- (c) Circles
- (d) Point at the origin
- (e) Ellipses
- (f) Hyperbolas
- 38. What do the level curves for the following function look like?

$$f(x,y) = \sqrt{y + 4x^2}$$

- (a) Lines
- (b) Parabolas
- (c) Circles
- (d) Point at the origin
- (e) Ellipses
- (f) Hyperbolas

39. What do the level curves for the following function look like?

$$f(x,y) = \ln(y - e^{5x})$$

- (a) Increasing exponential functions
- (b) Rational Functions with x-axis symmetry
- (c) Natural logarithm functions
- (d) Decreasing exponential functions
- (e) Rational Functions with y-axis symmetry
- 40. What do the level curves for the following function look like?

$$f(x,y) = \cos(y+4x^2)$$

- (a) Lines
- (b) Parabolas
- (c) Circles
- (d) Point at the origin
- (e) Ellipses
- (f) Hyperbolas

41. Given $f(x,y) = x \sin(xy^2)$, evaluate $f_y(3,7)$. Round to 4 decimal places.

 $f_y(3,7) =$ ______

42. Find the first order partial derivatives of $f(x, y) = xe^{xy}$

$$f_x(x,y) = \underline{\qquad}$$

 $f_y(x,y) =$ _____

43. For the given function f(x, y), find $f_x(x, y)$.

$$f(x,y) = 5\cos(x^7y^8)$$

 $f_x(x,y) = \underline{\qquad}$

44. Given the function $f(x,y) = x^3y^2 - 3x + 5y - 5x^2y^3$, compute $f_{xx}(x,y)$

45. Given the function $f(x, y) = x^3 \sin(y)$, compute $f_{xy}(2, 0)$

 $f_{xy}(2,0) =$ ______

46. For the function f(x, y), find $f_{xy}(\pi, 2)$.

 $f(x,y) = 8y^5 \sin(x)$

$$f_{xy}(\pi,2) = _$$

47. At what point (x, y) does the function f(x, y) have a local minimum?

 $f(x,y) = 7x^2 - xy + 5y^2 + 75x + 84y + 2$

Local min occurs at _____

48. Given the information below, which critical point(s) (a, b) would be classified as a relative maximum?

(a,b)	$f_{xx}(a,b)$	$f_{yy}(a,b)$	$f_{xy}(a,b)$
(7, 8)	-5	-5	10
(-8, -1)	-4	-7	-2
(1,7)	-10	-1	6

Answer:_____

49. Given the table below,

(a,b)	$f_{xx}(a,b)$	$f_{yy}(a,b)$	$f_{xy}(a,b)$
(9,4)	-1	-1	-1
(-2,2)	4	3	-4
(4,5)	8	5	6

Which statements are true?

I. f(x, y) has exactly 1 saddle points

II. f(x, y) has exactly 1 relative minimum

- III. f(x, y) has exactly 1 relative maximum
- IV. f(x, y) has exactly 1 inconclusive critical point

Answer:_____

50. The critical points for a function f(x, y) are (0,0) and (8,4). Given that the partial derivatives of f(x, y) are

 $f_x(x,y) = 3x - 6y$ $f_y(x,y) = 3y^2 - 6x$

Classify each critical point as a maximum, minimum, or saddle point.

(0,0) is ______

(8,4) is ______

51. Classify the critical points of the function f(x, y) given the partial derivatives

$$f_x(x,y) = x - 2y$$
 $f_y(x,y) = y^2 - 2x$

- A) 2 Local Minima
- B) 2 Saddle Points
- C) 1 Saddle Point and 1 Local Minimum
- D) 1 Saddle Point and 1 Local Maximum
- E) 1 Local Maximum and 1 Local Minimum
- F) 2 Local Maxima

52. Find the minimum of the function using LaGrange Multipliers of the function $f(x,y) = x^2 + 2y^2$ subject to the constraint $x^2 + y^2 = 1$.

Minimum Value = _____

53. Find the maximum value of the function $f(x, y) = 18x - 19y^2$ subject to the constraint $x^2 + 19y^2 = 81$.

Maximum Value = _____

54. A factory can produce a chocolate bar with a weight of $W(x,y) = \frac{xy}{100}$ with the weight W in ounces and x and y are the percentages of cocoa and sugar respectively. The percentage of cocoa and sugar are constrained to 2x + y = 75. What is the weight, in ounces, of the largest chocolate bar that can be produced? Round to 2 decimal places.

55. Evaluate the double integral

$$\int_0^{\pi/2} \int_0^1 16y^3 \cos(x) \, dy \, dx$$

$$\int_0^1 \int_0^{\pi/2} 16y^3 \cos(x) \, dy \, dx = _$$

56. Evaluate the double integral

$$\int_0^7 \int_0^{\pi/2} 20y^4 \cos(x) \, dx \, dy$$

$$\int_0^7 \int_0^{\pi/2} 20y^4 \cos(x) \, dx \, dy = \underline{\qquad}$$

57. Evaluate the definite integral.

$$\int_0^4 \int_3^x \frac{6x}{y^2} \, dy \, dx$$

 $\int_{0}^{4} \int_{3}^{x} \frac{6x}{y^{2}} \, dy \, dx = \underline{\qquad}$

58. Evaluate the definite integral.

$$\int_0^6 \int_2^x 30x \, dy \, dx$$

$$\int_{0}^{6} \int_{2}^{x} 30x \, dy \, dx = _$$

59. Find the bounds for the integral $\iint_R f(x,y) dA$ where R is a triangle with vertices (0,0), (1,0), and (1,2).

Answer:_____

60. Switch the order of integration for the following integral

 $\int_0^1 \int_{9y}^9 f(x,y) \, dx \, dy$

Answer:____

61. Switch the order of integration on the follow integral

$$\int_0^1 \int_{10y}^{10} f(x,y) \, dx \, dy$$

Answer:____

62. Evaluate the double integral

 $\int_0^1 \int_y^1 2e^{x^2} \, dx \, dy$

(Hint: Change the order of integration)

 $\int_{0}^{1} \int_{y}^{1} 2e^{x^{2}} dx \, dy = _$

63. Evaluate the double integral

$$\int_0^2 \int_x^2 4e^{y^2} \, dy \, dx$$

(Hint: Change the order of integration)

$$\int_{0}^{2} \int_{x}^{2} 4e^{y^{2}} \, dy \, dx = \underline{\qquad}$$

64. Evaluate the double integral

$$\int_0^1 \int_{\sqrt{y}}^1 \sin(x^3) \, dx \, dy$$

(Hint: Change the order of integration)

$$\int_0^1 \int_{\sqrt{y}}^1 \sin(x^3) \, dx \, dy = _$$