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ON NONVANISHING OF L-FUNCTIONS
BY FREYDOON SHAHIDI!

The nonvanishing of Hecke L-functions at the line Re(s) = 1 has proved
to be useful in the theory of uniform distribution of primes. One of the general-
izations of this fact is due to H. Jacquet and J. A. Shalika [4], who proved the
nonvanishing of the L-functions considered in [2]. The following theorem
generalizes this result to the L-functions attached to the pairs of cusp forms on
GL, x GL,, (cf. [3]). It appears to have an application in the classification of
automorphic forms on GL, (communications with H. Jacquet and J. A. Shalika).

Let F be a number field and denote by A its ring of adeles. Fix two posi-
tive integers m and n. Let 7 and 7' be two cuspidal representations of GL,(A)
and GL,, (A). Fix a complex number s. Write 7 = ®v m, and =@ v 7’1'; ,
where m, and m, denote the vth components of 7 and 7" at each place v of F,
respectively. Let S be the finite set of all ramified places, including the infinite
ones. For every finite place v, H. Jacquet, I. I. Piatetski-Shapiro, and J. A.
Shalika have defined (cf. [3]) a local L-function L(s, m, x m,). Let

LgGs, mx )y = II L(s, m, x 7).
VS
Put i = (= 1)!/2. Then we have

THEOREM. Lg(1 +it, m x n') # 0 for Vt €R.

OUTLINE OF THE PROOF. The proof follows the general principle of
applying Eisenstein series to L-functions which is due to R. P. Langlands [5]
(same as in [4]). Put G =GL, ., and M =GL, x GL,,. Consider M as a
Levi factor of a maximal standard parabolic subgroup of G. Choose ¢ in the
space of °m = T ® 7', where 7 denotes the contragredient of 7. Extend ¢ to [,3,
a function on G(A), as in[7]. Put

D(e) = 857 2(p)¢ (2),

where P = MN, g = kp, p € P(A), and k €K. Here K = II,, K, is a maximal
compact subgroup of G(A) such that K, = G(0,) for every finite v. Now set
(cf. [6], [7])
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Es 98 P)= D, &)
YEG(F)|P(F)

the Eisenstein series attached to ¢. Consider

E(s, o g P)= EG, 7, gu, P)x(u)du,
(& 58 P) fU(A)/U(F) (s, 9, gu, PYx)

where U is the subgroup of upper triangulars in G with ones on diagonals, and x is
anondegenerate character of U(A)/U(F). Now for each place v, let

Hv = Ind ((0 ”u)oo ® 8;' p)
P(FU) t G(Fl))

and denote by \, the Whittaker functional attached to I, as in [1], [7], and
[8]. Put
Weo(® =00 Nf,,) (EEGEF),
where f; , is defined as in Lemma 4.1 of [7]. Then for Re(s) <-1/2,
Es %8 P)=]]W,(s) (¢=(g) EGA)).
v

It is proved in [1] and [8] (also see [7]) that at every v, W, , may be so
chosen that W ,(€) # 0. Now write

E, G, %eP)= H W, v * g Ws,u(©)-
vEES

veES

Then by the previous remark, we may choose ¢ such that I g W, ,(€) is non-
zero.

It is a result of W. Casselman and J. A. Shalika [1] that if v is unramified,
¢ can be so chosen that

W, (&) = L(—(n + m)s + 1, m, x m)t,

and therefore

L~ +mys+ 1,m x 7y "1 =] w, (@
V&S

Now the theorem follows from the fact that E£(it,, e, P) and consequently
E. (i, '@, e, P) are both holomorphic for all ¢ € R (cf. [6]).
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