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ON CERTAIN L-FUNCTIONS

By FREYDOON SHAHIDI*

Introduction. To generalize our previous study of certain Lang-
lands L-functions, in this paper we develop a general theory for certain
local coefficients. It turns out that the holomorphy of these local coeffi-
cients determines the irreducibility of certain induced representations,
and furthermore they can be used to normalize the intertwining operators.
These local coefficients take on a global significance, as we find them ap-
pearing in the functional equations satisfied by these L-functions. In par-
ticular, we establish the functional equations satisfied by the L-functions
attached to the cusp forms on PGL,(A), and five and six dimensional ir-
reducible representations of SL,(C), its L-group. Finally we prove certain
non-vanishing theorems for several of these L-functions at the line
Re(s) = 1. As it is the case with the classical L-functions, some interesting
consequences are expected (see the remarks before Theorem 5.2).

As was shown in [1S, 23], the theory of Eisenstein series plays an im-
portant role in establishing the analytic continuation and functional equa-
tion of certain Langlands L-functions. This general philosophy is due to
R. P. Langlands [15]. The local L-functions and root numbers are defined
in general only for almost all places. But another function related to them
can be defined for all places. In Section 3, we develop a general theory for
these functions, which we will call the “local coefficients”. In fact, let G
be a connected reductive algebraic group defined over a local field F (we
assume that G is quasi-split if F = R), and let A, be a maximal split torus
of G over F. Fix a set of simple roots A of A,. Given § C A, let Py = M,N,
be the standard parabolic subgroup of G corresponding to 6 (cf. Section

2). Let A, be the maximal split torus in the center of M, and denote by a,
its real Lie algebra. Finally let x be a non-degenerate character of N, =
U, and fix an element w in the Weyl group of (G, A,) such that w(§) C A.
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Then given an irreducible admissible non-degenerate (also fine, cf. 1.3,
when F = R) representation 7 of My and a linear functional v € (a,)§, we
define a complex number Cx(v, w, 6, w). This is what we call a local coeffi-
cient. It is these factors whose holomorphy determines the irreducibility of
the induced representation I(», m, ) (cf. Section 2). In fact Theorem 3.3.1
states that if F is non-archimedean, « is supercuspidal, and v, is so that
T & qoHo() is unramified, then I(v,, =, ) is irreducible if and only if
both C, (v, 7, 6, wy) and C,(wy(v), wy(m)wy(0), wy—1) are holomorphic at
V= v,.

Now, as we mentioned above, these local coefficients appear in the
functional equations satisfied by the previously mentioned L-functions.
More precisely, let a; and r;, 1 < i < m, be as in Section 2.3. Fix a
cuspidal representation 7 of My ,. Assume that G splits over Q. Write
™= @, 7,. Let x be a character of U, with x = ®, X, . Finally denote by
S the finite set of places such that v ¢ S implies that both =, and ¥, are
unramified. Giveni, 1 <i < m, let

LS(S, ™, r,') = IE'L(S’ Ty ri)'
vE

Then Theorem 4.1 establishes the functional equation

m m

Hl Lg(a;s, m,r,) = Hs Cy,(—2spy, w,, 0, wy)- H] L1 — a;s, w, 7).
i= 123 i=

Finally comparing this equation with the functional equations conjectured
by Langlands [16], we conclude that each C, (—2spg, m,, 6, wy) must be
of the form

LA — a;s, w,, ;)

1

m
II e(a;s, «,, 7, x,)
i i Mo Tio Xy L(a;s, ©,, r;)

where the factors involved are the conjecturally defined Langlands root
numbers and L-functions. Consequently, the irreducibility of I(—2sp,, T,
0) is explicitly related to the poles of the L-functions L(1 — a;s, 7, 7;), 1 <
I < m. '

When G = GL,,, and My = GL, X GL,,, the L-functions are L(s,
w, X m,) defined by H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika
(cf. [10] and Section 2.3 here).
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The most important tool used in the definition of these local coeffi-
cients is the theory of intertwining integrals. In the case of real groups they
are relatively well studied (cf. [7, 14, 22]). When F is non-archimedean the
only general theory is due to Harish-Chandra [8] (cf. A. Silberger’s notes
[28]). We have adopted his approach, and we have extensively used
Silberger’s notes on this subject. This is done in Sections 2-2.4, and in fact
Sections 2.2 and 2.4 are entirely due to Harish-Chandra (cf. [28]). Section
2.1 provides the factorization of the intertwining operators. Finally in Sec-
tion 2.3 we have specified the class of L-functions in which we are in-
terested.

The theory of local coefficients is developed in Section 3. A nor-
malization of intertwining operators using the local coefficients is pro-
vided in Section 3.1. Section 3.2 is devoted to the computation of these
local coefficients. In fact Proposition 3.2.1 reduces their computation to
the rank one cases, and Theorem 3.2.2 computes them for real groups. A
particularly interesting result of this section is Theorem 3.2.1 which pro-
vides the factorization of Jacquet-Shalika local coefficients (granting their
equality with the corresponding local coefficients). It is interesting to
know that their factorization is equivalent to that of intertwining
operators. Finally we should mention that the computation of the local
coefficients is effectively equivalent to the computation of Plancherel
measures, and therefore in general by no means an easy question.

Functional equations are proved in Section 4. They appear as
Theorems 4.1, 4.2, and 4.3. As an application we have used Deligne’s idea
(cf. [4]) to prove the functional equations satisfied by L(s, , Sym*4(p,))
and L(s, w, Sym>(p,)), where 7 is a non-monomial cuspidal representation
of PGL,(A), and Sym*%(p,) and Sym3(p,) are respectively five and six
dimensional irreducible representations of SL,(C). The latter case seems
to be new; the former is originally due to P. Deligne [4].

With regard to the proofs in Section 4, we have mostly referred to
[23]. In fact the results provided in [24] make it now possible to carry the
proofs to the general case.

Aside from the functional equations, the most interesting number
theoretic result of this paper is Theorem S.1. It provides a non-vanishing
theorem for a product of L-functions along the line Re(s) = 1. The case of
L(s, w, X =,) which has already been announced [25] (Theorem 5.2 here)
has a beautiful application to the classification of automorphic forms on
GL, (due to H. Jacquet and J. A. Shalika). The case m = 1 is originally
due to H. Jacquet and J. A. Shalika [12]. A similar result (with some
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reservations at s = 1) is proved here for L(s, w, Sym3(p,)) and L(s, m,
Sym#4(p,)) (Theorem 5.3). Finally, as we have remarked, one can
generalize Theorem 5.1 to conclude that for every quasi-split group, there
is a product of L-functions which does not vanish at s = 1, and therefore
these non-vanishing theorems are only special cases of a more general
theory. Whether this can be used to prove some density theorems remains
to be seen.

I would like to thank Joseph Shalika for many helpful discussions
and communications. My thanks are also due to the referee for his sugges-
tions, especially on Theorem 5.3. In fact the proof of Lg(1, 7, Sym3(p,))
# 0 is due to him.

1. Preliminary notations. There are two different sets of notations
that we shall be using throughout this paper.

1.1. In Sections 2-2.4, we let F be a non-archimedean local field,
and we let G be a connected reductive algebraic group defined over F.
Since most of the time we shall be dealing with the representations of the
group of F-rational points of G, we allow ourselves to use the same nota-
tion for this latter group. We hope that no confusion will arise.

We fix a maximal split torus A, of G over F, and we let P, be a fixed
minimal parabolic subgroup of G which has A as its split component. Let
U be the unipotent radical of P,.

Let ¢ be the set of roots of G with respect to A,. A root « € VY is re-
duced if V2. ¢ Y. We fix a set of simple roots A in ¥ (corresponding to
P,), and we let Y™ and ¥~ be the sets of positive and negative roots with
respect to A, respectively. Given «, let U* be the corresponding root
group. We denote by W the Weyl group of G with respect to A,. Finally
we let K be an A ,-good maximal compact subgroup of G (cf. Section 0.6
of [28]).

It is only in Section 2.3 that the group G is more restricted. The
restriction is explained there.

In Section 3 the group G is either as above or a quasi-split real group.

1.2. Throughout Sections 4 and S, the group G is a reductive
algebraic group which splits over Q. Then A, and P, are respectively, a
Cartan and a Borel subgroup of G. Occasionally we may denote them by T
and B, respectively. As in [15] we also define a group °G. More precisely if
P = MN is a parabolic subgroup of G with M D T, we let °G = M/A,
where A is the center of M.

Every other symbol has been explained during the text of the paper.
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1.3. Fine representations. (cf. [24]). Suppose F = R and let 7 be
an irreducible admissible Fréchet representation of G. Then by
Casselman’s subrepresentation theorem there exists a principal series
representation I of G such that é: = « I infinitesimally. We say = is fine if
every embedding § is bicontinuous with respect to the Schwartz topologies
of 7, and I,. When = is unitary it would be enough that § be continuous.
In fact the continuity of the other map follows from the continuity of the
intertwining operators between the principal series representations of real
groups which is a result of W. Casselman.

It is a result of W. Casselman and N. Wallach that every unitary
representation of GL,(R) or any complex group is fine.

2. Intertwining operators and L-functions. In this section we shall
assume that G is as in Section 1.1, i.e. it is a connected reductive algebraic
group defined over a p-adic field F. By abuse of notation we shall also use
the same notation for its subgroup of F-rational points. This should not
cause any major confusion, as most of the time we shall be dealing with
the representations and therefore G would stand for the group of
F-rational points.

Given a subset 6 of A, let L, be the subset of roots in the linear span of
0. LetL,* =yt NELyjand £, = ¢y~ N L,. Also let Ay = N, Ker 6.
Denote by M, the centralizer of A4 in G and set

Ny= 1 U=

aeyt —Lot

Finally, let Py = MyNy. Clearly P, D P,. Then P, is called the standard
parabolic subgroup corresponding to 6. Furthermore Ay C A, C M,.
Observe that P, = P,, G = P,,and A, = A,.

Let () be the set of all the roots of (Py, Ay), and let a4 be the real Lie
algebra of A;,. We say o € L(0) is positive if there exists 3 € ¥+ — L+
such that 8 |ay = «, and we denote by £*(8) and Z~(6) the corresponding
subsets of positive and negative roots in £(6), respectively. From now on,
we shall identify every root « of (P, A4) with all those roots 3 € ¥+ — L,
for which 8|ay = a.

Given a simple root a € L(6), let

A, = N Kera'.
a'€eA—{a}

Then A, is a subgroup of 4,.
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Finally, set

-1
Pe 2 ae¥t—gpt

Now, let (ag)& be the complex dual of a;. More precisely, (a,)& is the
complexification of

a* = X(49) ® R = X(My) ® R,

where X(Ay) and X(My) respectively denote the group of all rational
characters of A, and M, which are defined over F (cf. [8]).

Let H, be the homomorphism H M, from M, into Hom(X(M,), Z)
defined in Section 7 of [8], and let ¢ be the number of elements in the
residue class field of F.

Now, let (7, H(7)) be an irreducible unitary representation of M. Let
H(m) be the subspace of X finite vectors. Fix » € (a,)& and set

I(v, 7, ) = Ind (1 ® q<»Ho())
Py!G

Then the space V(», , 0) of I(», 7, 6) consists of all the smooth functions f
from G into H(w)g satisfying

f(gnm) = w(m=1)g<—»=reHom) f(g) (m € My, n € Ny).
The representation I(v, 7, 0) acts by left inverse translations.
Let us now establish a duality between V(», 7, 6) and V(—7, =, 6).
Given f € V(v, 7, 0) and f' € V(—7, , 6), we have
(f(gnm), f'(gnm)) = q¢~2eaHom) (£(g), f'(g)),
where ( , ) is the inner product on H(w). Therefore

(f(8), f' (&) € Vlpy, 1, 6).

Now, given k& € V(py, 1, ), choose ¢ € C,*(G) such that

h(g) = S d(gmn)q2ee-Hm)) dmdn,
Mg XNy
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Then there exists (cf. [22]) a relatively bounded linear form p such that

u(h) = j o(g)dg,
G
where dg is a fixed Haar measure on G. In this section, we shall use
p(h) = <§ h(g)du(g)
G
to denote the above linear form. Then

)= §> (f(g), f'(g)du(g)
G

defines a duality between V(», 7, §) and V(—v, =, 6).
Now, let # and 6’ be two subsets of A and let

W@, 0') = {we W w@) =06}

We say 6 and 6’ are associate if W(6, 6') is not empty. If w(d) = 0', we
shall say that @ and 6’ are associate by w. As in [2], let {0} be the set of
subsets associate to 6.

We shall now start our study of intertwining integrals.

Fix two associated subsets § and §' of A, and let w be in W(0, 8'). Let
Ny~ be the unipotent group generated by U, o € y — — L,~, and set

N, =UN wNy;~w™L

Given f € V(v, w, 0), define

A, m,w) f(g) = X f(gnw)dn. 2.1

Nw

The convergence of this integral will be studied in a moment, but for a
moment suppose that v is so that the integral converges absolutely.
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For m € M,., define a representation of My by
w(T)(m) = 7(w™!mw).
Then A(v, w, w) f € V(w(v), w(r), 0').
Now, let || || be the Hilbert space norm on H(w). Given v € (ag)g,
define f, € V(», 1, 0) by

flkmn) = g¢—v—ro.Ho(m))

fork ¢ K, m € My, and n € Ny. Now, given f € V(v, w, 0) and g = kmn in
G, we have

|| fkmn) || = | f,(kmn)| - || f(R)||.
Set

ve(f) = sup || f(K)||.
keK

Then

(@I = ve( ] (D]

Consequently if v is so that
j | f,(nw) |dn < + oo, 2.2)
Nw

then (2.1) would converge absolutely.

Now, fix a W-invariant inner product ( , ) on a4 and restrict it to a,.
Given a € I(6), let a, be the orthogonal complement of Ker(a) in a5 with
respect to ( , ). Let H, € a, be a generator for the lattice Hy(Ay) N a,such
that {a, H,) > 0. Then H ,is uniquely defined. It is well known that (2.2)
holds if

(Re(v), H,) < 0 2.3)

for every reduced root o € L1 (6) for which w(a) € ¢y~
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Finally let °A, = Ker(Hy) N Ay, and denote by A, the unique coset of
°Ag in A, which, under Hy, is mapped to H,. Now, let x be a quasi-
character of Ay. Then we define x at &, to be x(k,) = x(a) with a € h if
x|°A44 = 1; and x(k,) = 0, otherwise. Then clearly x(h,) is well-defined.

2.1. Factorization of intertwining operators. Suppose v satisfies
(2.3) and put

N, = w™IN,w.

Then by a suitable normalization of Haar measure on N,,, (2.1) can be
written as

A(v, T, w) f(g) = j_ Sf(gwn)dn. (2.1.1)

Nw

Observe that

N,

=Ny~ N w™INgw.
Now, let 71,, be the Lie algebra of N,,. Then
M, = ® g-a

where the sum runs over all @ € Yy — L, with w(a) € Y —. Here w(a) (as
well as w(v)) is defined by:

w(a), HY = (a, Adw—1)H) VH € a,.
In this section we shall use the same notation as in [2] and for this
reason let us recall some notation from [2].
Givenw € W, let

L, ={a€e¥t|wa) e ¥}

Also, given§ € Aanda €A — 6,let @ = 6 U {a}.
Define 6 by

5 = w,,Qw,‘o(G) c Q.



306 FREYDOON SHAHIDI

Here w, g and w, o denote the longest elements in the Weyl groups of Mg
and M,, respectively. 8 is called the conjugate of 6 in Q.
We need the following lemma.

LeEmMMA 2.1.1. Suppose 0,0’ < A are associate. Take w € W(0, 0').
Suppose 3y and B in Y+ — L4t have the same restriction to ay, i.€. they
represent the same root of (Py, Ay). Then w(B,) and w(B,) will have the
same restrictions to ag-. In particular w(B,) and w((3;) represent the same
root of (Py., Ay').

Proof. Letd = {ay, ..., a,}. We may assume

m
By = aza, + .El a;o;
’=
and
m
32 = a,o, + 'El biai,
=

where o, € A — 0 and a, a,, ..., a,, by, ..., b,, are nonnegative in-
tegers. Clearly a;|ag = Ofori =1, ..., m. Now

m

w(B,) = a;w(a,) + 'Ex aw(a;)

and
w(B,) = a w(a,) + .2_'!31 bw(e;),

and w(;)|ag- = Ofori = 1, ..., m which proves the lemma.

Let 6, 0', and w be as in Lemma 2.1.1. Given o € ¥ — L, let [o] be
the subset of all roots in ¥ — I, which represent the same root of ay. Then
by Lemma 2.1.1, [w(a)] will represent a root of ay.. Let S € ¥; we say [a]
€ S if and only if B € S for all B € [«].

The following lemma is crucial to this section. It is basically due to
Langlands (Lemma 2.13 of [17]). Here we give an algebraic proof.

LeEMMA 2.1.2. Suppose 6, 0' C A are associate. Take w € W(0, 0').
Then, there exists a family of subsets 0, 6,, ..., 0, S A such that
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a) 0, =0and0, =6';

b) fix 1 <i < n — 1; then there exists a root a; € A — 0; such that
0;+1 is the conjugate of 0;in Q; = 6, U {o;};

) set w; = wiqwg in Wl;, 0,1 )forl <i<n—1,thenw =

wn_l e wl;
d) ifonesetsw," = wand w/y; = w;'w;," 1 for1 <i <n — 1, then
w,' = 1and

Ty = Ty ® Ad(w; "V, . 2.1.2)

Proof of Lemma 2.1.2.  Suppose first that there is no a € A — 6 such
that w(a) € ¥~. Then since w(d) = ', we conclude that w sends every
positive root to a positive root and therefore w = 1, i.e. 6 = §'. Conse-
quently we may assume that there exists a simple root o; € A — 6, such
that w(a;) € ¥~. Let 6, be the conjugate of §, in @, = 6, U {1}, and set
Wi = wyq,w,4,. For the sake of induction let us let w;" = w. Thenw, ! €
W(6,, 6,) and w,’ = w,’ -w,~! belongs to W(6,, §").

Let

S, ={[Bl|B e ¥t — Ly,*, wy (B) € ¥~ }.
and
Sy ={lal|la € ¥t — L+, w'(a) € ¥},

Given 8 € [B] € S, let « = w;~1(B). Then clearly w, (o) = w,'(B8)
and thus w;"(a) € ¥~. Alsoo € ¥+ — £, +. In fact for § ¢ Lot — Ly, ",
it follows from

Ewl—l = Eﬂl+ - 202+

(Lemma 1.1.7 of [2]) that w, ~1(B) is positive and clearly in ¥+ — Lo, .
Now suppose 8 € L, * — Ly, *. Then

8= —am) + £ b6,

where a,, by, ..., b, are non-negative integers, a, # 0, and 6, = {By,
.+« B,,}. But then
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wy' (B) = —aw;' (o) + El biw,"(B)

isin ¥+ and thus 8 ¢ S,. Hence [a] = [w;~1(8)] is in S;.

Now, we claim that there is no [3] € S, such that [«] = [w,~1(8)] for
every a € Lo, * — Ly, *. Suppose false, then there exists 3 € [8] € S, such
that w, ~1(8) = «. But, then 8 = w,(«) is in ¥, a contradiction.

Finally, take [o] € §;, o € Eq,* — L4, *. Let 8 = wy(a). Then 8 €
¥+ — Lt since L, = Lg* — L, *. Also

wy' (B) = w'(a) € ¥,

and hence [§] € S,.
Therefore, the correspondence

(8] = [w,~1(B)]

defines a proper bijection from S, onto a certain subset of §; and conse-
quently Card(S,;) < Card(S,).
The relation

i, =1, ® Adw; "D,
is now a simple consequence of this correspondence. In fact
My, = @ g—q a €L,
and
Ny = @ g—p»
where the sum runs over U g)¢s, [8]. But then

Adw, Dy = @ g~ vBe 1l
W™Dty = @ 8-~ B € s, (el

=@ g-q vae€ U [a] — L,,.
o - la]esy

Now the lemma follows by induction on Card($;), 1 =i =n — 1,
and finally there exists a positive integer » such that thereisnoa € A — 6,
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withw,’ (o) € ¥~, wherew,’ = w,_,w, ;. Thenw,’ = landw =w,_,
.o e wl'
Let £,7(6) be the set of all the reduced roots in Z+(6). Let

L0,0", w)={[Bl €Z,*(0)|B eyt — Ly*, w(B) €y~ }.

Then the following corollary is a simple consequence of the proof of
Lemma 2.1.2 (observe the similarity with Proposition 1.2 of [22]).

COROLLARY. Suppose 0,0’ C A are associate and fixw € W(0,0").
Writew =w,_; --- wyasin Lemma 2.1.2, and let a,, ..., a, € A be the
corresponding simple roots. Realize each a; as an element [«;] € L, (8,),
l<isn—1Then[B]l=w"' - wii(l]), 1 <i<n—1,areall
distinct elements of L,(0, 6', w). Furthermore, given [3] € L,(0, ', w),
there existsani, 1 <i <n — 1, such that [B] = w; = -+ w_ ([o;]).

ProposiTION 2.1.1. Foreachi, 1 <i<n —1, IVWI.I is semi-direct

product of va,. and w,-_llvwl., + Wi as a P-adic Lie group.

Proof. We first show that
[n,,, Adw;,”Yu,,. . ] C Adw,"Dn,, .
Otherwise, take o, 8 € ¥* such thatg_, C n,,and g_; C 7, ,. Since
=M, @ Ad(wi_l)ﬁwrﬂ
it is clear that if y = o + w,;~1(B) is a root, we must have
8-y C Ty,

Then w;~1(8) = y — « € Lo, and therefore 8 € Lg,. But this is a contradic-
tion. Consequently, N, is semi-direct product of N, and w;~IN,,. . w; as
abstract groups. The fact that it is a semi-direct product as Lie groups
follows from (2.1.2).

Now, for each i, 1 < i < rn — 1, by Proposition 2.1.1 we can nor-
malize Haar measures on N, N,,and N, so that

S Sfi(n)dn; = S fiw;~n/ywin,)dn}y dn;
Wi Nowir 41 X N (2.1.3)
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for _f, € I(V,', iy 0,‘), where v; = wi—l(vi—l)! ™ = wi—l(‘,ri—l)! vy = v, and
my = w. The following theorem is important in the study of intertwining
operators, as well as factorization of local coefficients which will be done
later.

THEOREM 2.1.1. Fix 0, 0' < A and choosew € W(0, 6'). Let 6,,
..., 0, S A, and w; € W(0,, 6,,) be as in Lemma 2.1.2. Take v € (ay)&

n =

satisfying (2.3). Then each v, satisfies (2.3) with respect to Ay, and
A(V, T, W)=A(Vn_1, Tp—1s wn—l)' 'A(Vl, Ty, Wl), (214)
where v; = W,-_l(l/,'_l), T = wi—l(wi—l)s 2<i=<n-— 1, vy = v, and

™ = 7.

Proof. Fori,2 <i <n — 1, we need to check
(Re(v;)), H,) < 0

for every reduced root o € £1(8;) for which w,(cx) € Y. We do this by in-
duction. Suppose

(RC(V,'_I), Ha> < 0

for every reduced root o € £+ (6;_,) for which w;_;(a) € ¥~. By (2.1.2),
every reduced root a € £+(6;) satisfying w;(«) € ¥~ is of the form w;_(p)
for some 8 € I+ (0;_,) satisfying w;_ () € ¥~. But

(Re(v;), H,) = (Re(w;—y(v;—1)), H,)
= (Re(v;—y), Ad(w;DH,,)
= <Re(V,'—1), Ha >
since w;_'j(c) = B. But this last term is sufficiently small by the induction

hypothesis. This proves the first statement of the theorem. Now (2.1.4) is
an inductive application of (2.1.3).

2.2. Analytic continuation of intertwining operators. In this sec-
tion, we shall study the analytic properties of intertwining operators. It is
based entirely on Harish-Chandra’s results on p-adic groups (cf. [8, 28])
and follows the same techniques as in the case of real groups [7].
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We shall first explain some of the notation which we need from
(8, 28].

Let 7 be a smooth and unitary double representation of X on a
Hilbert space V. Given an admissible representation = of G, let Q(«)
denote the complex space generated by all the matrix coefficients of .
Now let @(G) = U, Q(w), where the union runs over all the admissible
representations of G. Denote by C(G, 7) the space of all the functions
f:G — V such that

Sflkxky) = 1(ky) f(x)7(ky),
where k; and k, are in K and x € G. Let
&G, 1) = (’(6) ® V) N C(G, 7)
and
Q(m, ) = (Q(m) ® V) N GG, 7).

Now, let P be a parabolic subgroup of G and fix a split component A
of P. Write P = MN for its Levi decomposition and denote by P~ the
parabolic subgroup of G opposed to P.

Denote by ®(A) the set of all the parabolic subgroups of G which

have A as their split component. Then P, P~ € ®(A). Given P, and P, in
®(A), let V(P,|P,) be the subspace of all v € V such that

(n)vr(ny) = v (n,e N;NK,i=1,2),
where N; and N, denote the unipotent radicals of P, and P,, respectively.
Let 75, denote the restriction of 7 on Ky, = K N M. Then V(P,|P,) is
stable under 7,,. Let 7p, | p, denote the restriction of 75, on V(P,|P,).

Now, let (w, U) be an admissible representation of M. Replacing G by
M, we let

L(w, P) = Q(m, Tp[p)

and

L(m, P) = Q(m, Tp|p-)-



312 FREYDOON SHAHIDI

Given ¢ € L(w, P), we extend y to G by
Y(kmn) = 7(k)y(m) (ke K,m €M, n €N);
we let Hp be the extension of H,, to G defined by
Hp(kmn) = Hy(m) (keK,meM,né€N).

Now, given » € af (complex dual of the real Lie algebra of A), we define
the corresponding Eisenstein integral by

EWP; y:v:ix) = j Y(xk)r(k —V)g<v—rHPR) df (x € G),
K

where p is the half of the sum of the positive roots of P. We use W(A) to
denote the Weyl group of A. Now, given P, P, € ®(A) and w € W(A), we
let

cpy|py (W, ™, v): L(mw, Py) — Lw(m), Py)

be the Harish-Chandra’s c-function introduced in [8].

The mapping T — «kr. As before, let (w, U) be an admissible
representation of M. Denote by (#, U) its contragredient. Put 7, =
7| Ky, and #, = 7| Ky, and set I, = Indy,, x 7, and i, = Indg,, |k
#,. Then

3 = {h € C>(K:U)|h(km) = wo(m~Dh(k), k € K, m € Ky}

is the space of II,. We define JC for I, the same way. Then by restriction
on K, every space V(», m, 0), 6 C A, may be realized as a subspace of JC
(cf. Section 5.2.1 of [28]). Let F, be the projection of 3C onto V(», =, 6) ex-
plained in Section 5.2.1 of [28].

Let 3 = End°(3C) be the space of smooth endomorphisms of JC.
More precisely, the space of those T € End(3C) for which the functions
x — I (x)T and x — TII (x~1), vx € K, are smooth (cf. Section 1.11 of
[28)).

Now, to each T € 3 we associate a smooth function

kr: K X K — End°(U)

as follows.
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As in Section 1.11 of [28] we first realize End°(JC) with 3¢ ® 3C by
means of the isomorphism i: 3 ® J¢ = End°(3C) which is defined by
i(v ® 9)u) = #(u)v for v, u € 3 and 7 € §C. Now, given T € 3, write

T=%h®hek® k.

Then

Th = __>':1 (h; ® h;)(h)

il 0~

ki (h)h;
1

]

for h € 3C. Now, take k, € K, then
(Th)(ky) = '}=:1 ki(ky)-h(h).

Now, if we realize 3C by the space of Indg,, 1 #, through

h(h) = j Ch(k), h(k))dk,
K

k € Indg,, x T, and k € 3C (cf. Prop. 3.1.3 of [2]), we can write

(Thi(ky) = £ bk j Chiky), hky)yak,.
= K

Here ¢ , ) denotes the pairing on U X U.
Set

kplley: ky) = ,):51 hitky) ® Fik,~) €U ® T.

But, then clearly kp(k,: k;) € End°(U) through the isomorphism
U ® U = End°(U). Furthermore
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S KT(kzlkl)h(kl_l)dkl :j '121 h[(k2)<};i(k1_l); h(k1_1)>dk1
K =

K

= é:l h(k,) j (E,‘(lﬁ)y h(ky))dk,

K

= (Th)(k3),
and for m, m, € K, ky, k, € K,

r

kp(kymy=lim, k) = iEI hikymy,™1) ® h(k,~'m;)

= .él To(myhi(ky) ® #o(my~Dhj(k,~1)

= Wo(mz)KT(kz: k] )Wo(ml)a

where, by abuse of notation, =, also denotes the representation of K X K
on End°(U) given by

Tolky: k)T = mo(ky) To(ky 1)

for k|, k, € K and T € End°(U) (cf. Section 1.11 of [28]).
Therefore « satisfies

1) KT(ksz_I: ml"kl) = 7r°(m2)KT(k2: k|)7ro(m1)

for m, m, € Ky, k,, k5 € K, and

2) (Th)(k,) = j kplky: k)h(k,~V)dk,,
K
where 2 € 3C and k{, k, € K.

Moreover, the correspondence T' ~ « is a bijection from J onto the
space of smooth functions from K X K onto End°(U) satisfying condition
1 above.

The mapping T — Y. We again refer to Section 5.2.1 of [28].

Let Vo = C*(K X K), and define a double representation °7 of K on
Ve by
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or(lvor(ly): (kys ky) = vl ky; kyly™ 1),

where v € Vo and ky, k,, [{, [, € K. Let °13 = °7| K.
Now, given T € 3, we define Y € C(M, V°) by

Vr(m)(ky; ky) = Yp(ky: m: ky)

= tr(w(m)kp(ky: ky)),

where m € M and k, k, € K. Notice that the trace is defined since r is ad-
missible (or equally, since k(k;: k;) € End°(0)).

LeEMMA 2.2.1. Choose T € 3; then Y1 € Q(m, °7p).

Proof. Taking m,, m, € K;,;, we have

Yrlky: mimmy: ky) = tr(w(mymmy)k(ky: ky))
= tr(w(m)kp(kym,=1: ky)mw(m,))
= tr(w(m)kp(kymy=1: my~1ky))
= yYp(m,;"ky: m: kymy~1)
= o7y (m )Yk m: ky)or,,(my).
and therefore Y € C(M, °7y,).

Now, since k; € V° ® End°(U), take v; € V° and T; € End°(U) such
that

kr=Lv; ® T;.

But, then

lpT(k]: m: k2) = E V,'(kzz kl)tr(‘rr(m)T,-).

Now, if we realize U ® U by End°(U), then

tr(w(m)T;) = L tr(x(m)v; @ ;)
J

= E (‘7,'1‘, 7r(m)v,-j)
J
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for T; = L;v; ® v; withv; € U and ¥ € U. Therefore

‘l/T(kl: m: kz) = E V,'(k2: k1)<‘7y, 7r(m)v,j)
Ly

which shows that Y € @Q(w) ® V°. This completes the lemma.
The following lemma, is Lemma 5.2.1.3 of [28].

LeEmMA 2.2.2. The linear map T — yr is a surjection of 3 on Q(w,
°7y). The mapping T — Y is a bijection if and only if « is irreducible.

Relation with intertwining operators. We shall now go back to the
intertwining operators introduced in Sections 2 and 2.1. By Theorem
2.1.1, it is clear that we only need to know the analytic continuation for
the maximal parabolic subgroups. Therefore, for the moment, let us
assume that P is maximal. Then ®(4) = {P, P~} and W(A) consists of at
most two elements. Furthermore there is only one reduced root o € Z* ().

Using the notation in Section 2. Suppose P = P, for some § C A, and
take f € I(v, m, 0). Now, take v so that (2.3) holds for the root o. Observe
that w(a) € Y=, (w = wyw, o). Then

Ay, m, w) f(g) = S f(gwn~)dn—,
N—

where P~ = MN~ is the parabolic subgroup opposed to P. Let h{g) =
f(gw). Then hy € Iw(v), w(), —w(6)), —w() C —A C Y. Further-
more, if we let 8 = w(f), and define

Ips = (v, T): Iw(), w(m), —w(B)) — I(w(v), w(m), w(6))

Jps 1P~ (v, MhAg) = g hA(gn)dn,
Ny

(7

then

A(V, ™ W)f = JPo_[Pg_(VJ"’r)hf’

for all v satisfying (2.3).
Consequently, we need to study the operator
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Jp-1p(v, Mh = S h(gn=)dn~ (h €I(v, , 6)) (2.2.1)
N

for every maximal subgroup P = P,. First of all observe that the right
hand side of (2.2.1) converges whenever

(Re(»), H,) <« 0.
Now, let us realize V(», 7, 6) and V(», w, —0) as subspaces of
I3 = 30(m) = {h € C=(K: U)|h(km) = w(m~1)h(k); m € K,}.

Let Fy and F_, be the corresponding projections. Fix a scalar product on
JC as explained in Section 5.2.1 of [28]. Extend Jp- | p(», ) to JC by put-
ting it equal to zero on the complement of V(», , 6). ThenJp- |p(v, T) €
End(3C). Given g € G, write g = k(g)u(g)n(g), where k(g) € K, u(g) € M,
and n(g) € N. The following lemma is trivial.

LEMMA 2.2.3. Suppose v satisfies (2.3) with respect to o, and take
h € Fy(3C); then

Jp-pv, Mh(k) = j q< P HoWm N g (u(n=)~Dh(kk(n~))dn~.
N

Now, let E(K) be the set of classes of irreducible unitary representa-
tions of K. For 6 € &(K), let £, denote the character and d(8) the degree of
6. Write a5 = d(&)gé. For a finite subset F of &§(K), let

ar = L «
Fser %
and

EF = j ap(k)ﬂ'(k)dk.
K

Finally, set 3¢ = E3C, where 3C = JC(r).
Now, given T € 3 = End°(3C(w)), choose F C &(k) such that T ¢
End(3Cg). Set

jP‘[P(Vy ) = E[-\’p—|p(l’y W)EF
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and

‘Y(G/P) = j q<_290vH0(I‘-(n_))>dn_.
N—

The following lemma is crucial. (In the case of real groups this is Lemma
11.1 of [7].)

LEMMA 2.2.4. Take v so that (2.3) holds. Then

Cplp(l, T, V)%T = 7(G/P)“l¢jpf | Pv.m)TEg

Proof. Let j = jp—|p(v, 7). Then

(jTF,h)(ky) = j kzry (ot (e, =)k 2.2.2)
K

with 2 € X and k, € K. Also by the assumption on »,

(JTFoh)(ky) = S q¢ P HOW M (p(n =) T INTFgh)kok(n™))dn~
N (2.2.3)

Now the right hand side of (2.2.3) is equal to

S q( —v—pg.H0(M('l_))) W(ﬂ(n - )_I)KTFo(kzk(n_): kl)h(kl _])dkldn_ .
KXN™ 2.2.4)

Using the injectivity of the map T — «; and comparing (2.2.2) and
(2.2.4), we conclude

'?iTn(kzi kl) = S q(—v—po-Ho(;t(n')» W(I‘(”_)_l)KTFo(kzk(n_)l k,)dn_.
N-

Consequently

%jTFo(klz m: kz) = j‘ q<_V—p0.H9(;¢(n_))) ¢TFo(kl: mp.(n_ l)_l: kzk(n_))dn_.

N
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But now by Theorem 5.3.5.4 of [28]

(cp p(1; m W) Y7)(ky: m: ky) = y(G/P)~!

X X q < re.Holu(n ™)) ¢TF9
N

Yrr, (ky: mp(n =)~ 1 kyk(n™))dn—

which completes the lemma.

Now, let x,. , be the central character of the representation 7, = 7 ®
q¢»Heo( ) j.e. a quasi-character of the maximal split torus 4 in the center
Z of M which satisfies

m(a)g PHIW = X, (a)

for every a € A. Observe that the irreducibility of = is now a part of our
assumption.

LemMa 2.2.5. Suppose w is irreducible and supercuspidal. Also
assume that vis so chosen that w(x,. ,) # X, for 1 #w € W(A). Then, as
a function of v, Jp-p(v, 7) is holomorphic. Furthermore, the possible
poles when w(x,) = X, for w # 1 are all simple.

Proof. From Theorem 5.4.2.1 of [28], it is clear that the lemma
holds for cp p(l, m v). Now, suppose Jp- | p(v, mh has a pole for some h €
JC, and for some v = ¥, with w(Xy,,,) # Xz, w # 1. Then Jp-p(v,,
mEr, and consequently jp- p(¥,, m) must have poles for some finite
subset F C &(K). Now, taking T equal to the identity of JCg, since the
mapping T — yr is a bijection, we conclude that ¥;,- (¥, 7) must have a
pole. But this is a contradiction by Lemma 2.2.4. Observe that the same
kind of argument establishes the meromorphicity of Jp- |, on (ap)€ at the
first place.

We say P = Py is self conjugate if Py = P4, w = ww, 4. In this case
W(A) = {1, w}. Otherwise W(A) is trivial.

COROLLARY. Suppose P is not self conjugate; then Jp— | p(v, ) is en-
tire.

Now, let us consider the general case, i.e. when P is not necessarily
maximal. Again suppose P = Py, P' = P, for some 8, §' C A. Fixw €
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W, 6'). Take f € I(», m, 8) and suppose v satisfies (2.3) for every re-
duced root o € E+(0) satisfying w(a) € ¢y —. Writew = w,,_; --- w; as in
Lemma 2.1.2. Then

AW, T, w) = AW, —1, Tp—1, Wp—1) - - A(vy, 71, wy)

with the notation of Theorem 2.1.1.

Let o; € A — 0, be so that 6, is the conjugate of §;in Q; = 0, U {o;},
1 <i<n—1 Thenw; = w; qw,,. Now, let A, be Ag, = N o Kera,
and let M;' be the centralizer of A;' in G.

LetA; = Ay, = N4, Ker o, then A;" C A; and furthermore the cen-
tralizers of A; in M;’ and G are the same. Let M; be this centralizer, and
let

N= I v

a€lo T —Lg,t

Then P; = M;N; is a maximal parabolic subgroup of M;'. Now, Q, may be
considered as a basis for the system of roots of M,’ with respect to q,.
Denote by I' (v;, =;, 0,), the corresponding induced representation of M;’
through the realization 8; C ;.

Given f € I(v;, m;, 0;), define f' by restriction on M;'. Then f' €
I'(v;, m;, 6;). Now, let A'(v;, m;, w;) be the restriction of A(y;, 7;, w;) on
I'(v;, 7, 0,), i.e.

A' (v, T, w)) f = Ay, w1, wy) f.
But, now using the notation introduced before
Ay, 7, w) f' = Tpg, p5~ (i TRy,
where Jp; | g~ (v;, ;) from
I'(w;(v), wi(m), — wi(6)) — I'(w;(v), wi(m;), w;(6)))

is defined initially by (2.2.1). Let us now fix an inner product (which we
explained before) on qy. '

LeEmMMA 2.2.6. Suppose «; is so that wc;) = —a;. Then the reflec-
tion wg,) with respect to the hyperplane [8;] = 0 (cf. corollary of Lemma
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2.1.2) is an element of W(A,). Conversely, given [B] with wig € W(A,),
choose o; as before (in some decomposition of w), then w; € W(A,,).

Proof. The root [3;] € L, (8, 0', w) is defined by [3,] = w1 - -
w,-__ll([a,-]). Let wi—l =W Wis then Wi_lw,-wi([ﬁi]) = [_Bi]' WhiCh
is the reflection wg,; with respect to [8;] = 0. But, then

W, lww; € W(0y, 6,)- W(8;, 6,)- W(b,, 6;)

or w;,~lw,w; € W(6,, 6,), i.e. wg,; € W(A,). The converse can be proved
the same way.

Now, let £,° (6, 8', w) be the set of those [3] € E, (6, 8, w) for which
the reflection wyg is in W(A4y). Then by Lemma 2.2.6, this set provides all
the roots [G;] for which P; is self conjugate in M;'. Let a = a;. We now
have

THEOREM 2.2.1. Let w be an irreducible unitary supercuspidal
representation of M. Then

O - x2,G)AW, 7, w)
«€L,0(6,6" ,w)

is holomorphic on of.

Proof. Suppose a = [(;] for some i in some decomposition of w ac-
cording to Lemma 2.1.2. Then x,zri',,,.(w,-"lhaiw,-) = X12r,y(h—[8,‘])' Now,
the theorem follows from the remarks we just made, Theorem 2.1.1,
Lemma 2.2.5, its corollary and Lemma 2.2.6.

Remark 1. The unitary assumption is not really necessary. In fact
Theorem 2.2.1 is true for any irreducible (admissible) supercuspidal
representation.

Remark 2. This is another version of Theorem 22 of [8].

Now, suppose = is any irreducible admissible representation of M. By
Jacquet’s quotient theorem (cf. [2]), there exists a parabolic subgroup
P, CM, P, =MN,, M, DA, and an irreducible supercuspidal
representation o of M, such that :

0— 7 — Indo.
PIM
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or

O — T ® q(VvHﬂ( ) — Ind o ® q(”y”d( )).
PIM

Now, if we restrict g *He()) to M, we have

0—7® qwHi ) — Ind (0 @ gHs D),
P, M

Then by inducing in stages

Ind (v ® q(v,Ha( M) o Ind (6 ® q(y,Hg( »).
PIG P,IG

Now choose 6, C A such that P, = Po*. Furthermore, let 7 € (ao*)E be
such that

(7, Hy (a)) = (v, Hy(a))  (Va € A,).

Observe that the choice of 7 is unique. The imbedding = — Indp i 0 is
not unique, but the following lemma asserts that a certain product is in-
dependent of the choices of P, and o.

LemMma 2.2.7. The product

I (1= X2k

a€L,0(0,,wh,,w)

is independent of the choices of P, and o.

Proof. Suppose 7 also has an imbedding into Indp*' 1m o' for some
P, = P,,*l CMb, CAP' =M/N/', M, DA, and an irreduc-
ible supercuspidal representation o' of M, ’. By Theorem 6.3.4 of [2], 0,
and 6, ' are associate and there exists w € W, 0, ') such that ¢’ = w(o).

Now, take o € L,° (6, wo,, w), then w, € W(,., 0,), and wy,,) =
ww, w1 e W(l,', 0,'). Consequently w(c) € L,° (0,'wo, ', w). Therefore
changing 6, to 6,', the product will range over WwE,° (0,, w,, w). But,
now X2 5(ha) = Xi(o),5 (aey) for o € £,° (8, w,, w), where 5’ is the re-
striction of » to M, '. This proves the lemma.

Finally, since the matrix coefficients of = are among those of Indp ip
o, we have the following consequences of Theorem 2.2.1 and Lemma
2.2.7.

%’
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THEOREM 2.2.2. Let 7 be an irreducible admissible representation
of M. Fix a parabolic subgroup P, = M N, of M, M, D A,, and an ir-
reducible supercuspidal representation o of M, such that = C Ind PIM O
Then

H (1 - Xg’,‘;(ha))A(Vs ™, W)

a€L0(0,,w,,w)

is holomorphic on af.

CoROLLARY. The theorem holds for any irreducible unitary repre-
sentation w of M.

2.3. Preliminaries on L-functions. Let F be an algebraic closure of
F, and denote by ' the Galois group of F/F. Then the L-group LG of G is
the semi-direct product of a complex algebraic group LG° and T's (cf.
[1, 16]). Furthermore for every parabolic subgroup P of G, LP is a relevant
parabolic subgroup of LG (cf. [1]), and LM is canonically isomorphic to
the Levi factors of LP. Write LP = LM -LN with LN the unipotent radical
of LP. Then LN is the unipotent radical of LP N LG°. Let Ln be the Lie
algebra of LN. The Galois group I'r acts on the root spaces of £n. We shall
now assume that G is such that every root o € y* — Iy is reduced.

Now, let = be an irreducible admissible representation of M = M,,

0 C A. Let Wy = W, 5w, 4. For a complex number s, set » = —2sp,.
Then v € o = (ap)¢.
Let {a, ..., a,,} be distinct values of (204, H,), where a ranges

over all the roots o € y* — L,* (here H,, € a,). The numbersa;, 1 <i <
m, are all positive integers. For every root «, let o be its dual root. Now
fixi{, 1 < i < m, and let r; be the restriction of the adjoint representation
of LM on the subspace of Ln which is generated by all the roots ¥ for
which (2p4, H,) = a;. More precisely, this is the direct sum of the Lie
algebras of the centralizers of Ker(a*), (204, H,) = a;, in LG. Finally, let
7; denote the contragredient representation of 7;.

Now for every complex number s, every irreducible admissible
representation 7 of M, and every representation r of LM (cf. [1]), let L(s,
m, r) be the conjectural Langlands’ L-function [16].

When everything is unramified, these L-functions are well-defined.
More precisely, suppose G is unramified, i.e. G is a quasi-split group over
F which splits over an unramified Galois extension of F. Also assume that
w is a class one representation, i.e. it has a vector fixed by K N M. In this
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case, there exists an element °u of (ad,)ﬁ such that 7 can be realized (by left
inverse translation) on a constituent of the space of smooth, complex
valued functions fon M satisfying

f(mtu) = g¢=°v=0:Hs)> f(m),

m €M, t € M, (centralizer of A,), and u € M N U. Here °py = V2L ¢z +
a. Observe that °u can be represented by an element 2> € £7° ((a,4)¢ is the
Lie algebra of LT°).

Now, let r be a representation of LM. Take a finite Galois extension
F' /F such that M splits over F' and r is a representation of LM° X T'r. /.
Let us assume that F'/F is unramified. Choose a Frobenious element o,
of I'r. /. Then the Langlands L-function is defined to be

L(sy ™, r) = det(I - r(Otv’ o’Fr)q—S)—]

By the discussion in (7.5) of [1], °#¥ may in fact be chosen to lie in (L T°)TF,
For the representations r;, 1 < i < m, F'/F may be chosen to be an
extension over which G splits.
Now it follows from [19] that for every i, 1 < i < m,

Lis,mr)= I (1 —grawHa) g=nas)=1,
agyt —Lpt
(Zpg,Ho():tl,

where n, denotes the multiplicity of .
We shall now study some of the examples considered in [15] more
closely.

1. Relation with the Hecke theory of Jacquet-Shalika. By abuse of
notation, let G be the group of F-rational points of GL,,,, i.e. G =
GL, .,,(F), where m and n are two fixed positive integers. Then A, and P,
may be chosen to be the subgroups of diagonal and the upper triangular
elements of G, respectively. Let P O P, be the standard parabolic
subgroup of G whose Levi factors are isomorphic to GL,(F) X GL,,(F).
Write P = MN. Let w; and w, be two irreducible admissible non-
degenerate (cf. [10]) representations of GL,(F) and GL,,(F), respectively.
Then 7 = w; ® #, is an irreducible admissible non-degenerate represen-
tation of M = GL,(F) X GL,,(F). The adjoint representation  of LM on
Ly is now irreducible and in fact is isomorphic to the representation p,, ®
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pm of GL,(C) X GL,,(C) where p,, and p,, are the standard representa-
tions of GL,(C) and GL,,(C), respectively. Observe that for the purpose of
L-functions, the L-group of GL,(F) X GL,,(F) may be chosen to be
GL,(C) X GL,(C).

Now, let us first consider the unramified case; more precisely, sup-
pose the representations 7, i = 1, 2, are of class one. Thenm = 1, a; =
m + n, and

L(s, w, r) = L(s, 7; X my)

where the L-function in the right hand side is defined by Jacquet-Shalika
[10, 13] for any pair of irreducible admissible non-degenerate representa-
tion # = (my, m,) of GL,(F) X GL,,(F).

On the other extreme, let us suppose that w; and 7, are super-
cuspidal. Assume that m # n. Then L(s, m; X m,;) = 1. Next suppose
m = n. As in [10], let W(w) and W(r,) denote the Whittaker models of
m and 7, respectively. For a Schwartz-Bruhat function ¢ on F™ set

5@ = | 20, ..., 0. Dgrot0 1] mam,
F

where (0, ..., 0, z) € F. Here w denotes the central character of 7; ® #,.
Given W, € W(x;), W, € W(r,;) and & as above, set (cf. [10]):

Vs, Wy, Wy, &) = j Wi()Wyleng) fule) | det g |5de,
Zm(F)Nm( f)NGL p(F)

where Z,(F) is the center of GL,,(F), N,(F) is its subgroup of upper
triangulars with ones along the diagonals and ¢,, = diag(—1, 1, —1, ...)
€ GL,,(F). Then according to [10] L(s, m; ® w,) is the G.C.D. of these in-
tegrals. Now, suppose 7, and m, are supercuspidal. Consider the embed-

ding
g 0
gH
01

of GL,,_{(F) into GL, (F). Then the restriction of the functions in W(w)
and W(r,) to the subgroup GL,,_,(F) have all compact supports modulo
Z,(F)N,,(F), and consequently the poles of y(s, W;, W,, &) depend only
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upon the poles of f5(g). A simple computation shows that they are in fact
the poles of L(w, ms), the Hecke L-function attached to w and ms. Conse-
quently

L(s, my X my) = L(w, ms),

if 1, = #, ® |det|s for some s, and L(s, m; X m,) = 1 otherwise (the
residue is proportional to the formal degree of 7 in the first case and zero
otherwise).

2. Let us now assume that G is as in Section 1.2, i.e. it is the adjoint
group of a split semi-simple Lie algebra over Q. Let £(°G) be the L-group
of °G; then we have a natural inclusion £(°G) — LM, and therefore the
representations r;, 1 < i < m, of LM may be considered as the representa-
tions of L(°G). Thus every statement made in this section concerning the
L-functions attached to the representations of M is still true for the
representations of °G.

Example. Let G be a simple algebraic group of type G, which splits
over Q. Let § = {8}, where (3 is the longer of the two simple roots. Set P =
P, and write P = MN. Then °G is isomorphic to PSL,(F) and £(°G) =
SL,(C). Furthermore m = 2, a; = 10, a, = §, r{ is the one-dimensional
trivial representation of SL,(C), and r, is a four dimensional irreducible
representation of SL,(C) (cf. [23]).

2.4. Adjoint of the intertwining operators and the relation with the
Plancherel measure. We shall now show that the adjoint of an intertwin-
ing integral is again an intertwining integral.

First let = be an irreducible unitary supercuspidal representation of
M = M,. With the notation as in Section 2.2, let us for a moment assume
that P is maximal. For w € W(A), P,, P, € ®(A), and 7 = °r, let szlpl(w,
7, v) be as in Section 2.2. There is a pre-Hilbert structure ( , ) on L(w, Py),
as well as on £(w(r), P,) both coming from one on G(, °7),) (cf. [8]). Let
cpy|p(W: m; v)* be the adjoint of cp,|p,(w: m: »). As before take a finite
subset F C &(K) and let

Jie 40, %) = Epdy 0, TIEr.

Then we have

LemMa 2.4.1. Fix T € 3F _y and take v so that (2.3) holds. Then
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Cplp(l, ™, V)*l//T = ’Y(G/P)_l\bjp-lp(l’, 7|')*T
Proof. Given S and T in 3, let d(w) be the formal degree of 7 de-

fined in Section 5.2.4 of [28]. Then from Lemma 5.2.4.1 of [28] it follows
that

Y7y ¥s5) = d(m)~!tr T*S.
Now if we let j = jp—|p(v, 7) and fix T’ € J, arbitrarily, we conclude

s ¥jrRy) = d(m) 1 tr G*¥D*T' Fy
= (Yjs1 V1 Fp)- (2.4.1)

But then by Lemma 2.2.4

(epp(1, m, v)*r, Y1 p) = G, cp (1, T V)Y 1 )

=¥ 'Y(G/P)_l‘pjT’Fg)’

and consequently from (2.4.1), we get

(cp|p(1, m, V¥ 7, Y1 g) = (Y(G/P)" Wjer, ¥Ry

But now by Lemma 2.2.2 every element of L(w, P) is of the form y 1. g, for
some T’ € 3. This proves the lemma.

Now let u(w: ») be the Plancherel measure attached to w and ». Then
by Theorem 5.3.5.2 of [28].

,‘L(r’ V)CP“’(I! 7ry T’)*CPIP(Iy 7r, V)

acts like identity on L(w, P) and consequently if we assume Re(») = 0,
Lemmas 2.2.2, 2.2.4, and 2.4.1 would imply

Y(G/P)~2u(m: vWp~|p(v, ©)*Ip-|p(v, m) = 1.

On the other hand from Theorem 5.3.5.4 of [28], and Lemmas 2.2.4 and
2.4.1 of the present paper we conclude

Jp-1p(v, T* =Jp|p-(», 7). (2.4.2)
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Now, going back to the discussion before Lemma 2.2.3, given f € V(», ,
9), let hy € V(w(»), w(m), —w(6)), —w(6) C —A, be defined by hi(g) =
f(gw), w = wyw, ¢. Let T be the mapping f — hy, and let § = w(6). Then
A(v, m, w) = Jpg p5-(v, m)-T.
Taking adjoints and making use of (2.4.2), we get
A(p, m, w)* = T*-Jp;— | ps(¥, ),
where
Ay, m, w)*: V(—w(»), w(), w(0)) — V(—7, =, 0)
by the duality explained at the beginning of Section 2. It is easy to see that
(T*)(g) = flgw™)

with f € V(—w(), w(m), —w(6)). On the other hand if v satisfies (2.3), so
does —w(7), and consequently for such »:

Ay, m, w)*f(g) = S flgw™n")dn~
Ni-

= S f(gnw—)dn.
Ny~ 1
Thus
Ay, m, w)* = A(—w(»), w(m), w™1)
Now suppose P is of arbitrary rank. Then from Theorem 2.1.1 and
the discussion before Lemma 2.2.6, we get the same formula for A(», T,

w)* in this case. Furthermore, using the same results we conclude, first
for Re(v) = 0, and then by analytic continuation for all v € ¥, that

Y~ 2G/P) o (1 V) A(W(¥), w(T), w__l)A(V, ™ w) =1,

where

n—1
Yo~ HG/P) (2 ») = Ile v AM; /P iz vi).
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We have observed

ProPoOSITION 2.4.1. Let = be an irreducible unitary supercuspidal
representation of M. Suppose v satisfies (2.3) for every reduced root o €
L+ (0). Then so does —w(v), and furthermore the adjoint of the operator
A(v, ®, w) is the operator:

A(—w(D), w(m), w=1): V(—w(?), w(m), w(8)) — V(—7, =, 6).
Moreover
Y HG/P) (7 )A(W(); w(T), w™DA(Y, m, w) = 1.

Remark. The fact that, away from the poles, A(w(»), w(),
w~1)A(y, m, w) is a scalar is almost clear since this operator commutes
with I(», m, 6). In fact this can be proved using the finite dimensional
spaces JCr, F C &(K), as in [7].

Now suppose = is an irreducible admissible unitary representation of
M. As in Section 2.2, choose a parabolic subgroup P, C M, P, = M N,,
and an irreducible supercuspidal representation o of M, such that = -
Indp i 0. Suppose M, is generated by 6, C . Choose 7 € (ao*)ﬁ such that
(#, Hy (a)) = (v, Hy(a)) for Va € A(,*. Let g, be an irreducible unitary
supercuspidal representation of My such that 0 = o, ® g<*>Hs,()) where
v, € ag *. Let i be the inclusion

I(V! 7r! 0) hnd I(i; + Voy 001 0*)'
Denote by r the restriction map going the other way. The imbedding = —
Indp,;y o induces an imbedding w(7) < Indp,,, 1M, w(0) in the obvious
manner. Let i’ be the induced inclusion
Iw(v), w(m), w(6)) — Iw(p) + w(v,), w(a,), w(b,)).
Denote by r’ the corresponding restriction. Then
A, m,w) =r' A + v,, 0,, w)-i

and

AWw(), w(m), w=1) = r-Aw(p) + w(w,), w(o,), w=1)-i'.



330 FREYDOON SHAHIDI

Then taking adjoints and using Proposition 2.4.1, we conclude
Ay, m, w)* = % A(—w(5 + 7,), w(a,), w1)-r'*
Therefore
AWy, m, w)* = A(—w(@), w(m), w™1).
In fact i* is the map
(=% = %, 05, 0,) = I(—=%, m,6) - 0
and r'* is simply the inclusion
0 — I(—w(®), w(m), w(6) = I(—w(F + %), w(a), w(6,)).
Furthermore using i’ -r' = 1 and r-i = 1, we have
Yw HG/Pp, (05, 7 + vo)AW®), w(), w"DAW, m, w) = 1,

and therefore we can state the following more general result.

PropPOSITION 2.4.2. Let m be an irreducible admissible unitary
representation of M. Fix a parabolic subgroup P, = M N of M, M, =
My, D A,, an irreducible unitary supercuspidal representation o, of My
and v, € ag * such that = < Indp ;p (0, @ g<roHo (D). Suppose v € (a5)E
is so that ¥ + v, satisfies (2.3) for every reduced root a € L*(0,). Then so
does —w(¥ + v,), and furthermore the adjoint of the operator

A(y, m, w): V(», m, 0) — V(w(»), w(m), w(6))
is the operator
A(—w®), w(m), w™1): V(=w(), w(m), w(6)) — V(—7, =, 0).
Moreover

Yo 2AG/P ) (06, 7+ v)AW(D), w(m), w~DA(y, m, w) = 1.
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Let ( , ) be the pairing explained at the beginning of the Section 2.
Observe that it is the same as the scalar product on JC (cf. Section 5.2.1 of
[28]). We then have

CoROLLARY. Let f€ V(v, m, 0) and f' € V(—w(¥), w(m), w(6));
then

A, mw) f, [ = (fL A(—w®), w(m), w™1) f1)

3. Whittaker functionals and local coefficients. As it was shown in
[23], Whittaker functionals for induced representations play an important
role in the definition of local coefficients appearing in the functional equa-
tions satisfied by the L-function considered by Langlands in [15]. The pur-
pose of this section is to study the properties of these local coefficients. We
still resume the assumption of Section 2, i.e. G is any connected reductive
algebraic group defined over any local field, except when the field is ar-
chimedean in which case we assume G is quasi-split and  is fine (cf. [24,
26]).

For every a € , let N, be the subgroup of U whose Lie algebra is g,
+ 83,. The subgroup II,¢y+_, N, is normal in U and the quotient is
isomorphic to Il,ea (No/Nay). For each o € A, let x, be a smooth complex
character of N,/N>,; then x = Il,ea Xa, is a character of Ilyep (No/Nay)
and therefore one of U as well (cf. [3]). A character of U is said to be non-
degenerate if it is of this form with no x, trivial. Throughout this section
we shall fix a non-degenerate character x of U.

Let (w, V) be an admissible representation of G. We say = is non-
degenerate if there exists a linear functional A on V (continuous with
respect to the Schwartz topology of V, if F is archimedean) such that

Nar(u)v) = x@)Av) (weU,ve Vy).

Such functionals are called Whittaker functionals.

Suppose now that = is irreducible. Denote by V,* the complex vector
space of Whittaker functionals on V. Let Dim¢ V,* be its dimension. We
say that = satisfies the multiplicity one if Dim¢V,* < 1. Clearly if = is
non-degenerate and satisfies the multiplicity one, then Dim¢ V,* = 1. Itis
aresult of J. A. Shalika [27] that every irreducible admissible representa-
tion of a quasi-split group satisfies the multiplicity one.
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Suppose now that (, V) is a non-degenerate irreducible admissible
representation of G which satisfies the multiplicity one. Fix a Whittaker
functional A € V. *. For every v € V., define a Whittaker function W, by
W,(g) = Mw(g~")v). Then

W, (gu) = x(u)W,(g).

Let W(r) be the vector space of all Whittaker functions on which G acts
by the left inverse translations. The space W() is unique and is called the
Whittaker model for .

Now let § C A, and choose v € (a5)§. Let M = My and let 7 be an ir-
reducible admissible non-degenerate representation of M which satisfies
the multiplicity one. This assumption will be kept fixed throughout this
section. Let W(x) be the Whittaker model for w. Then given f € I(», , 0),
we may assume that f(g) € W(w). Now at every m € M, let (f(g), m)
denote the value of f(g) at m.

As before let wg = w; o wygand let M’ = M,y . Write P’ = M'N’,
where N' is the corresponding unipotent radical. The following result is
due to W. Casselman and J. A. Shalika (Proposition 2.1 of [3]). In their
paper it is only proved for the case where Py is minimal and  is the trivial
representation of M,. But since its generalization to the general case
follows exactly the same lines as the proof of the case mentioned above, we
shall only state the result and eliminate the proof (see also Proposition 3.2
and Corollary 3.3 of [23]).

ProposITION 3.1. Suppose F is non-archimedean. Given f € V(»,
w, 0) the integral

Ny, m 0, x)(f) = S (f(n'we), e)x(n')dn’
N

is convergent and consequently it defines a Whittaker functional N(v, =, 0,
X) for the space of I(v, =, 0). It is an entire function of v and furthermore
for every v and T, there exists a function f € V(v, w, 0) for which (v, =, 0,
x) f is non-zero.

Now suppose F = R. In this case we assume that G is quasi-split.
Observe that this includes all the complex groups. By Casselman’s
subrepresentation theorem, we first find a principal series representation

of M, where w appears infinitesimally as one of its subrepresentations.
More precisely, write P, N M = M A (M N U), the Langlands decom-
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position of P, N M which is a minimal parabolic subgroup of M. Let (a,)&
be the complex dual of the Lie algebra of A, and denote by M, the group
of (unitary) characters of M. Fix v, € (a,)& and 5, € M, such that = is in-
finitesimally equivalent to a subrepresentation of the principal series
I,(v,, 1,) of M (cf. [24]). Extend », and n, to characters of the corre-
sponding subgroups of P, C G. Now for » € (a,)¢& let 7 be its extension to
(a,)¢ defined by

(5, Hy(a)) = (v, Hy(a))  (Va €A,)

and denote by I(», + 7, 7,) the corresponding principal series representa-
tion of G (cf. [24]). Clearly

I(v, + 5, 1) = ggg (¥, Mo)oo ® e$HHI),

Let N(v, + 7, 5,) be the Whittaker functional for I(y, + 7, 3,). defined
by analytic continuation of the Whittaker integrals explained in Proposi-
tion 1.1 of [24] (originally cf. [9]). Now, the following result (Proposition
3.2 of [24]) establishes the same result for the infinite places.

ProrosiTION 3.2. Suppose F is archimedean and w is fine. Then
the differentiably induced representation I(v, w, 0)o is non-degenerate
and satisfies the multiplicity one. Furthermore, a Whittaker functional
Sfor I(v, , 0), is given by N(v, + ¥, n,) which, as a function of v, is entire
on (ag)¢.

Now take 8’ € {6} and choose w € W(6, 8'). Suppose that (2.3) holds
for every reduced root « € L+ (6) for which w(a) € ¥~. Then A(», m, w) is
defined, and for every f € V(», m, 6), A(y, m, w) f € V(w(), w(x), 8"). For
F non-archimedean, let A\(w(»), w(w), 6', x) be the Whittaker functional
for I(w(»), w(w), 6') defined by Proposition 3.1, and when F is archime-
dean, let

Aw(»), w(m), 0', x) = Nw(v, + 7), w(n,)).

We now prove

THEOREM 3.1. There exists a complex number C,(v, w, 0, w) such
that

AN, m, 8, x) = Cy(v, m, 6, w)Nw(»), w(m), 8", x)-A(y, m, w). (3.1)
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Furthermore, as a function of v, it is meromorphic on (ay)¢§, and its value
depends only upon the class of .

Proof. Choose 6, C 6 and a supercuspidal representation o of
M, C M such that 7 - Indpg ym 0. Then, by Theorems 1.4 and 1.6 of [3]
g is also non-degenerate. Now I(v, @, 0) = I(7, g, 6,). Let us first define
C,(», o, 0, w) for I(v, o, 0,), where » € (ﬂo*)c By Theorem 5.4.3.7 of
(28], I(, o, 6,) is irreducible except for the poles of u(g, v), provided that
o ® q¢He,() is unramified. Consequently for an open dense subset of
(aa*)ﬁ, I(v, g, 8,) is irreducible (u(o, v) is a product of one variable com-
plex functions), and therefore in this subset, A(w(»), w(0), w(6,), x)-A(»,
o, w) defines another non-zero Whittaker functional for /(», g, 6,). Now
the existence of C,(», g, 0, w) follows from Theorem 1.4 and 1.6 of [3]
(originally Theorem 2 of [21]), and Proposition 3.2 of this paper. It is
clearly meromorphic on (ao*)ﬁ. Now, if we apply Proposition 3.2.1 (to be
proved in Section 3.2) to C,(», 0, 0, w), w € wW(0, 6'), which is now de-
fined, we conclude that C, (7, o, 8,, w) is in fact defined for all » in an
open dense subset of (a,)&. Suppose for » in this subset N(w(»), w(), w(6),
x)-A(v, 7, w) is zero. Then by inducing in stages so will be N(w(¥), w(a),
w(0*), x)-A(#, o, w). But this is a contradiction since Cx(ﬁ, g, 0*, w) is
defined there. Now, we define Cx(”’ m, 0, w) in the same way as C,(», o,
0, w), i.e. by relation (3.1). Then clearly C,(», =, 6, w) = C.(#, o, O, W).
The meromorphic continuation of C X(v, w, 6, w) now follows from those of
other terms in (3.1).

We shall call the number C,(», w, 0, w) the local coefficient attached
to », m, 6, and w. The reason for this will be cleared in Section 4. In fact we
shall show that these are the local coefficients appearing in the functional
equations satisfied by certain L-functions (cf. [23]).

3.1. A normalization of intertwining operators. Now, again sup-
pose 7 is unitary and non-degenerate. Choose 6, C 6, d,, and », as in
Proposition 2.4.2 such that 7 < Indp, 1y (0, ® g¢*-H8.()). Then from
Proposition 2.4.2 and Theorem 3.1, we get

ProposiTiOoN 3.1.1 Suppose F is non-archimedean. Then Cx(w(v),
w(m), w(8), w1)C, (v, m, 6, w) = v,,"2G/Py )p,,(0,; 7 + v,) for all v €
(09)%.

With the notation as in [7], we also have

ProposiTiON 3.1.2. Suppose F is archimedean and 7 is in the
discrete series. Then
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C,(w(»), w(m), w(0), w=1)C, (v, 7, 6, w) = p, (7 »)y,~H(G/P)

Sfor all v € (ap)E.
We now prove

ProrosITiON 3.1.3.  For all v € (ap)¢ the identity

Cyw(®), w(m), w(), w™!) = C,(—», 7, 6, w) (3.1.1)
holds.

Proof. We first assume that v is imaginary so that I(», m, 6) is com-
pletely reducible. Then I(», =, 6) has a unique non-degenerate
(topologically if F = R) component, which we shall identify with the
Whittaker model W(», =, 0) of I(v, =, 0), defined by the Whittaker func-
tional N(», m, 6, x). The Whittaker model W(—7, =, 6) may now be con-
sidered as the dual of W(», =, ), if one carries the pairing between I(», =,
6) and I(—7v, w, 6) to them. Since C,(», =, 6, w) is meromorphic, we con-
clude that for an open dense subset of the imaginary axis, the non-
degenerate component of I(», m, 6) is not in the kernel of A(», 7, w). But
now A(v, m, w) induces a scalar isomorphism Cx(v, w, 0, w) between W(»,
m, 0) and W(w(»), w(m), w™!), andtherefore its adjoint, C,(», m, 6, w),
between W(—w(»), w(r), w(8)) and W(—7, 7, 6) must be the map induced
by the adjoint of A(v, 7, w), i.e. A(—w(¥), w(r), w1) (Proposition 2.4.2).
But this last map is the scalar C,(—w(¥), w(m), w(f), w™1) and therefore

C, (v, m, 0, w) = C (—w(@), w(m), w(f), w™).

Now the proposition is proved if we change » to —7 and use the analytic
continuation.

COROLLARY. Suppose —v = vand  is supercuspidal. Then C,(v,
m, 0, wg) is holomorphic. Furthermore, suppose v is away from the poles of
A(v, T, wg); then Cy(v, , 0, we) is non-zero.

Proof. From Propositions 3.1.1, 3.1.2, and 3.1.3 it follows that for
—Vv=v

|Cy(v, m, 0, wg)|2 = v~ 2(G/P)(; v). (3.1.2)

By Theorem 20 of [8], it is clear that u(m; ») has no pole for v = —v

and therefore C,(», , 6, wy) is holomorphic there. Now from Proposition
2.4.1 and the previous relation, we get
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|Cx(w, 7, 8, wo)[2A(v, T, wo)A(—7, T, we)* = 1.

But for v = —7v, A(—7, 7, wg)* = A(», T, wg)* and therefore the poles of
Ay, m, wg) and A(—7, , wg)* are the same. Consequently if » is away
from the poles of A(», 7, wg) then C,(», m, 6, wy) # 0.

Remark. From the Relation (3.1.2) it is clear that u(m; ») = 0 for
v= —".
Now, we shall normalize the intertwining operators. Let

@y, m, w) = C,(», m, 0, w)A(y, 7, w).

Then we have:

ProrosiTioN 3.1.4. The operators Q(v, w, w) have the following
properties:

(@) Qw(»), w(m), wHR(», m, w) = 1
(b) Ay, m, w)* = R(—w(¥), w(m), w™')

(c) Q(v, 7, w) is unitary if v is imaginary, i.e. —v = .

Proof. (a) follows from Propositions 3.1.1, 3.1.2, and 2.4.2. (b) is a
result of Propositions 3.1.3 and 2.4.2. (c) follows from (a) and (b).

3.2. A Factorization of C,(v, w, 6, w). With the notation as in
Theorem 2.1.1, the intertwining operator A(», m, w) is the composite of

the rank one intertwining operators A(y;, m;, w;), 1 <i < n — 1. We then
have:

ProposiTION 3.2.1.

n—1
CX(V) 7[', 05 W) = £Il Cx(Vf’ 7rf7 0,', W{).

Proof. By definition, we have

Nwi, i, 0;, ) fi = Cy(vi, i, 0, W) Nit 1, i1, Oit 15 X)
'A(va iy wl).fl

forl <i < n — 1, where f; € I(v;, m, 0;) is given by

Ji = A(i—1, mi—1, wi—1) fi-1,
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with f a fixed function in I(», m, 6). Now the proposition follows from the
inductive use of the above relation and Theorem 2.1.1.

Factorization of ¢'(s, 7 X «', x). Suppose G = GL,,, and take
M = GL, X GL,, as in Section 2.3. Theni = 1la; = m + n, andr =
0n & B, where p, and p,, are as in Section 2.3. Now let m, and 7, be two
irreducible admissible representations of GL,(F) and GL,,(F), respec-
tively. Consider # = m, & 7,, as a representation of GL,(F) X GL,,(F).

Let s as before be a complex number and if M = M,, let wy =
wy, aw; 9. Now let €' (s, m, X m,, x) be the local coefficient appearing in
the local functional equation of 7, X m, defined by H. Jacquet, I. 1.
Piatetski Shapiro, and J. A. Shalika in [10]. More precisely

L —s, 7, X %,
L(S, Ty X 7rm)

) .

el(s’ T X Tos X) = E(S, T, X Tos X)

Also let C,(—2s/(m + n)-p,, m, 6, wy) be the local coefficient in the
previous section. Then as it would be justified later (by means of the func-
tional equation), one expects that

C,(—2s/(m + n)-py, 0, wp) = €'(s, m X T, x) 3.2.1)

Now, let m; + --- + m, = m be a partition of m and put P,,,, . .. y
for the standard parabolic subgroup of GL,, which has GL,,;, X --. X
GL,,, as its Levi factor. Suppose

- ® 5,

Ind
Py | R mp(F)1GLy (F)

where each 0;, 1 < i < r, is an irreducible admissible representation of
GL,, (F). In fact by Jacquet’s quotient theorem this is always the case only
if 01, ..., g, are all supercuspidal. One of the interesting questions of
Hecke theory is the equality

,
€'(s, m X My, x) = [I] €' (s, m X a;, X)-
=

The proofs given in the context of Hecke theory are rather complicated
(cf. [6, 13]). Here we shall use Proposition 3.2.1 to prove a parallel fac-
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torization of C,(—2s/(m + n)-p,, , 0, we). The proof is in fact very sim-

ple.
Giveni,1 <i <r, let

M;=GL,, X --- XGL,,,_; XGL, X GL,,; X -++ X GL,,,
and
I=6Q® - ®6§-1Om@®5G® -+ ® 5.
Then

™= m, ® ‘7'rm hnd I-Il-

Forl =i< j=n+ m, let a;; denote the corresponding positive
rootof GL, ,,. Setp; =n + Li—gm;withm, = 0,0 < j < m,_,. Then
{ap, pi+1}720 ' is a subset of A.

Let My = M,,, 6, C A. More precisely

0= A= {oyp+110 = j=m-1}.

Let @) = 6, U {ap, p,+1} and w; = w; g, -w; 4 . Define 6, = w,(6,),
Qi+1 = 0i+1 U {0y, p+1}, and wiry = wi g4, wig,,. Then M; = M,
Furthermore the cardinality of £* (6) is equal to r, and consequently from
Lemma 2.1.2 and its corollary follows that wy = w, - - - w,. Also observe
that IL;+; = w;(Il;) for 1 <i < r — 1. By inducing in stages it is clear that

C(=2s/(m + n)-py, m, 6, wy) = C(=2s/(m + n)-p,, I, 6, wy)

Now from Proposition 3.2.1, it follows that

C\(—25/(m + n)-py, T, 6, wg) = [I1 C (v, 1L, 6, w,).

where
vi+1 = wi(), l<i=<r
and

vw=—s/m+n- L o).
I<i<n :
ntl<j<n+m
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Fix i, and choose / and k two integers such that
i—1 i—1
r m<l< ¥ m;+n

j=1 j=1

and

)

i—1
=1 j

mj + n.
j=

1

For the positive root o = (I, k), let

—_—-
€l —x

h, = diag(1, ...,1,®,1,...,1,2° 4,1, ..., 1),

where w is a uniformizing parameter in the ring of integers of F, i.e.
lo| =q~1

NowletM; =1, X --- X1, mit mye
Then h, € M; defines a coroot attached to a positive root of M.

Now set IT; = IL;|M; N M, and ¥; = »;|(ag)& N (@,)¥, where a, is
the real Lie algebra of diagonal elements of M. Finally let 0, be the subset
of elements in 6; which are not trivial on a5, N @,. Each w; may be con-
sidered as an element of the Weyl group of M;. Then clearly

X GLpy gy X Ly, X o+ X 1

Cx(viv ni’ 0,‘, wi) = CX(;iy ﬁi! 0_,, wi)a

where the one on the right hand side defines the same coefficient for M. It
is easy to see that g "iH«> = g, and therefore one expects that

Cx(gi’ ﬁi! 6,', W,') = e’(s, U™ X g;y X).
Therefore we have proved:
THEOREM 3.2.1. Suppose
€' (s, m, X w,, x) = C(—2s/(m + n)-py, ®, @ 7, 0, wy),
so that

GI(S, Th X g;y X) == CX(V,', Hi! 0,’, W,‘),
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1 <i<rvr Then
r
€@, m, X, x)=Ilees, X a,x)
i=1

Computation of C,(v, m, 6, w) for real groups. Now suppose F = R
and G is quasi-split (thus any complex group). Further assume that = is
fine (e.g. unitary representations for GL,(R) or any complex group, cf.
1.3). Now by Casselman’s subrepresentation theorem choose v, € (a,)&
and 5, € M, such that 7 < I Mm(Vo» 10)k. Now as it was discussed before

Lr'lg T = I(Vo + 179 770)00

for every v € (ag)&. Then

C,lv, m, 0, w) = C\(v, + 7, 15, &, W)

and
L.(¢, ¢, w) = {B]|B €y — Ly*, reduced, w(B) € y~}.

Given a € ¥, let m, be the Lie algebra generated by g, + 85,5 8- +
8—2q, and their Lie product. Denote by M, the analytic subgroup of G
whose Lie algebra is m,.

Fixi, 1 =i < n — 1, then with the notation as in Section 2.2, 1\—40“. C
M;' is a quasi-split semi-simple real group of rank one. Let Ma,. be the
simply connected covering of A_/Ia‘.. There exists a homomorphism ¢; from
Ma,. onto I\_Ial.. There are two cases to be considered.

Casel. M, = SL,(F),F =RorC.Forn€K*ands €C, lety(n,s)
be the local coefficient appearing in the Tate’s functional equation [29]
defined by relation (4.16) of [23].

Let ﬁo,u,‘ = no.iIMai n Mo Qd Bi = Wl_1 e Wi_—ll(ai)' Then ﬁo,a,"
bo; = Mo Dg;» Where T, 5. = 1,| Mg, N M, which is independent of the
decomposition. Here, in the case of SL,(C), we realize M, as a quasi-split
real group. :

Now from Lemma 4.4 of [23] or computations in [24] it follows that

Cx((Vo + i)h "’o,i’ ¢) Wi) = 7(ﬁo,ﬁi'¢ﬁi1 (Vo + ﬁs Hﬁ,>)~
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Case 2. M, = SU(2, 1). For the sake of simplicity suppose 5, is
trivial. In this case computation in [26] shows that

L(Va(4 — (v, + 7, Hy)))
T(Va2 — (v, + 7, Hg,))

Cx((vo + ’7)1‘: 1, ¢, W,‘) = g1

ve(l, V2lvo + 7, Hg,»)

where yc(1, Valv, + 7, H, 5,7) is the coefficient of the local Tate functional
equation with F = C explained in Case 1. More precisely

(2m)/ Dot 2HgY  T(Y2(2 — (v, + 7, Hg.)))
1 -~ — . L
ve(1, V2(v, + 7, Hg)) (21— (/2 + 7 Hg) T(Y2(v, + 7, Hg.))

Now, given 3 € (¢, ¢, w), let pg = dim gg, ¢ = dim gy, pg = pg +
2qﬁ. Furthermore, let

76(19 <Vo + i;! HB)) = 7(17 (Vo + ﬁy Hﬁ))
if Mg = SL,(R) or SL,(C) as in case 1, and
'Yﬁ(l, <V0 + 17, Hﬁ>) - 7c(1, VZ(VO + l-", Hﬁ))

otherwise. Then from Proposition 3.2.1 we conclude

THEOREM 3.2.2. Suppose 5, = 1. Then

I'(Ya(og — (v, + 7, Hp)))
C s Ty 0! = H —4q8/2. 2
v 6, w) BeE b F'(Ya(pg — (v, + 7, Hg)))

'7[3(11 (Vo + i;) Hﬁ))

3.3. Relation with the irreducibility of the induced representations.
A representation 7 of M, is called unramified if w(w) = 7, w € W(0, 6),
implies that w = 1. Let wy = wy; W, 4. Now suppose F is non-
archimedean. Then we have

THeoreMm 3.3.1. Suppose w is an irreducible non-degenerate
unitary supercuspidal representation of My. Fix v, € (ag)&. Suppose 7 ®
q¢roH0O) s unramified. Then I(v,, , 0) is irreducible if and only if both
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C, (v, m, 0, wy) and C, (wy(v), wy(m), wy(0), wy™1) are holomorphic at v =
Ve

Proof. Observe first that by Corollary 5.4.2.2 of [28] each of the
rank one c-functions and consequently each of the rank one intertwining
operators are holomorphic at v = v, and therefore A(v,, m, w) is defined.
Next suppose I(»,, 7, 8) is irreducible. Then

)\(Wﬂ(]’o)’ Wo(‘lr), WB(o)v X)'A(”oy LD W)
and
>\(Voy , es X)'A(WQ(VO), W0(7l'), wo—l)

are both defined and non-zero. This implies the only if part. Conversely
suppose C,(v, m, 0, wy) and C,(wy(v), wy(m), wy(0), w~1) are both
holomorphic at » = »,. Then by Proposition 3.1.1 u(w; ») is holomorphic
at » = »,, and consequently by Theorem 5.4.3.7 of [28] I(v,, =, 0) is ir-
reducible.

CoROLLARY. With the same assumption as in Theorem 3.3.1 sup-
pose C,(v, , 0, wy) has a pole at v = v,. Then I(wy(v,), wg(m), wy(6)) is re-
ducible and the image of A(v,, ™, wy) in I(wg(v,), wy(m), we(0)) is
degenerate.

Proof. First observe that A(v,, 7, wy) is defined since 7 ® g<¢ro-Ho())
is unramified. Now the corollary follows from the definition of C, (», =, 0,
wy) and that it has a pole at v = »,,.

The following proposition follows from the definitions. Here F is any
local field (archimedean or non-archimedean).

ProposiTioN 3.3.1. Let m be an irreducible admissible non-
degenerate representation of M.

a) Denote by Q(v, w, w) the normalized intertwining operator ex-
plained in Section 3.1. Suppose G(v, w, w) is holomorphic at v = v,. Then
the image of Q(v,, w, w) is non-degenerate (w € W).

b) The zeros of C,(, 7, 8, w) are among the poles of A(v, m, w).

4. Functional equations. For the rest of this paper we shall assume
that G is a connected reductive algebraic group which, for the sake of
simplicity, we further assume splits over Q.
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We let F be a number field. Given a place v of F, we let G, denote the
group of F-rational points of G. We use G for the group of F-rational
points. Let A be the ring of adéles of F. We write G, for the corresponding
adelized group. We use same indices to denote the corresponding
subgroups.

Throughout the rest of this paper we shall be using the notation and
results of [23], and in fact we shall only formulate the last theorem of [23]
since all the intermediate steps go through the same way.

Fix 6 C A, and let P4 be the corresponding parabolic subgroup of G.
Write Py = MyN,.

Let = be an irreducible admissible cuspidal representation of My ,
(cf. [17]). Write # = ®, w,, where each =, is an irreducible unitary
representation of M, ,. Let ¢ be a function in the space of x, and define
°W by

°W(g) = S o(gu)x(u)du,
oUA/OUF

where the notation is as in [23]. We say = is non-degenerate if for some ¢,
°W is non-zero. Then each =, is non-degenerate. Suppose °W = ® ,°W,.
We also assume that ¢ is both K N M ,-finite and Z, ,-finite, where K
is the maximal compact subgroup of G, explained in [23], and Zg ,, is the
center of the universal enveloping algebra of M .

We extend ¢ to ¢ on G, as in [23] and define &, s € C, again as in
[23]. Now, let

E(s; ¢; g5 Py.a) = GE ®_,(gv)

v€GF/Py . F

be the corresponding Eisenstein series, and define the Fourier coefficient
of E(s; ¢; g; P(),A) by

E ,(s; &; g Pga) = j E(s; &; gu; Py o) x(u)du
Ua/UF

(cf. [23]). The fact that E ,(s; é; g; Py ») is non-zero for large s will be
studied in Section S (under the condition that =, is fine at every archime-
dean place).

Let S be the smallest set of places which includes all the archimedean
ones, and is such that for every v ¢ S, both 7, and x, are unramified (the
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set of ramified places). For each v ¢ S, let L(s, =, r;) be the corresponding
Langlands’ L-function explained in Section 2.3. Now, define

Lg(s, m,r;) = I_EL(S, Ty, i) l<si=s=m
vE

Then by the results in [15], Lg(s, w, r;) is a meromorphic function of s in
C. Now using the computations in Section 3 of this paper and the results
of [23] we have:

THEOREM 4.1. Let m be an irreducible admissible non-degenerate
cuspidal representation of My 5. Write 1 = ® , 7,. Assume that for every
archimedean place v, =, is fine. Define Lg(s, w,r;), 1 < i < m, as above.
Then

HILs(a,-s, T, r,~) = HS va(—2SPo, Ty 0s Wo) I-Il LS(I - as, ?1)
i= vE =

Example. As mentioned before, when G = GL,4,, and M =
GL, X GL,,, our approach leads to the L-functions considered by H. Jac-
quet, 1. 1. Piatetski-Shapiro, and J. A. Shalika (see Section 2.3 here).
Therefore Theorem 4.1 provides another proof for their functional equa-
tion. Observe that in this case, since =, is unitary everywhere, it is fine at
every archimedean place (cf. [24]).

Now, let G be as in Section 1.2, and let °G, = My/A,. Let py: My —
°G, be the natural projection. This defines a map Lpy: L(°Gy) — LM,. Let
w be an irreducible admissible non-degenerate cuspidal (unitary)
representation of °Gy 4. Then 7 -p, will be one of M, ,. Furthermore for
eachi, 1 <i < m, °r; = r;-Lp, is a representation of £L(°G,). Now for
every v, v € S, define L(s, =, °r;) by

L(S, Ty, ori) = L(S, (T‘Po)v, ri)y

where L(s, (m-py),, r;) is the corresponding unramified Langlands’
L-function for M, ,.
Finally define Lg(s, m, °r;), 1 < i < m, as before. Then:

THEOREM 4.2. Let © be an irreducible admissible non-degenerate
cuspidal representation of °Gy 5. Write 7t = @, 7. Assume that for every
archimedean place v, w, is fine. Define L¢(s, w, °r;), 1 < i < m, as above.
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Then

m m

HlLs(a,s, m, °r;) = Hs Cx.(—2spg, (7 pg),, 0, wg) I L(1 — a;s, m, °F).
= vE i=1

Remark 4.1. There are many cases for which cuspidal representa-
tions of °Gy , are known rather than those of M, 5. For these cases
Theorem 4.2 is very useful (cf. [23]). In the next section we shall consider
some new examples of such cases. They are based on an idea due to P.
Deligne (cf. [4]).

We now formulate an equivalent form of Theorem 4.1 in terms of
global intertwining operators (cf. [17]).

Let ¢ be a function in the space of 7. Suppose ¢ = ® , ¢,. We extend
¢ to a function ¢ on G, as in [23]. Then § = ®, ¢,, where each ¢, €
I(—2spy, ,, ). Furthermore for almost all v, ¢, is fixed by K ,. Now, we
define A(—2spy, &, wy) by

A(_ZSP(), w, Wo)(i; = ®VA(_2S»00, Ty Wo)q;v-

Then in fact A(—2spy, 7, wy) is defined on the restricted tensor product of
the spaces I(—2spy, m,, 8) which we denote by I(—2sp,, 7, 0). This is the
global induced representation from Py , to G, (cf. [18]).

Now at each place v, let @(—2sp,, 7, 6) be the normalized intertwin-
ing operator defined in Section 3.1. We then define a global normalized
intertwining operator @(—2spy, =, 6) by

Q(—2sp9, T, wg) = ® Q(—2sp4, T,, Wp).

In fact, given ¢ = ®, ¢,, let S be a finite set of places, including the in-
finite ones, such that ¢ is invariant under K, and x, is unramified for all
v € S. Then, we define

- m I(1—as,w,r;) <
_ — H S Dy Ny Iy Q(— , , X
Q(—2spg, 7, wg)d = as = %) ve®s (—2spy, 7,, W) O,

Clearly @(—2spy, m, wg) is well defined on I(—2spy, =, 0).
The following theorem is equivalent to Theorem 4.1.
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THEOREM 4.3. Let A(—2spy, m, wy) and Q(—2spy, T, w,) be the
global intertwining operators defined above. Then

Q@(—2spg, m, wg) = A(—2spy, T, Wy).
In particular
Q(—2spg, T, wo)R(25p,,,(9), Wo(T), wg™ ') = L.
Proof. Let S be a finite set of places, including the infinite ones,

such that 7, and x, are both unramified outside S. Then the functional
equation in Theorem 4.1 implies that

ﬁ Lg(1 —as, m,r)

H CX‘V(_ZSpg, T, 0, Wo) =1.
veS

i=1  Lg(a;s, m, 7;)

Now the theorem follows from the definition of G( —2spy, 7, wg). The sec-
ond statement follows from the same statement for A(—2spy, T, w) (cf.

(17)).

4.1. Examples; fourth and fifth symmetric power representations of
GL,.

4.1. a. Let G be a simple algebraic group of type B; (example (iv)
of [15]). As before we assume that G splits over Q. Its Dynkin diagram is
given by

2 2 1
O —O—=——=—=0
a [25] a3

Let § = {oy, ay}. Then M, is of type A, and °Gy = PSL;. Let II be a
cuspidal representation of PGL;(A). Regard II as a representation of
PSL3(A) by restriction. In this case £(°Gy) = SL3(C), and if (A, \,) are
the fundamental weights of SL;(C), then m = 1, °r; = 2\, and a; = 6.
The irreducible representation °r; may be considered as the second sym-
metric power of the standard representation p; of SL;(C). Then the corre-
sponding L-function is L(s, IT, Sym2(p;)).
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There is a distinguished irreducible admissible cuspidal representa-
tion of PGL3(A) whose existence is due to S. Gelbart and H. Jacquet [S].
In fact, let = be a cuspidal representation of PGL,(A) which is not
monomial (cf. [4, 5]). Then = has a lift to a cuspidal representation II of
PGL;(A). Furthermore the corresponding L-function is equal to L(s, ,
Sym2(p,)), where p, is the standard representation of SL,(C). Let us now
prove the following lemma.

LeEmMA 4.1.1. Let A" denote the n-th exterior power. Then

a) Sym?(SymZ2(p,)) = Sym*(p,) @ (A%(p,))®*

b) Sym?(Sym%(p;)) ® 0, = SymS(p;) @ Sym3(p;) ® A2(p;) @
(A2(p2))®* ® p3,

where

r nﬁ

V®"' = @nV = V® --- ® V.

Proof. By Clebsch-Gordan formula, one has

®?2 Sym2(py) = Sym*(p,) @ Sym2(p;) ® A2(py) @ (A%p,)®.
But

®2(Sym%(py)) = Sym%(Sym?(p,)) ® AX(Sym?(p,))
and
A2(Sym?(py)) = Sym?(p,) ® A¥(py).
Now compairing the two expressions for ®2 Sym?(p,) implies part

(a).
For part (b), we use:

Sym2(Sym2(p,)) ® p, = Sym*(p,) ® p, ® (A%(p,))®* ® p,

and

Sym*(p,) ® p, = Sym3(p,) @ Sym3(p,) ® A%(py).
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Now, let y: SL,(C) — SL;(C) be the representation Sym?(p,). By
Langlands’ principle of functoriality there exists a map , (cf. [S]) such
that ¥, () is a cuspidal representation of PGL3(A) and

L(s, m r-y) = L(s, Yy (m), r)

for any representation r of SL;(C). In fact ¥, (m) = II, where II is the lift
of 7 explained before. Now, let r = Sym?(p;). Then

L(s, m, Sym?(Sym?(p,))) = L(s, II, Sym?(p,)).
But now by part (a), of the lemma, we must have
L(s, II, Sym?(p3)) = L(s, 1)L(s, m, Sym*(p,)),

where L(s, 1) is the Hecke L-function.
Write # = ®, =,, and define the local coefficients by

, 1—gq,707 1
€' (s, ,, Sym*(p,), x,) = —IT;VTCM(—?W@, 7rw'0, w0>.
Let

(s, m, Sym*(py), x) = IGIS €'(s, m,, Sym*(p,), x,)-

Then using Hecke’s functional equation and Theorem 4.2, we have:

THEOREM 4.1.1. Let 7 be an irreducible cuspidal representation of
PGL,(A). Assume that 7 is not monomial. Define Lg(s, w, Sym*(p,)) as
before. Then

Lg(s, m, Sym*(p,)) = €g(s, m, Sym*(p,), X)Ls(1 — s, m, Sym*(5,)).

4.1.b. Next, let G be a simple algebraic group of type F,. We again
assume that G splits over Q. Its Dynkin diagram is given by

2 2 2 1
O——O0—=—=0—20

%] [6%) a3 (67
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Let 0 = {a;, ay, oy}. Then My is of type A, X A, and °Gy = PSL; X
PSL,. As before, let wand II be irreducible admissible cuspidal represen-
tations of PGL,(A) and PGL;(A), respectively.

The group £(°G,) is isomorphic to SL,(C) X SL,(C), and m = 3, a,
=2l,a,=14,a;=7,r,=1Q® p,, r, = Sym?(p,) ® 1, and ry; =
Sym2(p3) ® p,, where p, and p; are standard representations of SL,(C)
and SL,(C), respectively.

Now, suppose 7 is not monomial and II is the lift of 7 as before, i.e. IT
= ¢*( m). Define the maps

¥ ® 1: SL,(C) X SL,(C) — SL;(C) X SL,(C)
and
A: SLy(C) — SL,(C) X SL,(C),
where ¥ is defined as before and A is the diagonal map A(g) = (g, g). Let
¥, ® 1 and A, be the corresponding conjectural maps induced by the

principle of functoriality. Then for any pair of representations r and R of
SL,(C) and SL;(C) we have

L(s, (4 @ D7 X M), R @r) =L(s, X 7, (R ®r)-(¥ ® 1))
=Ls, A(m, R Q1)-(¥ ®1))
=L, m (R ®n-(¥y ®1)-4).

Let us first specialize this to r = p, and R = 1. We then have

L(s, ¥ (1) X m, 1 ® p,) = L(s, m, p,)
= L(s, m),

where the last one is Jacquet-Langlands’ L-function for GL,. Next take r
= 1and R = Sym?(g,). Since p, = p,, we then obtain

L(s, y,(m) X m, Sym%(5;) ® 1) = L(s, 1)L(s, m, Sym*(p,))

asin 4.1.a. Finally take r = p, and R = Sym2(p;). Then using part (b) of
Lemma 4.1.1 we conclude



350 FREYDOON SHAHIDI

Ls, ¢, (m) X m, Sym?(p;) ® p,)
= L(s, m, Sym>(py))L(s, m, Sym3(p,))L(s, m, p,).
Let us now define the local coefficients €' (s, ,, Sym5(p,), w,), where
T= @, 7.
Let €'(s, 7, x,) be €(s, m,, x,)IL(1 — s, &,)/L(s, m,)] as defined by
Jacquet-Langlands’ [11]. Denote by € (s, 7,, Sym3(p,), x,) the local coef-

ficient defined in [23]. Finally, let € (s, m,, Sym“(p,), x,) be the local coef-
ficient defined in Theorem 4.1.1. Now, set

€'(s, m,, Sym3(py), x,)
= €s, 7, x,)7 1€ (25, 1,)71€' (25, m,, Sym¥(py), x,) 7!
-€'(s, m, x,) 1€ (s, m,, Sym3(py), x,) 7!
Cy (= Y150y, Y (,) X m,, 6, wg).
Observe that SymS(p,) is a six dimensional irreducible representation of
SL,(C). Now we have:
THEOREM 4.1.2. Let 7 be an irreducible cuspidal representation of
PGL,(A). Suppose = is not monomial. Define

Lg(s, m, SymS(py)) = EL(S, 7, Sym3(p;))

and

€(s, m SymS(py), x) = g €'(s, m,, Sym5(py), x,),

where S is the set of ramified places, and L(s, w,, Sym5(p,)) is defined as
in Section 2.3 for v ¢ S. Then:

a) Lg(s, m, Sym5(p,)) extends to a meromorphic function of s in C,
and
b) It satisfies the functional equation

Lg(s, m Sym3(p;)) = €5(s, m, Sym3(p,), x)Lg(1 — s, m, Sym3(5,)).

Remark 4.1.1. Suppose § = {«,, a3, a,}. Then M,is of type A, X
A,. Let m X Il be a cuspidal representation of °Gy 5. Thenm = 4, a; =
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20,a, =15,a3=10,a, = 5,7, =1 Q B3, r, = p, ® 1, r; = Sym?(p,)
® p3,andr, = p, ® p5. In particular if IT = \lz*( 7), one obtains L(s, ,
Sym*(p,)) again.

5. Non-vanishing of L-functions. One of the interesting character-
istics of this approach is the fact that it provides an explicit relation be-
tween the zeros of L-functions and the poles of the Eisenstein series. The
following theorem is a consequence of the holomorphy of the Eisenstein
series along the imaginary axis. Its special cases have very interesting ap-
plications which we shall discuss after the proof of this main theorem.

THEOREM S.1.  a) Let ™ be an irreducible admissible non-degener-
ate cuspidal representation of Mg 5. Write 1 = @, 7,. Assume that every
@, is fine whenever v is archimedean. Let S be a finite set of places in-
cluding the infinite ones, such that for every v ¢ S, both =, and x, are
unramified. Set

Lg(s, m, r;)) = I;ISL(s, T, 1) 1 =<j=m).

Then for every t € R, the product
m
111 Ls(l + ajt(—l)l/z, , rj)
j:

is non-zero.

b) All the statements remain true if we replace My 5 by °Gg 5 and r;
byeri,1 = j=m.

Proof. Let E,(s; é; g; Py ,) be the matrix coefficient of the Fourier
coefficient E | (s; &; g; Py a), as it is explained after Lemma 5.1 of [23].
Set

I, = I(=2sp,, m,, 0), and \, = N—2spy, m,, 6, X,)-
Suppose ¢ = ®, ¢, with @, € I,, and define W, (g,) = N, (g,” 1,
g, € G,. Now using Lemma 2.1 and computations in Section 4 of [23] we

conclude that for Re(s) > V2.

E.(s; &8 Pga) = IVI W,(g,),
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where ¢ = (g,). In fact when v is archimedean, it is clear that the local
component of E,(s; &; g; Py ») at v, which is given by Formula (4.2) of [23]
(changing s to —s), converges absolutely for Re(s) large (it is dominated
by the corresponding intertwining integral which converges for Re(s)
large). Consequently for Re(s) large it coincides with N—2spy, =, 6, x,)
(Relation 3.1 of [24]). Now the analytic continuation of this local compo-
nent follows from that of N —2spy, 7, 0, x,) which is provided by Propo-
sition 3.2. The non-archimedean case follows from Proposition 3.1.

Now take g = e = (e,), the identity element of G,, and write

E(s; &; e; Pgp) = LT W(e,)-II W,(e,).
veS 2]
It is a result of W. Casselman and J. A. Shalika [3] that for every v ¢ S
W) = Il L(1 + a;s, m,, r))"1,
i=t
and consequently
E (s; % e, Pgp) = Hs Wye,) IL Ls(1 + a5, m, r;)~ 1.
173 Jj=1

Here ¢, is so normalized that °W (e,) = 1 for all v ¢ S. Suppose v € S.
Then from Propositions 3.1 or 3.2 it follows that we may choose ¢, (and
consequently ¢,) in such a way that W,(e,) # 0. Consequently the zeros of

", Lg(1 + a;s, m, r;) are among the poles of E(s; $; e; Py 4). But now
by the compactness of U, /Uy it is clear that the poles of E,(s; ¢; e; Py »)
are among those of E(s; &; e; Py »), and therefore the theorem follows
from the holomorphy of E(it, & e; Pga)foralls €R, i = (—1)V2

COROLLARY OF THE PROOF. Suppose Re(s) > V2; then ¢ may be
chosen so that E (s; é; e; Py ) does not vanish identically.

We now state some of the consequences of Theorem S.1.

The following result has been first announced in [25]. It has a very in-
teresting application to the classification of automorphic forms on GL,(A)
(cf. [18]). In fact it can be used to show that if two globally induced
representations have the same decomposition factors (for almost all
places) then their inducing representations are conjugate by an element of
the Weyl group (due to H. Jacquet and J. A. Shalika).
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THEOREM 5.2. Let mand 7' be two irreducible admissible cuspidal
(non-degenerate) representations of GL,(A) and GL,(A), respectively.
Write 7 = ®, m,and ©' = @ =,’, and let L(s, m, X =,") be the cor-
responding Jacquet-Shalika L-function attached to the pair («,, 7,'). Set

Ly(s, 7 X w') = I;ISL(s, ™, X ).

Then for everyt € R, Lg(1 + it, # X «') is non-zero, i = (—1)12,

Proof. Take G = GL,,,,, Mg = GL,, X GL,, and apply Theorem
S.1.

Finally the following theorem provides some information concern-
ing the zeros of Lg(s, m, Sym3(p,)) and Lg(s, w, Sym?(p,)) at the line
Re(s) = 1.

THEOREM S5.3. Let w be an irreducible cuspidal representation of
PGLy(A). Suppose = is not monomial. Then the L-functions Lg(s, m,
Sym?3(p,)) and Lg(s, , Sym?*(p,)) do not vanish on the line Re(s) = 1, ex-
cept for the second L-function and possibly only at s = 1, in which case
the zero is at most simple.

Proof. We first consider Lg(s, 7, Sym3(p,)). From
Sym2(p,) ® p, = Sym3(p;) @ p,
it follows that
Lg(s, m Sym?(p,) ® p,) = Lg(s, m, Sym3(p;))Lg(s, m, py).
But then by Theorem 5.2, the left hand side which is equal to L(s,
¢*( m) X ) does not vanish on the line Re(s) = 1. Now the first part
follows if one observes the holomorphy of Jacquet-Langlands’ L-function

Lg(s, m, p,) at Re(s) = 1.
For Lg(s, m, Sym*(p,)), we use Theorem 5.1 to conclude that

Ls(1 + 6¢(—112, 1)Lg(1 + 6:(—1)"2, 7, Sym*(p,))
does not vanish for all # € R. The second part now follows from the fact

that Lg(s, 1) has a simple pole at s = 1 and is holomorphic everywhere else
on the line Re(s) = 1.
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Remark 5.1. The same kind of result holds for an arbitrary quasi-
split group (cf. [3, 26]). More precisely it can be shown that for such
groups

.HILS(I, m,r;) #0.
J= ’

PURDUE UNIVERSITY
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