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1. INTRODUCTION 

One of the major achievements of Harish-Chandra was a derivation of 
the Plancherel formula for real and p-adic groups [9,10]. To have an explicit 
formula, one will have to compute the measures appearing-in the formula; 
the so called Plancherel measures and formal degrees [12]. (For reasons 
stemming from L-indistinguishability, we would like to distinguish between 
the formal degrees for discrete series and the Plancherel measures for non- 
discrete tempered representations, cf. Proposition 9.3 of [29].) While for 
real groups- the Plancherel measures are completely understood [l, 9, 221, 
until recently little was known in any generality for padic groups [29] (ex- 
cept for their rationality and general form due to Silberger [39]). On the 
other hand any systematic study of the non-discrete tempered spectrum 
of a padic group would very likely have to follow the path of Knapp and 
Stein [20, 211 and their theory of R-groups. Since the basic reducibility 
theorems for padic groups are available [40, 411, it is the knowledge of 
Plancherel measures which would be necessary to determine the R-groups. 
This is particularly evident from the important and the fundamental work 
of Keys [16, 17, 181 and the work of the author [29, 30, 311. 

On the other hand, based on his results on constant terms of Eisenstein 
series [23], Langlands conjectured that every Plancherel measure must be 
a product of certain root numbers with the rat& of the corresponding 
Langlands L-functions at s = 1 and s = 0. Otherwise said, he suggested 
that one must be able to normalize the standard intertwining operators by 
means of certain local root numbers and L-functions [24]. We refer to the 
introduction of [29] and to [2, 3, 4, 51 for applications of such normaliza- 
tions. This was further tested for real groups by Arthur [l]. Since in many 
instances these local factors (especially L-functions which then determine 
the poles and zeros of Plancherel measures and thus answer reducibility 
questions) can be explicitly computed, this leads to explicit formulas for 
Plancherel measures that are not available from any other method 129, 31, 
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323. In fact, except for the the cases coming from minimal parabolics [lS, 
17, 181, there is not a single example of a Plancherel measure coming from 
a supercuspidal representation of a non-minimal Levi subgroup of a padic 
group that has been computed in any other way. (We understand that, 
using Howe-Moy Hecke algebra isomorphisms [II], they can also calculate 
Plancherel measures in some non-minimal cases.) The main result (The- 
orem 7.9) of [29] was to prove this conjecture for generic representations 
of Levi subgroups of quasi-split groups and to set up a program to attack 
the conjecture in general (Theorem 9.5 of [29] and the conjectural fact that 
the Plancherel measures are preserved by inner forms [5]). Incidently, we 
should remark that, although we have not checked carefully, the proof of 
Proposition 9.6 of [29], when applied to real groups by means of Shelstad’s 
results [38], should basically lead to another proof of Vogan’s result on 
genericity of tempered L-packets for real groups [42]. 

As a consequence of Theorems 3.5 and 7.9 of [29], a general result (The- 
orem 8.1 of [29]) was established on reducibility of induced representations 
from generic supercuspidal representations of maximal Levi subgroups of 
a quasi-split group. This implied, in particular, that the edge of comple- 
mentary series (if any) can only have two possible choices, Z and @, no 
matter what the group or inducing representation. 

The first part of this article (Theorems 3.1, 4.2, and 5.1) is aimed at a 
survey of these results. In the second part we give three examples. The 
first two examples, described in Propositions 6.1 and 6.2, determine the 
reducibility of the representations induced from supercuspidal representa- 
tions of Levi factors of the Siegel parabolic subgroups of Spd, PSp4, and 
GSp4, and the parabolic subgroup of an exceptional split group of type G2 
whose Levi subgroup is generated by the short simple root of Gz. Together 
with Propositions 8.3 and 8.4 of [29] (also Proposition 5.1 of [43] for GSpd), 
this completes the analysis of the unitary duals of all the rank two split 
padic groups supported on their maximal parabolics. Propositions 6.1 and 
6.2 both seem to be new. 

The paper concludes with explicit formulas for the Plancherel measures 
for GL(n) and SL(n), p resented in Proposition 7.1 and Corollary 7.2, re- 
spectively. A formula in terms of certain Rankin-Selberg L-functions for 
GL(n) [13] for these measures has been in print [32] since 1984. But an 
explicit expression for the Plancherel measures should make it more con- 
venient to calculate R-groups for SL(n) (Remark 7.3). 

2. NOTATION AND PRELIMINARIES 

Let F be a non-archimedean field of characteristic zero whose ring of 
integers and maximal ideal are denoted by 0 and P, respectively. We shall 
always fix a uniformizing parameter w, i.e., an element of P such that 
P = (n). Let q denote the number of elements in the residue field O/E 
We use ] l  1~ to denote the absolute value of F. Then IW]F = q-l. 
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Let G be a quasi-split connected reductive algebraic group over F. Fix 
a Bore1 subgroup B of G over F and write B = TU, where T is a maximal 
torus and U denotes the unipotent radical of B. For an F-parabolic sub- 
group P of G containing B, let P = MN be a Levi decomposition. Then 
U 3 N. We use G, B, T, U, P, M, and N to denote the corresponding 
groups of F-rational points. 

If a = Hom(X(M)F,lR) is th e real Lie algebra of the maximal split torus 
A of the center of M, we use HP : M ‘11111) a to denote the homomorphism 
of [35,41] defined by 

Q(-+)) = IX(rn)lF. 

Here X(M)p is the group of F-rational characters of M. 
If Ac is the maximal F-split torus in T, A0 1 A, let II) be the set of 

F-roots of Ac. Then $ = $J+ lJ $J-, where ?,6+ is the set of positive roots of 
Ao, i.e., those roots generating U. Let A c $J+ be the set of simple roots. 
Then M = MO is generated by a subset 0 of A. 

Given an irreducible admissible representation c of M and v E a& the 
complex dual of a, define 

I@, a) = Ind c @ Q(“8HP( 1) 8 1. 
MNTG 

We use V(Y, a) to denote the space of I@, C) and we let I(b) = I(O,c) and 
V(b) = V(O,a). 

Let W(Ao) be the Weyl group of A0 in G. Fix a w” E W(Ao) such that 
G(O) C A. Choose a representative ‘w E G for 6. Let N,- = Un wN-w-l, 
where N- is the unipotent subgroup of G opposed to N. Given f E V(Y, a), 
let 

A(4 u, q(g) = J f(w- l ngw Nt 
The integral converges for v in a certain cone and can be analytically 
continued to a meromorphic function of v on all of u: (cf. [20, 21, 34, 411). 
It intertwines I(Y,c) with I(~Z(Y), G(C)), where C?(C)(&) = o(wolm’w), 
m’ E M’ = WMW- l. Finally, let A@, w) = A(0, 0, w). 

If $0 is the longest element in the Weyl group of A0 in G modulo that 
of A0 in M, the Plancherel constant &,a) is defined by 

A@, a, wo)A(Go(v), Go(u), w;‘) = I+, a)“r(G/P)2. 

Here 

where N&, = wilNawO. The constant p(~,cr) does not depend on the 
choice of WO, nor on that of the defining measures. Also, its dependence on 
c is only via the equivalence class of the representation. 
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NOW let LM be the L-group of M. Denote by Ln the Lie algebra of 
the L-group L N of N. The group LM acts by adjoint action on Ln. If 
Lo denotes the Lie algebra of the L-group of N,-, then Lo, realized as 
a subspace of Ln by -Ad[ w , is stable under this adjoint action. Let r-and ] 
TC be the adjoint actions of LM on Ln and Lo, respectively. 

Let p=pp be half the sum of roots whose root spaces generate N. Then, 
for each (I! with Xaw E Ln, (2p, cy> is a positive integer. Let al <a2 < . . . < a, 
be the distinct values of (2p,a). Set 

vi = {x,. E LG1(2p,4 = ai}* 

Each K is invariant under r,-. ‘We let r,- i be the restriction of TC to I++. 
If P is maximal, then for the non-trivial iZ we set r,- = r. We then set 

5 = rG,i; thus r = g ri with each ri irreducible (cf. 1351). Let a E A :- 9 
S-A 

identify the unique reduced root of A in N. Set Z = (p,a)-‘p, an element 
of cl* = X(M)F & R. Observe that, for each i, 1 < i < m, - - 

K = {Xp E Ln[(Z,p) = i}, 

and therefore each Vi is an eigenspace for the action of the connected center 
of LM”, the connected component of L M. 

When F = IR we have similar definitions for which we use the same 
notation. 

Fix a non-trivial additive character $F of F. We shall now define a 
generic character x of U. Let a E A. If & is the smallest extension of 
F over which the rank one subgroup of G generated by clr splits, we let 

XV a = $F l  TIE /F. By restriction x is also a generic character of I/* 
which we still deiote by x. Here U* =UnM. 

The representation 4 is called x-generic if it can be realized on a space of 
functions IV* satisfying W*(um) = x(u)W*(m). Changing the splitting on 
G (or, said in other words, up to L-indistinguishability) every irreducible 
admissible generic representation is x-generic with respect to such d x 
(cf. [29]). Moreover by Conjecture 9.4 of [29] and Section 6 of [42] every 
tempered L-packet contains such a representation. Generic representations 
are thus much more fundamental than once thought. 

Next, suppose c c Ind 
MeNeW 

~1 @ 1, where, for each 8 c A, MONO, is a 

parabolic subgroup of M and 01 is an irreducible admissible representation 
ofMe. Let 8’ = G(0) c A and fix a reduced decomposition iu” = @,,-I . . . Gl 
as in Lemma 2.1.1 of [34]. Th en, for each j, there exists a unique root aj E 
A such that Gj(aj) < 0. For each j, 2 < j < n - 1, let Zj = Gj-1 . . . Gi. 
Set ull = 1. Moreover let Qj = ej U {&},-where 61 = 6, 8, = 6’, and 
8 j+l = Gj(Bj), 1 5 j < ?2 - 1. Then the group Maj contains Mei NQ as a 
maximal parabolic subgroup and Zj (al) is a representation of MQ. The L- 
group LA4e acts on K. Given an irreducible component of this action, there 
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exists auniquej, 1 <j < n- 1, which, under EY”, makes this component 
equivalent to an irreducible constituent of the action of ‘Mj on the Lie 
algebra of L Nei (Me, Nej is a maximal parabolic subgroup of M~j). We 
denote by i(j) the index of this subspace of the Lie algebra of L Nej. Finally 
let Si denote the set of all such j’s; Si is, in general, a proper subset of 
1 5 j 5 n - 1. We refer to [36] for several examples. 

Langlands’ conjecture on Plancherel measures is global by nature. In 
other words the most important property of the standard normalization is 
that the normalizing factors can be related globally. For this reason one 
needs statements about groups over global fields and global L-functions. 
For this we need further preparation. 

Let K be a number field and fix a place ti of K. If G is a quasi-split 
connected reductive group over K, we use G XK K, to denote G as a group 
over K, , the completion of K at v. Next suppose AK is the ring of adeles of 
K. Fix a non-trivial character $ = @,& of AK, trivial on K, and define a 
character x = @,,xV of U(&) as before, where U is the unipotent radical 
of a Bore1 subgroup of G. 

Let 7r = ~~?r, be a cusp form on M = M(&). We shall say ?r is globally 
x-generic if there exists a function (p in the space of ?r such that 

J cp(u)X(u)~~ # 0, UO(K)\UO(AK) 
where U* = U n M. 

Now assume v is such that &, G x K K, , and n, are all unramified. If p 
is an analytic representation of L M, we define pv by pv = p l  77~ , where 7;lu is k 
the natural map Q, : LMv + LM HereLMVistheL-groupofMxKK,. 
Let L(s, rv,pu) be the local Langlands L-function attached to 7rV and p,, 
(cf. [7,25]). If S is a finite set of places of K outside of which everything is 
unramified, we set 

b(v,p) = ~~(WOPV). 
es 

The first aim of this paper is to define these L-functions at -the other places 
(Section 7 of [29]). 

3. THE FUNDAMENTAL THEOREM 

The standard normalization of intertwining operators as conjectured by 
Langlands is done by means of certain L-functions and root numbers [24]. 
Crucial among their properties is that, whenever the representation be- 
comes a local component of a global cusp form, the factors must be those 
satisfying the corresponding functional equation. In fact this is the only 
way one can globally relate normalizing factors on different local groups 
to each other. This is important in many deep applications of the trace 
formula [2,3,4, 19, 301. To define these local factors, the following theorem 
was proved in [29] (Theorem 3.5 of [29]). 
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Theorem 3.1. Given a local field F of characteristic zero and a quasi-split 
connected reductive algebraic group G over F containing an F-parabolic 

subgroup P = MN, N c U, let r,- = g r,- i be the adjoint action ofLM 
kl ’ 

on Ln;; as in Section 2. Then, for every irreducible admissible x-generic 
representation CT of M, there exists m complex functions 3;‘(s,a, +F, 6), 
s E @, satisfying the following properties: 

1) If F is archimedean or CI has an Iwahori fixed vet tor, let ‘p’ : Wb + LM 
be the homomorphism attached to u, where W$ is the Deligne- Weil group 
of F. Denote by E(S, r,-,+ l  (p’, +F) and L(s, TC,~ l  cp’), the Artin root 
number and L-function attached to r,- i l  (pl; respectively. Then t 

yi(s,  +$F, z) = E(S, t’G,i l  $“, &‘)L(l - s ,  %,i  l  &/L(S, 7-G& l  Cp’). 

2) For each i, 1 < i < m, - w 

(3 1) . y~(S,a,~F,iij)y~(l-s,ir,~F,~) = 1, and 

yi(s,fl,$F,G) =yi(S+So,60,$F,~), . 

where o = 40 @ q (so~tHP( )) iff’ is nonarchimedean. 
3) Inductive property: Suppose u c Ind 

M&b W 
61 QD 1, where M8N8 is a 

parabolic subgroup of M and ~1 is an irreducible admissible x-generic 
representation of Me. Write iii=&,l . . .ii& and for each j, 2< j<n-1, let 
2uj = ;iij-1.. . -iii1 and i& = 1. Then for each j, Ej(dl) is a representation 
of Mej l  If, for each j E Si , y;(j)( S,Gj(U1),$F,Gj)t 1 < i < m, denotes the - - 
corresponding factor, then . 

Yi(S, 6, ?!‘F, G) = n ri(i)(s,mj(ul), $F, 6j). 
jESi 

4) Functional equations: Let K be a number field and G a quasi-split 
connected reductive algebraic group over K. Let P = MN, N C U, 
be a maximal K-parabolic subgroup of G. Fix a non-degenerate character 
x = @xv OfU = U(&), trivial on K and defined by anon-trivial character 

&&,ofK\&. Letr= @xV be a globally- x-generic cusp form on 

M(Ai). Finally, if T is the adjlint action of LM on Ln, write r = g ri. 

g ri v is the adjoin t action of L Mu, where rv = T-Q, r; v 
i=l 

Then rV = 
kl ’ 8 = wr)v, 

and vu : LMv -+ LM is the nat r u al map. Let S be a finite set of places of 
K such that, for v 4 S, G xK Kv, ?T~, and xv are all unramified. Then 

Ls(s, r, I’i) = ~Yi(%wws(l - s, Gi), 
VES 

for every i, 1 5 i 5 m, where yi(s, xv, $+,) = yi(s, n,, &, Go). 
Moreover, conditions (l), (3), and (4) determine the yi uniquely. 

Remark 3.2. The factors yi(s, 6, +F, 6) are all defined locally by means of 
local coefficients (see the next remark). But to prove their properties and 
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uniqueness one has to employ global methods-more precisely, functional 
equations. In fact, local proofs are available only for G = GL( n), and 
even in that case they are fairly deep and complicated [13, 321. Thus one 
must again observe how powerful global methods can be in answering local 
questions. 

Remark 3.3. To make this survey short, we have suppressed the important 
role played by the theory of local coefficients which was developed in [29, 
34, 371. 

4. LOCAL FACTORS AND LANGLANDS CONJECTURE 

When F = R our local factors are those of Artin [27, 371 as defined in 
[26] (part 1 of Theorem 3.1). In this case the Langlands Conjecture has 
been verified by Arthur [l]. Therefore for the remainder of this article we 
shall assume F is non-archimedean. 

We first define our local root numbers and L-functions. Start with a 
maximal parabolic P and fix an irreducible tempered x-generic represen- 
tation 0 of M. From now on we use y(s,a,r&~) to denote y&a,&), 
l<i<m. 

E‘or-each i, let Q(t) be the unique polynomial satisfying po,i( 0) = 1 
such that P~,+(Q-~) has the same zeros as y(s, 0, Q&F), i.e., F”,+(t) is the 
unique numerator of y(s,~, ri, &) (which is a rational function of q-“) 
satisfying Q(O) = 1. Define the L-functions attached to CT, ri, and Fi as 

L(s,a, ri) = P&(q-‘“)-’ and L(s, a,F’) = pO,i(q-“)--l. 

They do not depend on $F. Then by (3.1) 

is a monomial in qo8 which 
attached to u and Q. Thus 

we denote by ~(8, g, pi, $F), the root number 

Y(S, 5 t’i, $F) = b(s, 0, ri, ?oF)L(l - S, 6, jTi)/L(s, 6, Pi). 

The definition of L and E for non-tempered 0 is then a consequence of induc- 
tive property (3) and the Langlands classification for irreducible admissible 
representations of padic groups (due to Borel-Wallach and Silberger). 

The following natural conjecture serves two purposes: On the one hand it 
provides one of the conditions on normalizing factors demanded by Arthur 
(Condition & of [l]; it was not among the original conditions conjectured 
by Langlands in [24]; al so see [29]). On the other hand, using inductive 
property (3), it allows us to prove the multiplicative properties of these 
factors in general. This is of great interest in the theory of automorphic 
L-functions. We refer to [36] for an account of this and several examples. 
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Conjecture 4.1, If u is tempered, then each L(s, CT, 7-i) is holomorphic for 
h(s) > 0. 

It is enough to prove this for c in the discrete series and P maximal. 
By Proposition 7.2 and 7.3 of [29] the conjecture is a theorem if m = 1; 

m=2and 
qs, 6, r2) = n(l- ajQ-‘)-’ (cyi E Cc), 

f 

(possibly empty) with lajl = 1; m is arbitrary but u is unitary supercusp- 
idal; and finally G is a simple classical group, M = H x GL(n) for some 
classical group H, and c is at least supercuspidal on one of the factors H 
or CL,(F) (Th eorem 5.5 of [36]). 

Now assume P = MN, N C U, is any standard parabolic subgroup of 
G. Fix iiIi f W(Ao) such that iZ(O) C A, P = Pg. Let CT be an irreducible 
unitary x-generic representation of kf. We fix a reduced decomposition 
ii~ = iii,,-~ . . . ii& and set 

n-1 mj 
qs, 6, qjj) = n rl[L(S, vj (a), CiTj,i) 

j=li=l 

They are both independent of the decomposition of G. 
We shall now normalize the intertwining operator d(a, w) in the way 

conjectured by Langlands [24]. Let 

d(qw) = E(O,Q,F& y6F)L(l, a,F&)L(O,a,F$ld(q w), 

where the right hand side is defined as a limit. 

Theorem 4.2. (Langlands’ conjecture). The normalized operator A@, w) 
satisfies: 

a) A(5 WlW2) = A(;;2(4, ~l)~(~, w2)t and 
b) d(a, w) = d(iE(a),w-‘), i.e. d(a,w) is unitary 

Remark 4.3. Theorem 4.2 is clearly equivalent to a formula for Plancherel 
measures in terms of L-functions and root numbers (Corollary 3.6 of [29]). 

5. REDUCIBILITY OF INDUCED REPRESENTATIONS 

One of the consequences of Theorems 3.1 and 4.2 is a general result on 
reducibility of representations induced from supercuspidal generic represen- 
tations of Levi factors of maximal parabolic subgroups of any quasi-split 
group in terms of polynomials &i, i = 1,2. More precisely, even the equal- 
ity (3.1) of Theorem 3.1 allows us to determine the edge of complementary 
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series coming from maximal parabolic subgroups and generic supercuspi- 
da1 representations of such groups. They turn out to take only two values 
(if any), Z or $Z, no matter what the representation and the group are. 
As mentioned above, such a result is possible only because of the identity 
(3.1) which provides the only important unknown in the formula for the 
Plancherel measure obtained by Silberger [39]. This identity is quite deep 
and is proved by global methods. Its local proof in this generality seems 
far from reach at present (cf. [13, 321 and the remark at the end of Sec- 
tion 3 of [29] for GL(n)). Finally we should remark that in many cases 
the Levi subgroups are products of A-type groups for which supercuspi- 
da1 representations are always generic and our assumptions on genericity 
is automatically satisfied. As a consequence of this, in the next section we 
shall obtain those parts of the unitary duals of all the rank two split padic 
groups which are supported on their maximal parabolic subgroups. 

Let P=MN be a maximal parabolic subgroup of a quasi-split connected 
reductive algebraic group over a padic field F. Let (I be an irreducible 
unitary supercuspidal x-generic representation of AI. Then by Lemma 7.5 
of 1291, P@,i z 1 for 3 < i< m. Moreover I(a) is irreducible and a is ramified, 
i.e. &(a) % cr if ando$y if P,,+(l) = 0 for exactly one of the values i = 1 
or 2 (Corollary 7.6 of [29]). The following is Theorem 8.1 of [29]. 

Theorem 5.1. Let P = MN be a maximal parabolic subgroup of G, 
where G is a quasi-split connected reductive algebraic group over a p-adic 
field. Let u be an irreducible unitary supercuspidal x-generic representa- 
tion of h4. Assume c is ramified and I(b) is irreducible. Choose a unique 
i, i = 1 or 2, such that P,,i(l) = 0. Then: 

a) For O<s< 5, I(&@) is irreducible and in the complementary series. 
b) I(Z/i, 0) is reducible with a unique x-generic subrepresentation which 

is in the discrete series. Its Langlands quotient is never generic. It is 
a preunitary, non-tempered representation. 

c) For s> $ I(&, a) is irreducible and not in the complementary series. 

Lfa is ramified and I(U) is reducible, then no I(sZ, c), s > 0, is preunitary. 
They are all irreducible. In particular the edge of complementary series (if 
any) is always either 2r” or @. 

We now state the following corollary, expressing our results in terms of 
points of reducibility of induced representations. 

Corollary 5.2. Let cr be an irreducible unitary supercuspidal x-generic 
representation of M. Then I(sZ,a) is irreducible unless some unramified 
twist of (I is ramified. Assume CT is ramified and I(a) is irreducible. Then 
the only point of reducibility for I(sZ, a) in the region s > 0 occurs at 
either s = l/2 or s = 1. If I(U) is reducible, then s = 0 gives the only 
point of reducibility. 

Remark: 5.3. Both results are valid if c is generic with respect to any other 
generic character of U. 



286 FREYDOON SHAHIDI 

6. EXAMPLES: UNITARY DUALS OF RANK Two SPLIT QKH.JPS 

Since unitary duals of all the rank one quasi-split groups are completely 
determined [li’], we can apply Theorem 5.1 to a general rank two split 
group and obtain that part of the unitary dual which is supported on the 
maximal parabolic subgroups. 

We first let G be either Spd, PSp4, or GSp4 over a non-archimedean 
field F. We let P = MN be such that M is generated by the short simple 
root a. If G = $4, then M = GL2. For G = PSp4, M = PGL2 x  GL1 l  

Otherwise it is CL2 x GL1. Let CT be an irreducible unitary supercuspidal 
representation of A4 = M(F). Then c = CT~ ax, where crl is an irreducible 
unitary supercuspidal representation of G&(F) and x is a character of 
F*. We disregard x if G = Spd(F) or PSp@). For G = P&, M(F) = 
GL2(F)/{kl} d an c will be a representation of G&(F) trivial on {&l}. 
Let w be the central character of CT~. The element $0 can be chosen to 
be $i&i$, where p is the long simple root. Suppose G = Sp4 or PSp+ 
Then ii?&) Z c if and only if irl Z ~1. In particular, w2 = 1. Otherwise, 
i.e. if G = GSP4, Go(a) E 0 if and only if w = 1. Thanks are due to David 
Goldberg for pointing out this difference which was carelessly overlooked 
in the first version of this paper. 

It is instructive to observe that if 01 is an irreducible unramified principal 
series (class one) representation of G&(F) defined by the pair (pI,p2) of 
unratified characters of F* and x is unramified, then the corresponding 
semi-simple conjugacy cl& [‘7,25] in the L-group GSp&I) of GSp4 can be 
represented by 

where w is a uniformizing parameter for F. 
However, if G=Spd and CT=U~ as above, then LG=PSp@) and 

A(l(fl)) = diag((PlP2(w))“2, (cll&-1(tJ))1’29 

-1 
h IL2Wl ‘12, (~~‘&‘(w))‘/~) (mod&l), 

where the choice of the square root is irrelevant as long as it is consistent 
for all the entries, i.e. (~&“(w)>‘/~ = &Q). (~147~7))~/~ and so on. 
(That A(l(a)) = v l  diag(~l~@),~2(~), pl(w),l) with some v E C* 
follows immediately from definitions, using roots and coroots of Sp+ To 
show that u = x2&‘&‘(w), one uses the decomposition 

diag(w, t7P,P-k-’ ) = A l  diag(ab, a, 6, l), 

where a = a~& b = Crp-l, and A = cy-l. The character (~1, ~2, x) of 
(cY,& 7) is then equal to th e c h aracter (~‘1, ~5, x’) of (a, b, X), where pi = x, 

I 
P2 = x&l, and x’ = x2p&? Applying the central cocharacter to 
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A(l(a)) then implies v = x~c(~‘&(P).) Thus, for example, the adjoint 
action T of LM on Ln is simply t‘ = p2 $ ~~p2, where p2 is the standard 
representation of GL;!(@). Then 

PQJ(q-) = L(s,q,p2)-’ = 1, 

while 
P@,J(q-s) = L(s, 61, A2p2)-’ = L(s, w)-l* 

We recall that 
L(s,w)--’ = 1 - w(m)q-’ 

if w is unramified and is identically one otherwise. Suppose G = Sp4 or 
PSp4. If w is unramified, w2 = 1 with w # 1 implies w(w) = -1 and 
therefore PO,2 (1) = 2 # 0. The same is true if w is ramified. Thus in both 
cases I(b) is reducible and thus there are no complementary series. 

Otherwise, i.e. if w = 1, then PO 2(l) = 0 and therefore I(C) is irre- 
ducible. Here we also include GSp4. Then index i of Theorem 5.1 is i = 2. 
Half the sum of positive roots in N is p = $(a! + p) and therefore 5 is in 
fact equal to a! + p. It is then clear from the definition of Hp that 

q(sz~Hp(m)) = I(a + P)(m)l” 

= [ det(ml)l” l  IAl” 

= I det(m# l  1 det(m)I 42 , 

where m = (ml,?;> with ml E G&(F), x = diag(X,X, 1, l), A E F*, and 
det(m) = X2 (the determinant as an element in GLd(F)). If G = Sp4 or 
PSp4, we then set A = 1. Finally observe that 

where v(ml) = Idet(ml)l. But now it follows from Theorem 5.1 that 
I(@1 @ v’) @ x) is irreducible unless s = Ai. bioreover I( (al @ Y’) 8 x) 
has a unique generic special subrepresentation and a unique non-tempered 
non-generic preunitary quotient. We have thus proved: 

Proposition 6.1. a) Suppose G = GSpd( F) for F a non-archimedean 
field. Let clc and p be the short and the long simple roots of G, respec- 
tively, and denote by P = MN the maximal parabolic subgroup in which 
M is generated by a, M z GL2 x GLI. Fix an irreducible unitary supercus- 
pidal representation c = ~18 x of M = M(F), where 01 is a supercuspidal 
unitary representation of GLz(F) with central character w and x is a uni- 
tary character of F*, Then I(C) is always irreducible. The representation 
I(al~’ Q9 x) is reducible if and only ifw = 1 and s = Ai, where u denotes 
u = Idet( )I for GL#). The representation I(&/2 @ x) has a unique 
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generic special subrepresentation and a unique irreducible preunitary non- 
tempered non-generic quotient. For 0 < s < l/2, all the representations 
I@# @x) are in the complementary series and s = l/2 is their end point. 

b) For G = Spd( F) or PSp.@), the representation I(a) is reducible 
if and only if u z ir (thus u2 = 1) and w # 1. Suppose w = 1 so that 
I(a) is irreducible. Then I@‘) is reducible if and only ifs = &l/2. The 
representation I( bv li2) has a unique generic special subrepresentation and 
a unique irreducible preunitary non-tempered non-generic quotient. For 
0 < s < l/2, all the representations I@‘) are in the complementary series 
and s = l/2 is their end point. 

c) The Pkncherel measure &Z, a) is given by the formula 

(1 - w(tJ)q-+)(l - w(“)-‘q28) 
p(sz9 4 = y(G~p)2qn(u1)(l - w(a)q-l-2s)(1 - w(tJ)-lq-l+25) 

ifw is unramified, and by 

~(6, a) = y(G/P)2q”(“1)+“@‘) 

otherwise. n(gl) and n(w) are the conductors of crl and w, respectively. 

Proof. One only needs prove part c). By Corollary 3.6 of [29] one must 
calculate 

(6.1.1) E(S,Q1,P2,1CIF)e(2S,W,~F)O(--S,~l,P2,~=)E(--2S,W-.1,~F)* 

Observe that the defining Euclidean measures for intertwining operators 
are self dual with respect to +F. Therefore, if +F is unramified, then these 
measures must be the standard ones, i.e. 0 must have measure one with 
respect to every direction on the Lie algebra of N. We shall now assume 
J~F is unramified. If one uses [14,45] one immediately sees that 

+,61,p2,tiF) = C(%?b)Q-n(al)S 

where c(q) +F) and c(w, $F) are two non-zero complex numbers. Prop+ 
sition 7.8 of [29] now implies c( & , &) = c(Q,$F). Thus (6.1.1) equals 

I+1 9 1cIF)C(W, tiF)12* 

By (3.1) this equals q’@l)+n(w), proving Proposition 6.1. Cl 

Next let G be a split group of exceptional type G2. Let P = MN 
be the parabolic subgroup for which M is generated by the short simple 
root a. Then M = GL(2). Let p be the long simple root of G. The 
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isomorphism M s GL(2) is such that H,(t) = diag(t,t-‘), Hs~+&) = 
diag(t,t), HP(~) = diag(l,t), Haa+p = diag(t,l), Ha+&) = diag(t,t2), 
and H2a+p(t) = diag(t2, t). Let 0 be an irreducible unitary supercuspidal 
representation of 1M = G&(F). Then $o(a) Z c implies c E “a. 

The adjoint action r of LM on Ln is r = p2 $ A2p2 @ p2 @ A2p2, where 
p2 is the standard representation of G&(C). Again 

Pg,J(q-) = L(s, qp2)-l = l 

and 
Pq(q-“) = L(s, w)-l. 

IfaZZwithw#l,thenI(a) is reducible and there is no more reducibility 
or complementary series. Now assume c h, a” and w = 1. Then I( 0) is 
irreducible. The index i is again i = 2. The value of 5 is 3cu + 2p and 

Q(“~~~(~)) = j(3a! + 2/3)(m)l’. 

Let m = diag(det m, 1) . mo with mo E S&(F). Writing diag(det m, 1) = 
Ha*+P(det m) then implies (3cu + 2@(m) = det m, But now it -follows from 
Theorem 5.1 that 1(a @ v’) is irreducible unless s = &l/2, v = 1 det( )I. 
Moreover I(a 8 ~~1~) has a unique generic special subrepresentation and a 
unique irreducible preunitary non-tempered non-generic quotient. Thus: 

Proposition 6.2. a) Let G be an exceptional split group of’ type G2. 
Assume the Levi factor M of P = MN is generated by the short root of G. 
Let c be an irreducible unitary supercuspidal representation of M. Then 
c is ramified if and only if cr S I?. Assume 0 Z iT but w # 1. Then I(a) is 
reducible and there are no complementary series. Now suppose cr S i? but 
w= 1. Then I(a) is irreducible. Moreover I(a @ vd) is irreducible unless 
S = &l/2. The representation I(a 8 ~~1~) has a unique generic discrete 
series subrepresentation and a unique irreducible preunitary non-tempered 
Langlands quotient. All the representations I(a QD Y’), 0 < s < l/2, are in 
the complementary series and s i l/2 is the edge of complementary series. 

b) The Plancherel measure p(sZ, a) is given by the formula 

(1- w(zz7)qo2”)(l -w(“)-‘1q25) iw 4 = To2Q”(~)+~(“~~)(l - W(TJ)q-l-2r)(l - w(p)4q4+2s) 

ifw is unramified, and by 

otherwise. Here n(a), n(w), and n(a@w) are the corresponding conductors. 

Rem& 6.3. Together with Propositions 8.3 and 8.4, and Remark 8.5 of 
[29] (also see [43] for G = GSp4 with P equal to the non-Siegel maximal 
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parabolic subgroup of G), this leads to a complete analysis of the unitary 
duals of all the rank two split groups supported at their maximal parabolic 
subgroups. The complete unitary dual of GSp#) is the subject matter 
of a forthcoming paper of M. Tadic, a sequal to his work with P. Sally [28]. 
Finally we refer to the Corollary to Proposition 6.2 and Proposition 1.1 of 
[31] for a formula for the Plancherel measure for the exceptional group G 
of type Gz when M is generated by its long simple root. 

Remark: 6.4. Although the results of Propositions 6.1 and 6.2 seem to follow 
the same simple pattern in terms of the inducing representations, this is 
definitely not the case in general. This is evident from Proposition 8.3 of 
[29], where-G is of type Gz and P is the other maximal parabolic subgroup. 

Remark 6.5. It is knowledge of the polynomials & 1 and pb zvr, said 
in other terms, the L-functions L(s, b,~) and L(&, rz)-which allows 
us to obtain such precise results on reducibility of I(sZ, a). While there 
are many cases where these factors are not known, there are instances 
in which they can be predicted. For example, based on the results of 
[15], we believe there may be no complementary series coming from the 
supercuspidal representations of the Levi subgroup -GL,(F) of the group 
SpzJF) whenever n > 1 is odd. In other words no reducibility can happen 
off the unitary axis in this case. This is just an example of a case where 
both L-functions are identically equal to 1. 

Remark 6.6. In general when c is supercuspidal, the polynomials &J and 
p0 2 are such that the operator P 

is holomorphic and non-zero for all values of s [34]. Therefore local calcula- 
tion of these polynomials rests upon the knowledge of poles of intertwining 
operators, a subject in which the method of Olganskii [46] seems to be 
useful [47]. One deep and surprising consequence of Theorem 5.1 is that 
understanding the poles not only determines the reducibility on the unitary 
axis, but also off it. 

7. EXPLICIT FORMULAS FORTHE PLANCHEREL 
MEASURES FOR GL(n) AND X(n) 

When G = GL(n), Langlands’ conjecture was proved by the author in 
132,331. Consequently Plancherel measures were given in terms of certain 
Rankin-Selberg L-functions and root numbers [13] for GL(n). The purpose 
of this section is to use the results of [13] and [32] to give explicit formulas 
for the measures. 

It is enough to compute Plancherel measures when P is maximal. Thus 
let G equal GL(n + m), where n and m are positive integers, and let M 
equal GL(n) x GL(m). Assume u = CQ @ ~2 is a tempered representation 
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of M. Let L(s,cl x ~2) and +,cl x c2,$=) denote the Rankin-Selberg 
L-function and root number attached to 61 and a2 by Jacquet, Piatetski- 
Shapiro, and Shalika in [13], respectively. Then by Theorem 5.1 of [32] and 
the validity of Conjecture 4.1 in this case, 

qs, q x 02) = L(S, 01 63 ~29Pm @ 9 

where pm and pn are the standard representations of CL,(c) and GL,(C), 
respectively, and the factors on the right are those defined in Section 4. 
Now, either using our results or Theorem 6.1 of [32], the Plancherel constant 
p(sZ, q @ 62) satisfies: 

p(sZ, q 8 c2) = y(G/P)2q”(“X4a) L(1 + s, 01 x Z2) L(1 - s,ijl x 62) 
L(s,cq x Z2) l  q-s,51 x  02) ’ 

where n(& x 02) is an integer defined by 

The constant c(& x ~2) is a non-zero complex number. As an example 
consider the case n = 1 and CT~ = 1. Then by Theorem 5.1 of [32], the 
integer n(al x 1) is the conductor of 61 (cf.[14]). The purpose of this 
section is to calculate these L-functions explicitly in order-to obtain explicit 
formulas for p(sZ,crr @ 62). 

By the product formula for Plancherel measures and Proposition 8.4 of 
[13], we may assume 61 and 62 are both in the discrete series. By [6,44], 
there exist two integers 01 and t with at = m and an irreducible unitary 
supercuspidal representation ?FO of GL,(F) such that if 7ri = 1r0 QP vqoi, 
1 5 i < t, then 01 is the unique discrete series constituent a@~, . . . , ~2) of 
the representation induced from nl@ 7~2 l  l  l @lrl. Similarly, choose integers b 
and u with bzr = n and an irreducible unitary supercuspidal representation 
po of G&(F) such that ~r2 = ~(pl, . . . ,pu), pj = po Qb v--j, 1 5 j 5 ‘CL. 

Assume n 5 m. Then Theorem 8.2 of (131 implies 

U 

qs, 61 x 02) = 
rI( 

L+ 4 ?tl x Pj)* 

j=l 

Now assume 01 and 62 are two irreducible supercuspidal representations 
of GLm(F) and G&(F), respectively. Using equations (2.4.1) and (2.4.2) 
and Theorem 2.7 of [13], one sees that L(s, 61 x 02) = 1 unless ~1 E Z~@V”O 
with a complex number so which is not necessarily unique. Then 

qv1 x 62) = qs + So,& x 62). 
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NOW assume a2 z 02 QP t), where 77 E p* is unramified and 71 denotes 77 l  det. 
Then 7”’ = 1. The set of all such 7;1 is a cyclic group of order T, rln. This is 
true because each 7 is determined by q(m) and finite subgroups of C* are 
cyclic. From equation (2.4.1) of [13] it is clear that L(s,a2 x &)-’ divides 
(1 - Q-~‘), and therefore poles of L(s, 472 x iJ2) are all simple. Moreover, if 
T) is such that CQ Ly 42 QD 7, then qS = q(n) is in fact a pole of L(s, 02 X i?2). 
This is clear from the fact that the residue at every such pole is non-zero 
(see the proof of Proposition 1.2 of [8]). It now follows from the simplicity 
of the poles of L(s, ~2 x G2) that 

qs, a2 x F2) = (1 - Q-r8)-l, 

where, as above, 1‘ is the order of the cyclic group of unramified characters 
q satisfying c9 E ~2 @ f7. 

With notation as in the case of discrete series, our discussion implies 

L(S, Tl X pi) = 1 

unless po z?z ZO @ Y”O with a pure imaginary number so. In this case 

Pj 
my zl (8) y~0+l/2(t++j 

and 

Therefore 
p3 -- Y Zl Q9 v -Jo+1/2(t-u)-l+j 

. 

while 
L(s, zl X pi) = (1 - q--rro+~/Z(t-u)--~+~j . qorr)-l, 

where T is the order of the cyclic group of unramified characters 7 satisfying 
x0 fy ~0 @ 7. Observe that SO is not unique but qorSo is. We thus have: 

Proposition 7.1. Let ~1 and (12 be two discrete series representations 
of GL,(F) and G&,(F), respectively. Choose positive integers a, t, b, 
and u with at = m and bu = n, and irreducible unitary supercuspidal 
representations ~0 and po of GA,(F) and GLb(F), respectively, such that 

61 =c(q ,..., q) and as=a(pl,..., pu), where T;=QQDY*$ 1s; 
andpj=po@Y v-j, l<j<u. Then - D 

p(sZ, 61 @ 62) = y(G/P)2q*(-“1x”‘) 

unless po Z ?ro @ V”O (and therefore a = b) for some pure imaginary number 
so, in which case 

&ii, q @ c2) = y(G/P)2q”(‘2Xo~) 

$1 9 rs0-$2(t-u)+r~jt 

. 

j=l (1-p 

. q-n)( 1 - Q-tso+r/2(t-u)--t+jr f-8) 

ra0+2(t-.u)-jr . q-fb)(l - q-rbo+r/2(t-u)+jr . @J ’ 
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if n < m. Otherwise, i.e. if n > m, one must change the role of the triple 
(b,u,po) with (a$,~). H ere F is the order of the cyclic group of all the 
unratified characters 7 satisfying ?ro z no @ q. In particular, if ~1 and CT~ 
are both supercuspidal and 02 E q 8 ~‘0, then 

Suppose G = SL(r). Let P = MN be a parabolic subgroup of G 
which we may assume to be standard. Let c be an irreducible tempered 
representation of A4. Then let G = GL(r). There exists a standard para- 
bolic subgroup F = KZN of G such that M = G n G. If P is maximal, 
then so is F. By Lemma 1.1 of [30] there exists an irreducible tempered 
representation ;? of Z such that 0 C FlM. Moreover, if 51 is another 
such representation of G, then there exists a character 7 E F* such that 
51 s i? QD q. If c is in the discrete series, then so is E Clearly 

A(c, g, w)II(v, a) = A@, q w) 

and therefore 

where F is any extension of v from a; to 5: with obvious notation. We 
therefore have: 

Corollary 7.2. Let P = MN be a standard maximal parabolic subgroup 
of X(r). Let 0 be a discrete series representation of AL Choose two 
positive integers m and n, m + n = r, such that M = GL(T) n E, where 
G = GL(m) x GL(n). Ch oose a pair of discrete series representations ~1 
and ~2 of GL,(F) and CL,(F) such that cr c ZIM, where 2 = cq @ cr2. 
Then 

p(s6 0) = CL(6Q 63 Qz), 

where ~(6, q 8 ~2) are given by the formulas in Proposition 7.1. It is 
independent of-the possible choices of ~1 and ~2. 

Remark 7.3. Using Proposition 7.1 and Corollarv 7.2, it must now be a 
combinatorial problem to obtain R-groups and “therefore determine the 
number of components of the representation I(b), where c is in the dis- 
crete series. This must take care of the non-discrete part of the tempered 
spectrum of S&(F). 
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