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1. Introduction

In this note we will speculate on the possibility of establishing higher symmet-
ric power transfers for cusp forms on GL2(AF ), where AF is the ring of adeles of a
number field F , by means of extending the Langlands–Shahidi method to infinite
dimensional groups (Section 6). It appears that a straightforward generalization
[14, 15] of the theory of Eisenstein series from the finite dimensional theory [39, 40]
may not suffice. A conceptually different generalization would be necessary if
one wants to establish further transfers from forms on GLm(AF ) ×GLn(AF ) to
GLmn(AF ), from which functoriality for higher symmetric powers could be ob-
tained. We note that to obtain the fifth symmetric power transfer of a cusp form
π on GL2(AF ), it would be enough to prove that π × Sym4π can be transferred
to an automorphic representation π ⊠ Sym4π of GL10(AF ), from which the ex-
istence of Sym5π follows by an appeal to the classification of automorphic forms
on GLN (AF ). This was successfully accomplished for the transfer of forms on
GL2(AF )×GL3(AF ) to GL6(AF ) in [34]. No higher transfers of forms on products
of general linear groups is available at present. We refer to [44] for GL2 ×GL2.
We invite the reader to read Section 6 carefully to appreciate different aspects of
this observation and evidence for it as well as its positive consequences towards
Garland’s work [14, 15] on establishing meromorphic continuation of Eisenstein
series for loop groups.

We motivate the paper by discussing some very important conjectures in num-
ber theory such as those of Ramanujan–Petersson and Selberg on cuspidal rep-
resentations of GL2(AF ), as well as generic forms on groups whose connected
L–groups have a classical derived group. We concentrate on the former and re-
fer the reader to [56] for a detailed expository treatment of latter. We conclude
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the paper by recording the absolute convergence of m–th symmetric power L–
functions for cusp forms on GL2(AF ) for Re(s) > 1 and m ≤ 8 which was left
out from [33] (Theorem 7.2).

The paper is based on a talk given by the author at the International Con-
ference in Memory of Armand Borel at the Center of Mathematical Sciences in
Zhejiang University in 2004 for which I like to thank the organizers.

2. Ramanujan Conjecture for Quasisplit Groups

This is a quick summary of parts of [56].

Let F denote either a number field or a function field and let AF be its ring of
adeles. Given a place v of F , we let Fv be the corresponding completion. Next,
we let G be a connected reductive algebraic group over F and set G = G(AF )
and Gv = G(Fv). If Z is the center of G, we then let Zv = Z(Fv). We now fix
a cuspidal (unitary) representation π = ⊗vπv of G. Until counter examples were
provided for either of the groups Sp4 or U(2, 1) (cf. [23, 35]), it was believed that
[46]:

(2.1) Ramanujan Conjecture: π is tempered, i.e., each πv is tempered which simply
means that all the matrix coefficients of πv are in L2+ε(Zv\Gv) for all ε > 0.

As we just mentioned this is false in general. However, it is widely believed to
be true for GL(n).

When G is quasisplit, i.e., has a Borel subgroup B = TU, defined over F ,
then one can consider a generic character ψ of U(F )\U(AF ), i.e., one which is
non–trivial on the AF –points of every simple root subgroup of U. A cuspidal
representation π = ⊗vπv of G is called globally generic if there exists a function
ϕ in the space of π such that

∫

U(F )\U(AF )
ϕ(ug)ψ(u)du 6= 0.

The following version of Ramanujan Conjecture is expected to be true (cf. [43,
51]).

(2.2) Conjecture. Assume G is quasisplit and π is globally generic. Then π
is tempered, i.e., Ramanujan Conjecture is valid for globally generic cuspidal
representations of quasisplit groups.

When G = GLn, every cuspidal representation is globally generic [57] and
therefore our conjecture agrees with the general belief of the validity of the Ra-
manujan conjecture for GLn.

The conjecture is unresolved even for GL2 which we shall now elaborate. This
will be the main theme of the present paper. We refer to [56] for a discussion
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of the conjecture for more general groups and to [3, 4, 8, 9, 30] for the original
papers.

3. Maass Forms and the Ramanujan Conjecture

Let Γ = Γ0(N) be the Hecke subgroup of SL2(Z) of level N,N ∈ N, i.e., if

γ =

(

a b
c d

)

∈ Γ0(N), then c ≡ 0(N). Denote by h the upper half plane and

let Γ\h be the hyperbolic Riemann surface obtained by Γ acting on h through
fractional linear transformations. Let f ∈ L2(Γ\h) be a normalized cuspidal
eigenfunction for all the Hecke operator as well as ∆ = −y2(∂2/∂x2 + ∂2/∂y2).
Write ∆f = s(1 − s)f , s ∈ C; then

f(x+ iy) =
∑

n 6=0

an(|n|y)1/2Ks−1/2(2π|n|y)e
2πinx,

an ∈ C, where for each ν ∈ C, Kν(z) is the Whittaker–Bessel function bounded
at infinity, i.e., the solution of

t2K ′′
ν + tK ′

ν − (t2 + ν2)Kν = 0

satisfying

Kν(t) ∼

√

π

2t
e−t

as t goes to +∞.

Let λ1 = λ1(Γ\h) denote the smallest positive eigenvalue of ∆ on L2(Γ\h).

(3.1) Selberg’s conjecture [45, 47, 54]. λ1 ≥ 1/4.

(3.2) Ramanujan’s conjecture [45, 54]. |ap| ≤ 2p−1/2.

Neither conjectures are proved so far. The best estimates towards both con-
jectures are due to Kim–Sarnak [32]:

|ap| ≤ p−1/2(p7/64 + p−7/64)(3.3)

λ1 ≥ 1
4 − ( 7

64)2 = 0.2380371.(3.4)

Conjecture (3.1) may be considered as the archimedean analogue of (3.2) and
they are both instances of conjecture (2.2) as we explain below.

It is well–known (cf. [17]) that if f as above is a new form with nebentypus ω,
then f determines a unique irreducible constituent π = πf of

L2(GL2(Q)\GL2(AQ), ω).

Write π = ⊗pπp, where each πp is an irreducible unitary representation of
GL2(Qp), where we understand that Q∞ = R. Then (3.1) is equivalent to π∞
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being tempered, while (3.2) gives the temperedness for all p < ∞. Thus (3.1)
together with (3.2) is equivalent to Conjecture (2.2) for GL2(AQ).

It is better to take forms over an arbitrary number field F . One is then inter-
ested in irreducible constituents π of L2(GL2(F )\GL2(AF ), ω) of L2–functions
transforming under translation by elements z ∈ A∗

F of the center of GL2(AF ) by
ω(z), where ω is an idele class character of A∗

F . We will, more generally, consider
irreducible cuspidal constituents π of L2(GLn(F )\GLn(AF ), ω) for arbitrary n
and with similar meanings for ω, etc. Then π = ⊗vπv and for almost all v <∞,
class of πv is parametrized by a semisimple conjugacy class in GLn(C), or for
simplicity, by a diagonal element tv ∈ GLn(C) (cf. [5]).

When n = 2, we can write

tv =

(

αv 0
0 βv

)

,

αv, βv ∈ C∗. Then the Ramanujan Conjecture for π simply requires

|αv| = |βv| = 1

for all such v.

The estimate (3.3) follows from

(3.5) p−7/64 ≤ |αp|, |βp| ≤ p7/64.

When F is strictly larger than Q, (3.5) is not available. In fact, for arbitrary
F one must contend to the slightly weaker result established by Kim–Shahidi in
[33]

(3.6) q−1/9
v < |αv |, |βv| < q1/9

v .

A similar estimate based on 1/9 can be established at archimedean places (cf. [29]),
replacing (3.4).

For arbitrary n and F , Luo, Rudnick and Sarnak have established the estimate

(3.7) q
−( 1

2
− 1

n2+1
)

v ≤ |αiv| ≤ q
1

2
− 1

n2+1
v

in [42] which also holds at archimedean places. Here tv = diag(α1v , . . . , αnv) ∈
GLn(C).

4. Functoriality and Symmetric Powers

The recent progress made towards the Ramanujan and Selberg conjectures
relies on establishing certain new cases of Langlands functoriality conjecture [1,
28, 33, 34, 38]. In this section we will explain the case of symmetric powers for
GL2.
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Given an integer m, let Symm denote them–th symmetric power representation
of GL2(C) on symmetric tensors of rank m, or the homomorphism

Symm : GL2(C) → GLm+1(C)

which is obtained as the matrix Symm(g) of change of coefficients of a homoge-
neous polynomial of degree m under the change of variables

(x, y) 7→ (x, y) · g.

Let π = ⊗vπv be a cuspidal representation of GL2(AF ). Given an unramified
place v, let tv ∈ GL2(C) denote the corresponding diagonal element determining
class of πv. Then Symm(tv) ∈ GLm+1(C) will determine an unramified (spherical)
representation of GLm+1(Fv) which we denote by Symmπv. More precisely, let

(4.1) φv : W ′
Fv

→ GL2(C)

be the two dimensional representation of the Deligne–Weil group W ′
Fv

parame-
trizing πv for all v by Kutzko [36] and Langlands [41]. Then Symmφv determines
a (m + 1)–dimensional representation of W ′

Fv
. Let Symmπv be the irreducible

admissible representation of GLm+1(Fv) attached to Symmφv by Langlands [41],
Harris–Taylor [20] and Henniart [21]. When πv is spherical, this will be the same
spherical representation we discussed earlier. Set

Symmπ = ⊗vSymmπv.

(4.2) Conjecture (Langlands functoriality conjecture for symmetric powers). Symmπ
is an automorphic representation of GLm+1(AF ).

(4.3) Theorem. Symmπ is automorphic in the following cases:

1) m = 2 (Gelbart–Jacquet [18])
2) m = 3 (Kim–Shahidi [34])
3) m = 4 (Kim [28])

While the automorphy of Sym2π was established in 1978, the cases of Sym3π
and Sym4π were not obtained until 2002.

Estimates (3.3), (3.4) and (3.5) are obtained by applying techniques of ana-
lytic number theory to the properties of L(s,Sym4π,Sym2) and particularly its
absolute convergence for Re(s) > 1 (cf. [6, 12, 25, 32, 33] and Corollary 7.4 here).

Estimate (3.6), proved in [33], and its archimedean counterpart, proved in
[29], are obtained by applying a general result of [51, 52], Lemma 5.8, to the
case E8 − 2 of [51], with the representation of M(AF ), tailored from Sym3π and
Sym4π as explained in [33]. Observe that the derived group of M is isomorphic
to SL4×SL5. We refer to [55] for a survey of these results, as well as many other
consequences of the existence of Sym3π and Sym4π.
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5. Some Triple Product L–functions; More Functoriality

The existence of symmetric cube is a consequence of another case of functori-
ality, namely, let

(5.1) ρ2 ⊗ ρ3 : GL2(C) ×GL3(C) → GL6(C)

be defined by sending

(g1, g2) 7→ g1 ⊗ g2.

Langlands functoriality conjecture then requires that ρ2 ⊗ ρ3 be functorial. More
precisely, let πi = ⊗vπiv be cuspidal representations of GLi+1(AF ) for i = 1, 2.
Let ϕiv : W ′

Fv
→ GLi+1(C), i = 1, 2, be the 2- and 3–dimensional representations

of W ′
Fv

parametrizing π1v and π2v, respectively ([22, 36, 41]). By the recent
results of Harris–Taylor [20] and Henniart [21], as well as Langlands [41], one can
attach an irreducible admissible representation π1v ⊠ π2v of GL6(Fv) to the six
dimensional representation ϕ1v ⊗ ϕ2v of W ′

Fv
. We set

π1 ⊠ π2 = ⊗v(π1v ⊠ π2v).

(5.1) Theorem (Kim–Shahidi [34]). The representation π1 ⊠π2 is an automorphic
representation of GL6(AF ), i.e., ρ2 ⊗ ρ3 is functorial.

(5.2) Corollary [34]. Sym3π is automorphic.

Corollary (5.2) is a consequence of the decomposition

π ⊠ Sym2π = Sym3π ⊞ (π ⊗ ωπ)

of the automorphic representation π⊠Sym2π. In fact, using L–functions and the
classification theorem of Jacquet and Shalika [25], one can show that either

π ⊠ Sym2π = π1 ⊞ (π ⊗ ωπ),

where π1 is a cuspidal representation of GL3(AF ), or

π ⊠ Sym2π = (π ⊗ ωπ) ⊞ (π ⊗ ωπη) ⊞ (π ⊗ ωπη
2)

which happens if and only if Sym2π ∼= Sym2π⊗η for a non–trivial cubic grössencha
-racter η. We shall assume π is not monomial. It then follows that either
π1 = Sym3π or (π ⊗ ωπη) ⊞ (π ⊗ ωπη

2) = Sym3π, proving the automorphy
of Sym3π. (See Remark 5.9 at the end of this section.)

Theorem 5.1 is proved by applying a version of converse theorems of Cogdell
and Piatetski–Shapiro [10, 11] to certain triple product L–functions L(s, (π1 ⊠

π2) × σ) whose analytic properties are obtained from the Langlands–Shahidi
method [19, 27, 48, 49, 50, 51, 52].

Let S be a non–empty finite set of finite places such that for every v 6∈ S,
v < ∞, π1v and π2v are both unramified. For each n ∈ N, let Tn(S) denote the
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set of cuspidal representations of GLn(AF ) which are unramified for all v ∈ S.
Let µ be an idele class character of A∗

F , highly ramified at one place in S. Let

Tn(µ, S) = Tn(S) ⊗ µ.

To prove Theorem 5.1 we would need to consider σ ∈ τn(µ, S) for n = 1, 2, 3, 4.
Let σ = ⊗vσv ∈ Tn(µ, S) and let, for each v, the representation

Σv : W ′
Fv

→ GLn(C)

parametrize σv ([20,21]). Let

(5.3) L(s, (π1v ⊠ π2v) × σv) = L(s, ϕ1v ⊗ ϕ2v ⊗ Σv),

where the L–function on the right hand side of (5.3) is that of Artin. Let

(5.4) L(s, (π1 ⊠ π2) × σ) =
∏

v

L(s, (π1v ⊠ π2v) × σv).

The root number ε(s, (π1 ⊠ π2) × σ) is defined similarly by

(5.5) ε(s, (π1 ⊠ π2) × σ) =
∏

v

ε(s, ϕ1v ⊗ ϕ2v ⊗ Σv, ψv),

where ψ = ⊗vψv is a non–trivial character of F\AF and the root number on the
right are again those of Artin.

(5.6) Converse Theorem (Cogdell–Piatetski–Shapiro [11]). Assume:

a) L(s, (π1 ⊠ π2) × σ) is entire,
b) L(s, (π1 ⊠ π2) × σ) is bounded in vertical strips of finite width,

and

c) L(s, (π1 ⊠ π2) × σ) = ε(s, (π1 ⊠ π2) × σ)L(1 − s, (π̃1 ⊠ π̃2) × σ̃) for all
σ ∈ Tn(µ, S) and n = 1, 2, 3, 4. Then there exists an automorphic repre-
sentation

∏′ = ⊗v
∏′

v such that
∏′

v = π1v ⊠ π2v for all v 6∈ S.

Conditions 5.6.a), b) and c) are proved by appealing to Langlands–Shahidi
method [19, 27, 39, 48, 49, 50, 51, 52]. For that, for each n = 1, 2, 3, 4, we need
to choose a triple (G,M,Π) in which G is a connected reductive group with M

a Levi subgroup, both defined over F . Moreover,
∏

is a cuspidal representation
of M = M(AF ) defined by π1, π2 and σ, in such a way that the constant term
of the Eisenstein series defined by G,M and

∏

has LS(s, (π1 ⊠ π2) × σ) as the
main L–function in its constant term [38, 39, 48, 51, 52], where

(5.7) LS(s, (π1 ⊠ π2) × σ) =
∏

v 6∈S

L(s, (π1v ⊠ π2v) × σv).



690 Freydoon Shahidi

Here is a table for pairs (G,MD) which are used in [34] to give the analytic
properties of L(s, (π1 ⊠ π2) × σ) for each n, n = 1, 2, 3, 4,

n G MD

1 SL5 SL2 × SL3

2 Dsc
5 SL2 × SL3 × SL2

3 Esc
6 SL2 × SL3 × SL3

4 Esc
7 SL2 × SL3 × SL4

where “sc” denotes the simply connected member of the corresponding isogeny
class of GD, and MD and GD are the derived groups of M and G, respectively.

Applying the techniques of the method [19, 27, 48, 49, 50, 51, 52] we get
the following theorem. More precisely, we obtain 6.5a) from Kim’s observation
[27] (Proposition 2.1 of [34]), 5.6b) from Gelbart–Shahidi [19] and 5.6c) and
corresponding multiplicativity results from [48, 49, 50, 51, 52].

(5.8) Theorem [34]. Conditions 5.6a), b) and c) are valid and therefore there
exists an automorphic representation

∏′ = ⊗v
∏′

v of GL6(AF ) such that
∏′

v =
π1v ⊠ π2v for ∀v 6∈ S.

To prove that
∏′

v = π1v ⊠ π2v for all v, more work was needed. In particular,
one needs to use base change, both normal and non–normal cubic [3, 37] , as well
as a result from theory of K–types [7] which is an appendix to [34]. As a bonus
one gets the equality of triple product L–functions L(s, π1v × π2v × σv) and root
numbers ε(s, π1v × π2v × σv, ψv) defined by Langlands–Shahidi method [52] with
Artin factors for all v. Note that L(s, π1v × π2v × σv) and ε(s, π1v × π2v × σv, ψv)
are defined completely by methods of harmonic analysis (cf. [49, 52]) while the
Artin L–functions L(s, ϕ1v ⊗ϕ2v ⊗Σv) and root numbers ε(s, ϕ1v ⊗ϕ2v ⊗Σv, ψv)
are completely of arithmetic nature [37] and their equality is quite deep. Note
that L(s, π1v × π2v × σv) = L(s, ϕ1v ⊗ ϕ2v ⊗ Σv) = L(s, (π1v ⊠ π2v) × σv) for all
v 6∈ S, trivially.

(5.9) Remark. Suppose Sym3π is not cuspidal. Then either π is monomial
in which case Sym2π is not cuspidal, or Sym2π is cuspidal, but there exists a
grössencharacter η 6= 1 such that

(5.10) Sym2π ∼= Sym2π ⊗ η.

Then η3 = 1 and η determines a cubic cyclic extension E/F . It is quite easy to
show that then πE , the base change of π, is monomial (cf. [53]). Let σE be the
dihedral representation of WE such that πE = π(σE). Then, as it is explained
in Lemma 6.5 of [34], σE can be extended to a two dimensional representation
of WF which is of tetrahedral type (cf. [16, 34, 37]). This is possible since σE

is invariant under Gal(E/F ) and H2(WF ,C
∗) = 1. The fact that representation

σ is of tetrahedral type follows from the fact that π is not monomial, together
with an inspection of the image of σ in PGL2(C) to rule out the octahedral and
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icosahedral cases, since it must contain a non–trivial normal subgroup of index
3 (cf. the diagram in page 198 of [16]). It then follows that π(σ)E = π(σE) = πE

and therefore (cf. [2]) π(σ) = π ⊗ ηi, i = 0, 1, 2, where π(σ) is the cuspidal
representation of GL2(AF ) attached to σ by Langlands [37]. Twisting σ by η−i,
if necessary, implies that there exists a tetrahedral representation σ such that
π = π(σ). Theorem 6.1 of [34] then can be formulated as:

(5.11) Proposition. Suppose π is a cuspidal representation of GL2(AF ). Then the
following statements are equivalent:

a) Sym2π is cuspidal, but Sym3π is not.
b) Sym2π is cuspidal and (5.10) holds, i.e., there exists a non–trivial cubic

grössencharacter η of F such that

Sym2π ∼= Sym2π ⊗ η.

c) π is of tetrahedral type, i.e., there exists a tetrahedral representation σ of
WF , an irreducible two dimensional complex representation of WF whose
image in PGL2(C) is isomorphic to A4, such that π = π(σ) through the
Langlands correspondence.

In particular, if π corresponds to a holomorphic cusp form, then σ is odd, i.e.,
det(σ(c)) = −1, where c is the image of complex conjugation in Gal(Q/Q).

Similar results concerning cuspidality of Sym4π and its connection with octa-
hedral representations of Galois group are established in [33].

6. Functoriality of Higher Symmetric Powers and Kac–Moody

Groups

This section is quite speculative and the reader must not look for much rigor,
but rather philosophical remarks.

In this section we speculate on whether a straightforward generalization of
the theory of Eisenstein series to Kac–Moody groups leads to new triple product
L–functions and thus cases of functoriality. It becomes evident that a straight-
forward generalization will lead to nothing new and one needs a conceptually
different approach if one hopes to generalize the Langlands–Shahidi method [19,
27, 39, 49, 50, 51, 52] to these groups. We start by discussing the existence of
Sym5π.

An application of Clebsch–Gordan formula implies that the functoriality of

Sym5 : GL2(C) → GL6(C)

follows immediately from that of

ρ2 ⊗ ρ5 : GL2(C) ×GL5(C) → GL10(C).
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To apply the converse theorem we discussed earlier [11], we need to have a way
of establishing analytic properties of triple product L–functions on GL2 ×GL5 ×
GLn, n = 1, 2, 3, . . . , 8. To use the Langlands–Shahidi method we need to consider
a group G, possibly infinite dimensional, with a Levi subgroup M whose derived
group is MD = SL2 × SL5 × SLn, n = 1, 2, . . . , 8.

In the notation of [26], G will be a Kac–Moody group whose Cartan matrix
will be of type T2,5,n. (We will assume the existence of these groups as well.)
When n = 1, 2, 3, one can take G = SL7, D

sc
7 , E8. In these cases G is finite

dimensional and the method applies and should give all the necessary analytic
properties of L(s, π1 × π2 × σ), where π1, π2 and σ are cuspidal representations
of GL2(AF ), GL5(AF ) and GLn(AF ), n = 1, 2, 3, respectively.

Now assume n ≥ 4. None of the groups T2,5,n is now finite dimensional. In fact,
they are not even affine (loop groups) and it is only T2,5,4 which is hyperbolic,
i.e., its proper connected subdiagrams are either finite dimensional or affine.

The problem is that when n ≥ 4, none of the Levi subgroups M are self
associate as we explain below.

(6.1) Definition. Let P = MN be a maximal parabolic subgroup of a Kac–Moody
group G. Assume M ⊃ T, a maximal torus whose restricted simple roots ∆
generate a minimal parabolic subgroup contained in P. Let θ ⊂ ∆ generate M.
Since P is maximal ∆\θ = {α}. The Levi subgroup M or equivalently θ is called
self–associate, if there exists an element w0 in the Weyl group W (A0,G) of the
maximal split subtorus A0 of T such that w0(θ) = θ and w0(α) < 0.

(6.2) Lemma. Assume dimG = ∞, but dimM < ∞. Then M cannot be self–
associate.

Proof. Suppose M is self–associate. Since M is finite dimensional, the Weyl group
of A0 in M has a longest element wM

0 . Then w0w
M
0 (θ) = −θ and w0w

M
0 (α) < 0.

Thus w0w
M
0 must in particular send positive imaginary roots to negative roots

which is a contradiction (Proposition 5.2 of [26]; also see Remark 5.9 of [26]). We
recall that a root α is imaginary if and only if there is no w ∈ W (A0,G) such
that w(α) is simple.

This observation can be experimentally validated by calculating, formally and
under all the simplifying assumptions, the constant term of the Eisenstein series
attached to (G,M) in the cases n = 4, . . . , 8 discussed earlier, following Garland
[14, 15] who generalizes Langlands [39, 40]. One can see that in each case all that
remains is the trivial term f(e). In fact, given any Weyl group element w 6= 1, one
can always find a subset of roots with root spaces in N which when conjugated by
w generate the unipotent radical N1 of a proper parabolic subgroup in M. One
then needs to proceed with the same type of argument as in [39] and integrate
the cusp form on M = M(AF ) over N1(F )\N1(AF ) which evidently vanishes.
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Although we have only checked this carefully in the example E
(1)
6 below, the result

seems to be quite general. This is very different from the finite dimensional cases
where one at least always gets the non–trivial term, i.e., the one involving the
quotient of product of L–functions.

(6.3) Conclusion. The straightforward generalization of the theory of Eisenstein
series to infinite dimensional cases as pursued by Garland [14, 15] will not lead
to any new L–functions beyond those coming from finite dimensional cases.

On the other hand there are many self–associate non–maximal parabolic sub-
groups of even loop groups. Our observation then hints that the analytic con-
tinuation of Eisenstein series on Kac–Moody groups should reduce to the cases
of finite dimensional groups. This ought to be quite useful to Garland who has
already started studying them in the case of minimal parabolic subgroups in a
systematic way, benefiting from properties of Riemann zeta function [14, 15].

On the dual side, one can try to imitate the situation of finite dimensional
groups in the setting of L–groups, trying to determine what representations ap-
pear in the adjoint action of LM , the L–group of M , on Ln, the Lie algebra of
L–group ofN . Of course, we will be interested in the situation where dimM <∞,
but dimN = ∞. Many interesting representations do appear. In the example

below we will consider the affine group E
(1)
6

α1 α3 α4 α5 α6

α2

α7

and consider the case where α = α4, θ = {α1, α3, α7, α2, α5, α6}. Instead, we will
calculate ad(mC) on nC, the complex Lie algebra of roots restricting to α = α4

and its multiples, where mC is the Levi subalgebra of gC, the complex affine Lie

algebra of type E
(1)
6 , generated by θ. Using the usual calculations by means of

Cartan matrices and our knowledge of highest weights it is easy to see that the
following representations

r1 = δ1 + δ7 + δ6,(6.4)

r2 = δ3 + δ2 + δ5(6.5)

and

(6.6) r3 = (δ1 + δ3) ⊕ (δ2 + δ7) ⊕ (δ5 + δ6)

appear in this action, each infinitely many times. We note that

mC = sl3(C) ⊕ sl3(C) ⊕ sl3(C)
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and that δi’s denote the fundamental weights attached to αi’s as in [39, 51].

These representations are quite interesting. In fact, r1 is the triple tensor
product of standard representations of sl3(C)’s and r2 = r̃1. The representation
r3 is the direct sum of three 8–dimensional adjoint representations δ1 +δ3, δ2 +δ7
and δ5 + δ6 of these sl3(C)’s. In contrast to finite dimensional theory, we notice
that it is now possible to have both a representation and its contragredient appear
in the same adjoint action. It is also interesting to notice that it is now possible
to have a representation ri which is reducible. The imaginary roots play a crucial
role [26]. Neither happens in the case of finite dimensional groups [39, 51]. Clearly
r1 and r2 can define triple product L–functions which are new. The same is true
for r3 as it is quite hard to get ones hands on adjoint L–functions.

The irreducible constituents of r3 are equivalent as representations of sl3(C).
They each appear as an irreducible component of the adjoint action of sl3(C)

as a Levi subalgebra of the complex affine Lie algebra A
(1)
2 , generated say by

{α1, α2}, on the subspace of roots restricting to α3 and its multiples, appearing
infinitely many times. In fact, one can show that for any positive integer n, the

pair {A
(1)
n , sln+1(C)} will have the adjoint representation of sln+1(C) (on itself)

appearing infinitely many times, when sln+1(C) is the Levi subalgebra generated,
for example, by {α1, . . . , αn} ⊂ {α1, . . . , αn+1}.

The fact that both r1 and r̃1 = r2 appear in the adjoint action in the E
(1)
6

case may not be in disagreement with the earlier observation on triviality of the
constant term. In fact, even if the constant term were to imply the meromorphy
of

(6.7) L(s, π, r1)L(2s, π̃, r1)/L(1 + s, π, r1)L(1 + 2s, π̃, r1),

as in finite dimensional cases, taking into account the possible meromorphy for

L(3s, π, r3)/L(1 + 3s, π, r3) coming from A
(1)
2 , discussed before, it will be awfully

hard to prove the meromorphy of individual L–function L(s, π, r1).

To wit, let us point out that Langlands [39] discussed the meromorphic contin-
uation of L(s, π, r1) in the finite dimensional cases, by assuming the meromorphy
for all other L(s, π, r1), i ≥ 2. It was in [51, 52] where we first proved the nec-
essary induction in general to make his argument self contained. This meant
showing that each L(s, π, ri), i ≥ 2, already appears in another setting as a first
L–function. It is quite evident that this is not the case even in the example of

E
(1)
6 , when one deals with infinite dimensional group.

In fact, unfortunately, a direct induction argument starting with a line of
absolute convergence for L(s, π, r1), applied to (6.7), only implies the meromorphy
of L(s, π, r1) for Re(s) > 0. On the other hand, if one assumes what we usually
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call the “crude functional equation” [49, 52]

(6.8) L(s, π, r1)L(2s, π̃, r1) = C(s, π)L(1 − s, π̃, r1)L(1 − 2s, π, r1)

with a meromorphic function C(s, π), one concludes that

(6.9) L(1 − s, π̃, r1)L(1 − 2s, π, r1)/L(1 + s, π, r1)L(1 + 2s, π̃, r1)

is meromorphic on all of C. ¿From this one can prove, using another not so
obvious induction, that L(s, π, r1) is meromorphic on all of C.

(The complex variable s is injected into the Eisenstein series through sα̃, where

α̃ is an element in the dual of ĥe in the notation of [14], defined by 〈α̃, β〉 = 1
for β = α4 and 〈α̃, β〉 = 0 for β ∈ {α1, α3, α7, α2, α5, α6}. This replaces ρ/〈ρ, α〉
(cf. [51]) of the finite dimensional cases, avoiding ρ, the half sum of roots in N,
which has no meaning in the infinite dimensional setting.)

The reader must now appreciate that even assuming that appropriate quotients
of products of L–functions are meromorphic as in the finite dimensional cases, it
is much harder to prove the meromorphy of individual L–functions and in general
new inputs such as the existence of a crude functional equation may be necessary.

Taking different Tp,q,r one can see that for every triple of positive integers
(p, q, r), the triple tensor product representation of slp(C)⊕slq(C)⊕slr(C) appears
in the corresponding adjoint action.

The main question is whether it is possible to detect these complex representa-
tions in a dual way in the representation theory of an infinite dimensional group
of type Tp,q,r, say over a number field.

As explained earlier, a straightforward generalization of the theory of Eisen-
stein series from finite dimensional groups to infinite dimensional ones as pursued
by Garland [14, 15] would not suffice.

Considering the complicated nature of these groups, including the lack of a
Haar measure, it may be possible that to understand their spectrum one may
need other tools beside the Eisenstein series. That remains to be seen, but there
may be some hope in reaching some insight by looking at the representation
theory of these groups over local fields as now being pioneered by Gaitsgory and
Kazhdan [13]. Finally we refer to Kim and Lee [31] for a first step towards the
notion of Satake parameters for loop groups.
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7. Higher Symmetric Power L–Functions

Although we cannot prove the functoriality of Symmπ for m ≥ 5, using auto-
morphy of Sym3π and Sym4π, we can prove certain analytic properties of

(7.1) LS(s, π,Symm ⊗ χ) =
∏

v 6∈S

m
∏

j=0

(1 − αj
vβ

m−j
v χv(̟v)q

−s
v )−1,

for m ≤ 8, where π = ⊗vπv with πv parametrized by tv = diag(αv , βv) ∈ GL2(C)
for all v 6∈ S and χ = ⊗vχv is an idele class character which is unramified for
all v 6∈ S. This is the subject matter of a collection of results proved in [33].
The following result follows from the absolute convergence of Rankin product
L–functions for GLn(AF ) × GLm(AF ) established by Jacquet and Shalika for
Re(s) > 1 in [25], and the existence of Sym3π and Sym4π. It has not appeared
elsewhere and seems to be new.

(7.2) Theorem (Kim–Shahidi). The partial L–functions LS(s, π,Symm ⊗ χ) are
all absolutely convergent for Re(s) > 1 for all m ≤ 8 and any idele class character
χ of A∗

F , unramified outside S.

Proof. Each of the L–functions LS(s, π,Symm ⊗ χ) can be written as a ratio of
an appropriate LS(s,Sympπ× (Symqπ⊗χ)) with 2 ≤ p, q ≤ 4, with a product of
LS(s, π,Symr ⊗ ωt

πχ) with r < m and some integer t (cf. proofs of Propositions
4.2–4.6 of [33]). It follows from the main result of [25] that each

LS(s,Sympπ × (Symqπ ⊗ χ))

is absolutely convergent if p and q ≤ 4. Now the theorem is proved by appealing
to its validity for smaller m inductively.

It was suggested by Langlands in [38] that if one knows the absolute con-
vergence of LS(s, π,Symm) for Re(s) > 1 and for all m, then one can immedi-
ately conclude the Ramanujan–Petersson’s conjecture |αv| = |βv| = 1. (In fact,
Re(s) ≥ σ0 for some σ0 independent of m would suffice.)

The following Corollary of our theorem gives an example of the kind of es-
timates that one can get if one only knows the convergence for some of these
L–functions. Although it is weaker than estimates (3.5) and (3.6), it is the first
instant that Langlands suggestion is partially used as finally there are enough
symmetric power L–functions to use to show the following corollary.

(7.3) Corollary. q
−1/8
v ≤ |αv|, |βv | ≤ q

1/8
v .

The following corollary is crucial in the proof of (3.6) by Kim and Sarnak [32].
It is proved here using our Theorem 7.2.

(7.4) Corollary. The L–function LS(s,Sym4π,Sym2) is absolutely convergent for
Re(s) > 1.
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Proof. Since

LS(s,Sym4π × Sym4π) = LS(s,Sym4π,Sym2)LS(s,Sym4π,Λ2)

is absolutely convergent for Re(s) > 1, the assertion follows if we prove it for
LS(s,Sym4π,Λ2). It is easy to show

(7.5) LS(s,Sym4π,Λ2) = LS(s, π,Sym6 ⊗ ωπ)LS(s, π,Sym2 ⊗ ω3
π).

The absolute convergence of the left hand side of (7.5) now follows from Theorem
7.2.
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