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I n t r o d u c t i o n  

Let  F(x) be  an analyt ic  function in C a with an isolated s ingular i ty  of mult ipl ic i ty  ~ at  the origin, * 
F(0) --- 0. The modal i ty  of the s ingular i ty  of F(X) (compare [2]) is the m a x i m u m  dimension  of the se t  of or -  
b i ts  of the group G of g e r m s  of biholomorphic  t r ans fo rma t ions  (C n, 0 ) ~  (C n, 0) in a neighborhood of the or-  
b i t  of the function F (x). (We have in mind the orbi ts  of the natural  action of the group G on the space  of 
g e r m s  of analyt ic  functions which reduce to ze ro  in the f i r s t  de r iva t ives  at  the origin.) 

In the p r e sen t  paper ,  we prove  that  the modal i ty  of the s ingular i ty  of F(x) coincides with i ts  p rope r  
modali ty,  i .e . ,  with the d imension  of the se t  of those values of the p a r a m e t e r  ~ of a ve r s a l  deformat ion  of 
this s ingular i ty  for  which the cor responding  functions Fk(x) have a s ingular  point of the s a m e  mult ipl ic i ty  
as F(x) and a re  equal to ze ro  at  the origin.  

In § 1, we es tab l i sh  the connection between the bi furcat ion d iag ram Z of a ve r s a l  de format ion  of the 
s ingular i ty  of F(x) and the t r a n s v e r s a l  T to the orbi t  of the group G which p a s s e s  through F(x). Namely,  
the natural  mapping T : T ~ Z  proves  to be p rope r  and b imeromorph ie .  F r o m  this follow, in par t i cu la r ,  
the i r reducib i l i ty  of the b i furca t ion  d iag ram and the indecomposabfl i ty  of the cover ing E ~ C g  -1. In § 2, we 
deduce f rom this the conneetedness  of the Dynkin d iag ram of the s ingular i ty  of F(x). As a co ro l l a ry  of the 
connectedness  of the Dynkin d iagram,  we prove that  an isola ted s ingular  point cannot be dis t r ibuted under 
a deformat ion  over  s eve ra l  s ingular  points all  of the cr i t ica l  values at  which coincide . t  

In § 3, we deduce f r o m  the r e su l t s  of the preceding pa rag raphs  the semicont inui ty  of the p rope r  m o -  
da l i ty  and, finally, the coincidence of modal i ty  and p rope r  modali ty.  

The author is deeply gra teful  to V. I. Arnol 'd  for  numerous  helpful d iscuss ions .  Theo rems  5 and 6 
of the p re sen t  paper  were  original ly formula ted  by Arnol 'd  as hypotheses .  The author is also gra teful  to 
A. G. Kushnirenko and V. P. Pa lamodov for  helpful d iscuss ions .  

§ 1 .  T h e  B i f u r c a t i o n  D i a g r a m ~  

Let  F(x) be an analyt ic  function in C n with an isola ted s ingular  point x ° of mult ipl ic i ty  g, F(x °) = u °. 
Let  r ° be an admiss ib le  rad ius  for  the s ingular i ty  (F(x), x°); i .e. ,  le t  for all r ,  0 < r _< r °, the s e t  F(x) = u ° 
t r a n s v e r s a U y  i n t e r s e c t  the sphere  S r = { l x - x ° I  = r} .  In the sequel,  in all s ta tements  containing x, i t  is 
a s sumed  that  I x - x ° [  ~ r °, and all deformat ions  a re  a s sumed  to be so smal l  that  the condition of t r an s -  
ve r sa l i ty  of the in te r sec t ion  with the sphere  Sr0 is not violated.  

Let  Fx (x) (~ = 0,o . . . . .  ;~-1), Fo ~x) = F (x)) be a minimal  ve r s a l  deformat ion  of the s ingular i ty  
(F(x), x°), ~ ~ Cgk be the b i furcat ion d iag ram of this deformation,  i .e . ,  the se t  of those values ~, for  which 
Fk(x) has  cr i t ica l  value equal to u °. We may  a s s u m e  that  Fx(x) = F(0,X,)(x)-k 0, where  ~' = (kl . . . . .  htt_l), 

• Here  and below, mult ipl ic i ty  means  the Milnor number  of the s ingular i ty ,  i .e. ,  the mult ipl ic i ty  of the 
grad ien t  mapping.  
t Another proof of this asse r t ion ,  based  on a theorem of A 'Campo [5], was obtained independently by L~ 
Dflhg T r a n g  [4]. 
$ The notation introduced at  the beginning of the pa ragraph  is used in the sequel without r e f e r e n c e .  
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and F(0.~,)(x °) = u °. Below, in place of F(0.k, ), we will wri te  s imply  Fk,.  Let  p : r ' p + ~ p - !  be a project ion.  
d i sc r iminan t  of this covering.  Then PZ : Z ~ C ~ ,  ts a p-sheeted ramtf~ed covemng.  Let  A c C~, be the se t  

The se t  A co r r e sponds  to the non-Morse functions in the deformat ion  FX, and has  two components ,  one of 
which (the "caust ic")  co r r e sponds  to functions having a degenera te  s ingular  point and the other,  to func- 
tions with two nondegenerate  s ingular  points with the s ame  c r i t i ca l  va lues .  

Let  Z be the space  of g e r m s  at x ° of analytic functions which have a t  this point a s ingular i ty  with 
cr i t ica l  value u °. The group G of g e r m s  of btholomorphic  t r an s fo rma t ions  (C n, x°) ~ (C a, x °) acts  on Z in 
a natural  way. Let  ~'~ (z) (a = (a~ . . . . .  a~_~), Fo (x) -- F (x))be the t r a n s v e r s a l  in Z to that  orb i t  of the 
group G which pa s se s  through F(x). We consider  ~ ( x )  as a de format ion  of the function F(x), and le t  r :  
CP~-I~C~ be the mapping under which the deformat ion  F a  is induced f r o m  the v e r s a l  de format ion  F~. 
Clear ly ,  r(C a ) ~ Z .  

#-1 THEOREM 1. The mapping ~ : C  a ~ is  p rope r  and b i m e r o m o r p h i c .  

Proof .  We may  a s sume  that x ° = u ° = 0 a n d  D2F(0) = 0, Then as a min ima l  v e r s a l  de format ion  of the 
s ingular i ty  of F(x), we can take 

where  (~j(x)) is  a bas i s  of the space  m2/(~F/~xi ). As the t r a n s v e r s a l  to the orbi t  of the group G we can 
take 

+*' ( '+-' ) + ( + +  +++) 
~'+ (+) = F (+ + . )  - -  ~ ,  -Jm (+ + . )  - -  F ( .)  + ~,  ~j++ (+) - -  ++ (.)  + ~,  +j ( . )  

where  a = (al ,  • • . ,  ~n)" [We r eca l l  that  the family  F t is a ve r s a l  de format ion  if i ts  tangent  vec tors  fo rm 
a bas i s  of the space  C~x}/(aF/axi) ,  and the family  F a  of functions having a s ingular i ty  at  the origin with 
c r i t i ca l  value z e r o  is  t r a n s v e r s a l  to the orb i t  of G if its tangent vec to r s  f o r m  a bas i s  of the space  m2/m (aF/ 

ax i) .] 

For such a choice  of the fami l i e s  F x and Fa ,  the mapping • can be defined as  follows: 

p._; .  n ~ - I  

++ = F ( . .  . . . . .  .+,) + ~,, ~Jm (,~, . . . . .  m) - ~ ,~, (,~,. . . . .  ,,~.,) + ~ ,,+J ( - , ,  . . . .  ,~,,) ; 
~n+ l  /~-1 j----+n+l i 

~L-- 1 

iffim~+1 

~j=o9 for  ] = n + t  . . . . .  ~t--1.  

Indeed, the identity F~ (x) = F,c~> (x ÷ a) i s  obvious.  F rom these  fo rmulas ,  i t  is  seen  that  ~ = ~(a) if and 
only if ~j = a j  for  j = n+ 1 . . . . .  /~-1 and the function F~(x) has  a s ingular i ty  at  the point (al  . . . . .  a n) with 
c r i t i ca l  value z e r o .  

Since for  ~ = 0 the function F0(x) = F(x) has  an isola ted s ingular  point, i t  follows that  the mapping T 
is p rope r .  Since for  sufficiently genera l  values  ~T the function F~, has  no m o r e  than one s ingular  point 
with a given c r i t i ca l  value, the t r an s fo rma t ion  • is  b i m e r o m o r p h i c .  

The theo rem is proved.  

COROLLARY 1. The se t  Z is  i r reduc ib le ,  and its normal iza t ion  is  nonsingular .  

COROLLARY 2. The monodromy group of the cover ing p~ is the s y m m e t r i c  group S(~). 

Proof .  Le t  L c C~71 be a complex line in genera l  posit ion. By a theorem of Zar i s ld i  (see [3]), the 
mapping nl ((C~-~ \ A) N L) --~ ~1 (C~ -~ \ A) is  an ep imorph i sm,  and the group ~I(C~-I\A) is genera ted  by 
the c i rcui t s  in L around the points of the se t  A N L. F rom cons idera t ions  of codimension,  the points ~' E 
A n L cor respond  to functions F~, which have, bes ides  Morse  s ingular i t ies ,  at m o s t  one s ingular  point of 
type A 2. The c i rcui t s  around these  points induce, in the monodromy group of the cover ing  pz ,  e i ther  the 
identity t r ans fo rma t ion  or an e l emen ta ry  permuta t ion  (two points a re  t r ansposed  while the r e s t  r e m a i n  
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fixed). By Corollary 1, the monodromy group of PZ is transitive. The assertion now follows from the fact 
that a transitive subgroup of S(~) which is generated by elementary permutations coincides with S(~). 

COROLLARY 3. The covering PZ is indecomposable (i.e,, has no nontrivial factor-coverings). 

For the proof, see [1], § 2, Lernma 2. 

§ 2.  .... C o n n e c t e d n e s s  of t h e  D y n k t n  D i a g r a m  

Let ~vCA and let Um(m = 1, . . . ,  ~) be the critical values of the function F~ .  We choose in the plane 
C n a point u* which is not a critical value of F~v and construct a system of paths ~m(s) [sE [0, 1], ~m(0) = 
u*, ~m(1) =urn] which intersect the point u* only for s = 0 and do not pass through critical values of F~t 
for s < 1. As is well known, one can construct from such a system of paths a basis of the vanishing cycles 
in Hn_i(V, Z), where V -- {~: [ x [ ~ r °, F~, (x) = u*} [Here, H. iV, Z) is the reduced compact homology 
of the set V, i.e., the kernel of the mapping H,(V, Z)~H. (polnt, Z).] If n is odd, then from the intersection 
matrix of the basis obtained, one can construct a graph whose vertices are the elements of the basis, where 
two vertices are connected by k solid edges if the intersection index of the corresponding cycles equals 
(-l)(n+i)/2k and by k dotted edges: if the intersection index is (-1)(n-l)/2k. In the case of even n, one should 
carry out the same construction for the function F(x) + z 2. The resulting graph is called the Dynkin dia- 
gram of the singularity of F(x). We note that the I)ynkln diagram is not uniquely defIned: it depends on 
the choice of the system of paths ~m(S) (and on the orientation of the cycles). 

THEOREM 2. The Dynkin diagram of the singularity of F(x) is connected.* 

Proof. We will show that the decomposition of the Dynkin diagram into connected components does 
not depend on the system of paths. Indeed, let ~'¢A, u m (m = 1 ..... ~) be the critical values of the func- 
tion F~,, ~m(S) and ~n(S) be two systems of paths, ~m(1) = ~r~(1) = u m, (era) and (e~n) be the corresponding 
bases of the vanishing cycles, and D and D ~ be the corresponding Dynkin diagrams. Since the path ~(s) 
differs from the path ~m(S) by the composition of simple loops corresponding to paths ~i(s),t the cycle e~ 
is obtained from the cycle e m by means of a succession of Picard-Lefschetz transformations T-. : e ~ e + 
(-1) (n+~)/2 (e, ej)ej. Therefore, the cycle e m can differ from the cycle e m only by a combinatio~ of cycles 
ej lying in the same connected component of D as e m. Consequently, if eml and emz are in different con- 
nected components of D, then e~a i and e~nz will be in different connected components of D t. Since in this 
argument the systems of paths ~m(S) and ~n(S) can exchange places, the decompositions into connected 
components of the diagrams D and D v coincide, as was claimed. 

Thus, the decomposition of the Dynkin diagram into connected components determines a partition, in- 
dependent of the system of paths, of the set of critical values of F~v(x), i.e., of the fibre of the covering p~ 
over the point ~w Since under variation of ~ and a continuous deformation of the system of paths ~m (s) 
the Dynkin diagram does not change, this partition is defined in every fibre, depends continuously on ~, 
and, consequently, determines a factor-covering of pz. By Corollary 3, this factor-covering is trivial. 
Therefore, for the proof of the connectedness of the Dynl~in diagram, it is sufficient to prove that it does 
not coincide with pz, i.e., that the Dynkin diagram cannot be decomposed into connected components con- 
sisting of individual points. This, in turn, follows from the fact that every singularity of multiplicity 
greater than one is abutted by a singularity of type Az whose Dynkin diagram is connected. The theorem 
is proved. 

Remark. Using the same arguments, one can prove the connectedness of the Dynkin diagram reduced 
modulo any p. 

THEOREM 3. Let Ft(x) (t ~ [0, to], F0{x) = F(x)) be a deformation of the function F(x) for which its 
singular point x ° decomposes into distinct singular points xi(t) ..... xk(t) (k>_2). Then Ft(xi(t))~ Ft(xJ(t)) 
for some t, j.~ 

Proof. Let us assume that the assertion is false, i.e., that all critical values Ft(xi(t)) of the function 
F t coincide. It is easily shown that, then, the Dynkin diagram of the singularity of F(x) is not connected 

*Remark in Proof. As has become known to the author, the proof of this theorem was also obtained by 
Lazzeri (see [61). 
TWe recall that a simple loop corresponding to the path ~(s) (sE [0, 1]) in C is a closed path which is ob- 
tained by approaching the point , (1 ) f rom ~(0) along the path ~(s), going around ~(1), and returning to ,(0) 
via ~(s) -~, 

Another proof of this assertion, based on a theorem of A~Campo, was obtained independently by L~ 
Tr~mg (see [5])° 
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(cycles corresponding to dis t inct  s ingular  points of F t do not i n t e r sec t  and, consequently,  lie in different  
connected components  of the Dynkin diagram}, which contradic ts  Theorem 2. 

§ 3 .  M o d a l i t y  a n d  P r o p e r  M o d a l i t y  

Definition 1. The modal i ty  of the s ingular i ty  (Fix), x °) is the l a r g e s t  number  m such that  in any neigh- 
borhood of the point F(x) there  ex is t s  in the family  Fs(x) an m-d imens iona l  analyt ic  subse t  whose in te r -  
sect ion with eve ry  orb i t  :of the group G is e i ther  empty  or d i sc re te .  

Definition 2.  The p r o p e r  modal i ty  M(F(x), x °) of the s ingular i ty  iF(x), x °) is the d imension at  the 
or igin of the se t  of values  h'  for  which FX, has  a s ingular  point of mult ipl ic i ty  #. 

THEOREM 4. Let  X be the s e t  of those ~' E CP -1 over  which the cover ing  PZ has  at  mos t  k shee ts .  If 
the d imension at  the origin of the se t  X equals d, then the p rope r  modal i ty  of the s ingular i ty  (Fix), x °) is at  
l ea s t  d -  k + 1. 

Proof .  It is not difficult to show that  there  exis t  analyt ic  functions Sj(X') (j = 2 . . . . .  /2) such that  the 
se t  of those h' over  which the cover ing PE has  at  m o s t  # '  sheets  is defined by the conditions S~ (~') . . . .  
= S~,+1 ik') = 0. If h' E X, then S~ (~') . . . . .  Sk+~ (~') = 0. There fo re ,  the se t  Y of those X' E X over  which 
pE has  just  one sheet  is dist inguished by the conditions Sk(X') = . . .  = $2(~') = 0, and consequently,  dim Y _> 
d - k +  1. It follows f rom Theorem 3 that  for  h 'E Y, the function Fh,(x) has  a s ingular  point of mult ipl ic i ty  
P. Consequently,  the p rope r  modal i ty  of the s ingular i ty  (Fix), x °) is at  l ea s t  d - k +  1, as we were  requi red  
to prove.  

THEOREM 5. P r o p e r  modal i ty  is  upper  semicont inuous.  

Proof .  Let  us a s s u m e  that  the a s s e r t i o n  of the theorem is fa lse .  Since the deformat ion  F~, is ve r sa l ,  
there  exis t  sequences  Xi--0 and x i ~ x  ° such that  M (Fx~ (x), zi) ~ M (F (x), x°). We may  a s sume  that  for  
eve ry  i the function Fhl. has a s ingular i ty  at  the point x i of mult ipl ic i ty  v and p rope r  modal i ty  N > M(F, x°), 
where  v and N do not depend on i. Let  X be the se t  of those ~' E C g-i over  which the cover ing PE has  at 
m o s t  p - v +  1 shee ts .  We will show that  d im X-> N + p - v .  

We consider  the deformat ion  F h in a neighborhood of the point X i as a deformat ion  of the s ingular i ty  
{Fhiix), xi). It is eas i ly  shown that, for  sufficiently smal l  h i, this deformat ion  is ve r s a l .  Consequently,  the 
cor responding  mapping 0i : C ~ C  v, where  C v is the p a r a m e t e r  space  of a min imal  v e r s a l  de format ion  of 
the s ingular i ty  {Fhiix), xi), is a submers ion .  Since the p rope r  modal i ty  of the s ingular i ty  (Fhi(x), xi) equals 
N, there  ex is t s  an iN+ 1)-dimensional  se t  Y in the space  C v whose points co r respond  to the functions which 
have a s ingular  point of mult ipl ic i ty  v. The set  0[i iy) c C~ has  d imension N+ p - v  + 1, and if 7,~ 0~liY), 
then F h has  a s ingular  point of mul t ip l ic i ty  v, which means  that  the number  of dis t inct  c r i t i ca l  values of the 
function Fh is at  mos t  p -  v+  1. Consequently,  p(0[l(y)) c X, and since hi can be chosen as near  as des i r ed  
to zero,  the d imension of the se t  X at  the origin is at  l eas t  N+ p - v ,  as c la imed.  It follows f rom Theorem 3 
applied to X that  the p rope r  modal i ty  of the s ingular i ty  iF(x), x °) is at  l e a s t  N, which cont radic ts  the as -  
sumption N > M(FIx), x°). The t heo rem is proved.  

THEOREM 6. The modal i ty  of the s ingular i ty  (Fix), x °) coincides with its p roper  modal i ty .  

Proof .  We may a s sume  that  x ° = 0, u ° = 0. Let  X be the se t  of those values %' for  which Fx, ix) has  
p-1 s ingular  point of mult ipl ici ty #. We consider  the s e t Y  = (p o ~)-tiX) in the space C~ of p a r a m e t e r s  of the 

t r a n s v e r s a l  to the orbi t  of the group G. It follows f rom Theorem 1 that dim Y = dim X. 

Le t  ~°E Y. If s ° is sufficiently smal l ,  then the se t  Fs(x) is  t r a n s v e r s a l  to the orbi t  of the group G 
which pa s se s  through F~0(x). Since l~c~0ix ) has  s ingular  point of mult ipl ic i ty  #, the codimension of the orbi t  
of this function equals p - 1 .  There fo re ,  the orbi t  passing through Fs0(x) in t e r sec t s  the se t  Fsixt ,  sE  Y, d i s -  
c re te ly .  Consequently, the modal i ty  of the s ingular i ty  of F(x) is at l ea s t  its p roper  modal i ty .  

We will now prove  the r e v e r s e  inequality.  It is enough to show that  there  exis ts ,  as near  as des i r ed  
to the function F(x), a function whose p rope r  modal i ty  is not l ess  than the modal i ty  of F(x) and to use the 
semicont inui ty  of the p rope r  modal i ty .  

Le t  Y c C~/~ -~ be a se t  whose in te rsec t ion  with eve ry  orbi t  of G is e i ther  empty  or d i sc re te ,  while the 
d imension of Y equals the modal i ty  of F(x). We may  a s sume  that  all  functions Fs(x), s E Y, have a s ingular  
point at the or igin of mult ipl ic i ty  v. Le t  s°q  Y. It follows f rom the definition of Y that  the mapping of Y to 
the t r a n s v e r s a l  T to the orbi t  of G which pas ses  through ;#s0(x) is p rope r .  There fore ,  the d imension  of the 
image of Y in T equals the d imension of Y. F rom the theorem on the p r o p e r n e s s  of the mapping r, applied 
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v v 

to Fq0(x), and from the fact that all functions F~(x), ~ E Y, have a singular point of multiplicity v, it follows 
that the proper modality of the function F~0(x) is not less than Y, which is what was required for the proof 
of the theorem. 
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