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S U M M A R Y
The concept of self-organized complexity evolved from the scaling behaviour of several cellular
automata models, examples include the sandpile, slider-block and forest-fire models. Each of
these systems has a large number of degrees of freedom and shows a power-law frequency-
area distribution of avalanches with N ∝ A−α and α ≈ 1. Actual landslides, earthquakes and
forest fires exhibit a similar behaviour. This behaviour can be attributed to an inverse cascade
of metastable regions. The metastable regions grow by coalescence which is self-similar and
gives power-law scaling. Avalanches sample the distribution of smaller clusters and, at the
same time, remove the largest clusters. In this paper we build on earlier work (Gabrielov et al.)
and show that the coalescence of clusters in the inverse cascade is identical to the formation
of fractal drainage networks. This is shown analytically and demonstrated using simulations
of the forest-fire model.

Key words: complexity, forest-fire model, inverse cascade, power-law scaling, self-organized
criticality, Tokunaga network.

1 I N T RO D U C T I O N

A number of phenomena in geophysics exhibit power-law
frequency-magnitude scaling. Earthquakes are a striking example.
The rate at which earthquakes occur in a region generally satisfies
the Gutenberg & Richter (1954) frequency-magnitude relation

log NC E = −bM + a, (1)

where NCE is the cumulative number of earthquakes with magnitudes
greater than or equal to M in a specified area and time interval. The
constant b or ‘b-value’ varies from region to region but is generally
in the range 0.8 < b < 1.2. The constant a is a measure of the
regional level of seismicity. Aki (1981) has shown that eq. (1) is
equivalent to the power-law relation

NC E = C A−(α−1)
E , (2)

with C a constant, AE the earthquake rupture area and α − 1 = b in
eq. (1). We observe that the negative power-law exponent associated
with cumulative distributions is increased by one over the associated
probability distribution, since the cumulative distribution function
is the integral over the probability distribution. The equivalent non-
cumulative frequency-area distribution to eq. (2) has a power-law
exponent 1.8 < α < 2.2 for the non-cumulative frequency-area
statistics of earthquakes.

Large landslides also appear to satisfy power-law frequency-
magnitude scaling under a wide variety of conditions (Hovius et al.
1997, 2000; Pelletier et al. 1997; Guzzetti et al. 2002; Malamud
et al. 2004). This behaviour is observed despite large differences in
landslide types, sizes, distributions, patterns and triggering mecha-
nisms. The non-cumulative distribution of large landslides typically
satisfies the relation

δNL S

δAL S
= C A−α

L S , (3)

where δNLS is the number of landslides with areas between ALS and
ALS + δALS and the exponent α has a value α ≈ 2.4.

The frequency-area distributions of forest and wildfires also are
well approximated by a power-law frequency-magnitude relation
(Minnich & Chou 1997; Malamud et al. 1998; Ricotta et al. 1999).
The typical exponent for a non-cumulative power-law distribution
is α ≈ 1.4. Although forest fires are not strictly geophysical phe-
nomena, they are emphasized in our analysis because they clearly
illustrate the role of clustering, which will be the principal focus of
this paper.

The concept of self-organized criticality (SOC) was introduced
by Bak et al. (1988) as a possible explanation for the behaviour
of the sandpile model. In this model there is a square grid of
boxes and at each time step a particle is dropped into a randomly
selected box. When a box accumulates four particles, they are
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redistributed to the 4 adjacent boxes, or in the case of edge boxes, lost
from the grid. Redistributions can lead to further instabilities, with
avalanches of particles lost from the edges of the grid. Because of
this avalanche behaviour, this system was given the name ‘sandpile
model’. This system, and others like it, manifest ‘avalanches’ with
a power-law frequency-size distribution and contains a steady-state
‘input’ with the ‘output’ occurring in the ‘avalanches’. The non-
cumulative frequency-area distribution of model avalanches was
found to satisfy the power-law distribution

N ∝ A−α, (4)

where N is the number of avalanches with area A and α is a constant
with values 1.0 < α < 1.3.

It is natural to associate the sandpile model with naturally oc-
curring landslides. In both cases ‘avalanches’ are associated with
metastable regions. For model landslides, the metastable region is
the region over which an avalanche spreads when triggered by the
addition of a fourth particle in a randomly selected box. Redistribu-
tions lead to a sequence of instabilities in boxes. The total number
of boxes involved in this sequence of instabilities constitutes the
metastable region as well as the avalanche. For actual landslides
the metastable region is the region over which the landslide spreads
once triggered. For landslides, typical triggering mechanisms are
earthquakes, snow-melt events, and severe storms. The fact that the
frequency-area distributions of landslides triggered by such events
are power law is direct evidence that the distribution of metastable
regions is also a power law. It should be noted that the power-law
exponent for the model avalanches in a sandpile model is α ≈ 1.4,
whereas the exponent for actual landslides is α ≈ 2.4. This differ-
ence can be attributed to the 2-D nature of the model versus the 3-D
nature of real landslides, since real landslides have a depth as well
as an area.

A second model that can exhibit self-organized complexity be-
haviour is the slider-block model (Carlson & Langer 1989). In this
model, an array of slider blocks is connected to a constant velocity
driver plate by puller springs and to each other by connector springs.
The blocks exhibit stick-slip behaviour due to frictional interactions
with the plate across which they are pulled. The frequency-area dis-
tribution of the smaller slip events again satisfies eq. (4) with 1.0
< α < 1.5 (Carlson & Langer 1989). The area A is defined to be
the number of blocks that participate in a slip event. This model is
deterministic, whereas the sandpile model is stochastic.

The relevance of multiple slider-block models to earthquakes was
considered (Burridge & Knopoff 1967; Rundle & Jackson 1977)
long before the concept of SOC was proposed and the association
of SOC behaviour with earthquakes by Bak & Tang (1989). Again,
however, the exponents of the power-law behaviour differ. The non-
cumulative power-law dependence for earthquakes is α ≈ 2, con-
siderably larger than the value 1.0 < α < 1.5 found in slider-block
models.

A third model that exhibits SOC is the forest-fire model (Bak et al.
1992; Drossel & Schwabl 1992a,b). In the simplest version of this
model, a square grid of N sites is considered. At each time step either
a tree is dropped on a randomly chosen site (if the site is unoccupied)
or a spark is dropped on the site. The sparking frequency f is the
inverse number of attempted tree drops before a match is dropped.
If f = 1/100, there have been 99 attempts to drop trees (some
successful, some unsuccessful) before a spark is dropped at the 100th
time step. If the spark is dropped on an empty site, nothing happens.
If the spark is dropped on a tree, that tree and all adjacent trees are
‘burned’ in a model ‘forest fire’. The frequency-area distribution
of the smaller fires satisfy eq. (4) with 1.0 < α < 1.3. The role of

Figure 1. The black tree bridges the gap between two clusters, resulting in
their coalescence.

metastable regions is clearly illustrated by the forest-fire model. A
metastable region is a cluster of adjacent trees that will burn when
any one of the trees is ignited by a match. Because the probability
of a match landing on a tree cluster is proportional to the area of
the cluster Ac it follows that the number of fires Nf with area Ac is
related to the number of clusters Nc with area Ac by the relation

N f ∝ Ac Nc. (5)

Since the frequency-area distribution satisfies eq. (4), that is Nf ∝
A−α

c , it follows that

Nc ∝ A−α−1
c . (6)

Tree clusters grow by coalescence. When a newly planted tree
bridges the gap between two clusters with Aj and Ai trees a new
cluster is formed with Ai + Aj + 1 trees, as illustrated in Fig. 1. Trees
cascade from smaller to larger clusters until they are lost in the fires
that destroy the largest clusters and terminate the cascade. We term
this an inverse cascade since the flow of trees is from smaller to larger
clusters. Turcotte et al. (1999) and Turcotte (1999) quantified this
inverse cascade by introducing a collision cross-section for cluster
coalescence. They obtained a self-similar cascade that led directly
to the applicable equations eqs (4) and (6), for the forest-fire model.

Since these three models have large numbers of degrees of free-
dom and their behaviour is sensitive to their initial conditions, they
are termed ‘complex’. The use of the word ‘criticality’ to describe
the behaviour of these models has led to considerable controversy.
The formal definition of critical phenomena was introduced by
physicists concerned with Hamiltonian systems where the temper-
ature plays a central role in the calculation of the partition function
in statistical mechanics—from which all thermodynamic quantities
can be calculated—a feature that is absent from the formulation
of the class of problems that we wish to address. Also, defining a
critical point requires the ‘tuning’ of a control parameter. As dis-
cussed above, the forest-fire model has two parameters, the spark-
ing frequency f and the size of the grid N . For a specified grid
size N , the sparking frequency f can be ‘tuned’ so that the largest
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fires correspond to the grid size. If the firing frequency is higher,
the largest fires will be smaller than the grid size. If the firing fre-
quency is lower, then there will be an excess number of large fires.
Grassberger (2002) has recently discussed the details of this
‘criticality’.

However, in all three cases, the frequency-area distribution of
fires is a power law satisfying eq. (4). It is this behaviour which we
will consider in this paper. Gabrielov et al. (1999) have shown ana-
lytically that the behaviour of the forest-fire model is the asymptotic
outcome of the evolution of a hierarchical set of ordinary differential
equations. The behaviour is that of an inverse cascade of clusters of
trees. Small clusters coalesce to form larger clusters, and so on. Fires
terminate the power-law behaviour of the cascade tuning parameter.
Accordingly, what has come to be called SOC by some, we will call
without prejudice ‘self-organized complexity’ to avoid any conflict
with physicists’ use of these words. Gabrielov et al. (1999) further
quantified the inverse clustering cascade by introducing cluster or-
ders in direct analogy with the so-called ‘branch orders’ employed
to river networks. In this paper we expand on this approach and
make direct comparisons with extensive numerical simulations.

2 B R A N C H I N G S TAT I S T I C S

Long before the concept of either fractals or SOC was introduced,
a self-similar stream-ordering system was introduced by Horton
(1945) and Strahler (1957). In this classification system, a stream
with no upstream tributaries is defined to be of order 1, when two
order 1 streams combine, they form a stream of order 2, and so
forth. However, when streams of different order combine, the order
of the dominant stream prevails. The stream branching networks
can be quantified in terms of bifurcation and area-order ratios. The
bifurcation ratio RB is defined according to

RB = Ni

Ni+1
, (7)

where Ni is the number of streams of order i for i = 1, 2, . . . The
area-order ratio RA is defined by

RA = Ai+1

Ai
, (8)

where Ai is the mean drainage area of all streams of order i.
Many studies have shown that both RB and RA are nearly constant

for a range of stream orders in any given river network. Pelletier
(1999) gives RB ≈ 4.26 and RA ≈ 4.6. A fractal dimension D for a
river network can be defined according to

D = 2
ln RB

ln RA
, (9)

with the values for RB and RA given above for drainage network
we have D = 1.82. Thus drainage networks are slightly less than
space filling in two dimensions. River networks were one of the
first examples of fractals in nature given by Mandelbrot (1982).
A major step forward in classifying river networks was made by
Tokunaga (1978). He extended the Strahler (1957) ordering system
to include side branching. A first-order branch joining another first-
order branch is denoted by the subscript ‘11’ and the number of such
branches is N 11; a first-order branch joining a second-order branch
is denoted by the subscript ‘12’ and the number of such branches is
N 12; a second-order branch joining a second-order branch is denoted
by the subscript ‘22’ and the number of such branches is N 22. The
branch numbers Nij for a network of order n constitute a triangular
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Figure 2. Deterministic third-order Tokunaga network.

matrix. The total number of streams of order i , Ni, is given by

Ni =
n∑

j=1

Ni j . (10)

It is convenient to introduce the branching ratio defined by

Ti j = Ni j

Ni
. (11)

The branching ratio is the average number of branches of order i
joining a branch of order j. Tokunaga (1978) introduced a required
scaling relation for self-similarity

Ti,i+k = Tk = ack−1, (12)

independent of i. An example of a deterministic third-order Toku-
naga network is shown in Fig. 2. For this example we have: N 11 =
6, N 12 = 3, N 13 = 2, N 1 = 11, N 22 = 2, N 23 = 1, N 2 = 3, N 33 =
N 3 = 1, T 12 = T 23 = T 1 = 1, T 13 = T 2 = 2. A number of authors
(Peckham 1995; Pelletier 1999) have shown that actual drainage
networks satisfy this condition with c ≈ 2.5 and a ≈ 1.2. A network
that satisfies eq. (12) is said to be a Tokunaga network.

Diffusion limited aggregation (DLA) is a simple model that
generates a dendritic branching network (Witten & Sander 1981;
Turcotte 1997). This model has been applied to a variety of den-
dritic growth patterns in igneous rocks and other minerals (Fowler
1990). Ossadnik (1992) has shown that DLA networks satisfy the
Tokunaga condition eq. (12) with a ≈ 1.5 and c ≈ 2.7.

We now apply the concepts of self-similar branching to the self-
similar coalescence of clusters. Our approach is based on a modified
version of the forest-fire model. Trees are randomly planted on a
square grid. Clusters are allowed to grow by coalescence until they
reach a specified size. When a cluster of trees reaches this specified
size it is removed (burned). One version of this model was studied
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by Newman & Turcotte (2002). Clusters were removed when they
spanned the grid (percolated). The reason for using this modified
version of the forest-fire model is to extend the scaling region to
the largest fires. Both models have identical behaviours for smaller
clusters and smaller fires.

Our model exhibits a steady-state behaviour. Clusters grow and
are lost, but at any point in time there is a number-area distribu-
tion of clusters that is only weakly dependent on time. Clusters are
continuously coalescing and our object is to associate a cluster or-
der with each cluster on the grid. A cluster on the grid that has
not combined with another cluster is a first-order cluster. When two
first-order clusters coalesce they form a second-order cluster. When
two clusters of order i coalesce they form a cluster of order i + 1,
that is,

Ni → Ni − 2, Ni+1 → Ni+1 + 1. (13)

We neglect the rare events when more than two clusters coalesce on
a single time step. When a cluster of order j coalesces with a cluster
of order i there is no change in the number of clusters of order j, for
j > i , namely,

Ni → Ni − 1, N j → N j . (14)

In addition to the number of clusters of order i , Ni, we will also
consider the mean area Ai of all clusters of order i.

In analogy to the side branching statistics of river networks we
will consider the similar statistics of cluster coalescence. A first-
order cluster coalescing with another first-order branch is denoted
by the subscript ‘11’, a first-order cluster coalescing with a second-
order cluster is denoted by ‘12’, and an ith order cluster coalescing
with a jth order cluster is denoted by ‘ij’. We will consider orders
of all clusters that have coalesced to form each cluster on the grid.
When a cluster of order i joins a cluster of order j, the history of
subclusters in the cluster of order i is erased. Only the order of the
clusters that have actually coalesced to form a higher order cluster
are tracked.

3 I N V E R S E C A S C A D E M O D E L

In our inverse cascade model, we assume that each cluster of order
i has an area Ai. In terms of numerical simulations, this is the mean
area of clusters of order i. We also introduce a rate of coalescence
rij between clusters of order i and j. We assume that this rate is
proportional to the number of clusters of order i, namely Ni, and the
number of clusters of order j, namely Nj. We also assume that the
rate is proportional to the areas Ai and Aj raised to a power β. This
scaling is an attempt to represent an ‘effective’ cluster perimeter.
[For example, Euclidean clusters would have β = 0.5. See Gabrielov
et al. (1999) for an earlier approach to this problem.] For near circular
clusters, the static ‘cross-section’ for coalescence would be expected
to be linearly dependent on the linear dimension of the cluster, i.e.
β ≈ 0.5. For more dendritic clusters the value of β would be expected
to be larger. In addition we introduce a scaling factor ε−(i− j), to
account for the fractal structure of the clusters. We expect the self-
similar cluster coalescence to depend on the difference in orders of
the two clusters. On this basis we write

ri j = Rε−( j−i) Ni N j Aβ

i Aβ

j , (15)

where R is a constant. We further assume a steady-state behaviour
so that Ni and Ai are not time dependent. We will discuss this in
more detail in the simulation section.

In the spirit of Gabrielov et al. (1999), we develop balance equa-
tions for the number Ni and mean area Ai for the ith order clusters.

For single tree, order 1 clusters, this balance requires

C = 2r11 +
∞∑
j=2

r1 j , (16)

where C is the planting rate of single tree, order 1, clusters. Since
we are assuming steady-state behaviour, this gain in clusters must
be balanced by the loss of order 1 clusters. The first term on the right
represents the loss of two order 1 clusters when they combine to form
an order 2 cluster. The summation over orders 2 to ∞ accounts for
the coalescence of order 1 clusters with clusters of higher orders.

For clusters of order i we write

ri−1,i−1 = 2rii +
∞∑

j=i+1

ri j , (17)

where the term on the left is the rate at which clusters of order i are
formed by the coalescence of two clusters of order i − 1. Note that
this is the only way in which a cluster of order i can be formed. The
first term on the right represents the loss of two order i clusters when
they combine to form a cluster of order i + 1. The summation over
orders i + 1 to ∞ accounts for the coalescence of order i clusters
with higher order clusters.

Substitution of the rates of coalescence rij from eq. (15) into
eqs (16) and (17) gives

C = 2RN 2
1 + R

∞∑
j=2

ε−( j−1) N1 N j Aβ

j , (18)

where we note that A1 = 1 and

N 2
i−1 A2β

i−1 = 2N 2
i A2β

i +
∞∑

j=i+1

ε−( j−i) Ni N j Aβ

i Aβ

j . (19)

We now seek a self-similar solution by assuming that

Ni Aβ

i = N1xi−1. (20)

Substitution of this scaling into eqs (18) and (19) gives

C = 2RN 2
1 + RN 2

1

∞∑
j=2

(
x

ε

) j−1

(21)

and

x2i−4 = 2x2i−2 + x2i−1

ε

∞∑
j=i+1

(
x

ε

) j−i−1

. (22)

Noting that with k = j − i − 1 we have (sum of the infinite geomet-
rical series)

∑∞
k=0( x

ε
)k = 1/(1 − x/ε) and we can rewrite eqs (21)

and (22) as

C = RN 2
1

(
2 + x

ε − x

)
(23)

and

1 = 2x2 + x3

ε − x
= x2

(
2 + x

ε − x

)
. (24)

From eq. (24) we obtain an expression for ε in terms of x, namely

ε = x − x3

1 − 2x2
. (25)

In the Euclidean limit, ε = 1 we have x = 0.55496. Substitution of
eq. (24) into eq. (23) gives

N1 = x
√

C/R. (26)

We next write a steady-state balance equation for the mean cluster
areas Ai. For clusters of order i we have

2ri−1,i−1 Ai−1 +
i−1∑
k=1

rik Ak = 2rii Ai +
∞∑

j=i+1

ri j Ai . (27)
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The first term on the left is the area increase when two clusters of
order i − 1 coalesce to form a cluster of order i. The second term on
the left accounts for area increase due to the coalescence of clusters
of order 1 to i − 1 with clusters of order i. The first term on the right
represents the loss of area when two clusters of order i merge to
form a cluster of order i + 1. The second term on the right accounts
for loss of area due to the coalescence of clusters of order i with
clusters of orders i + 1 to infinity.

Substitution of the rates of coalescence rij from eq. (15) into eq.
(27) gives

2N 2
i−1 A1+2β

i−1 +
i−1∑
k=1

ε−(i−k) Ni Nk Aβ

i A1+β

k =

2N 2
i A1+2β

i +
∞∑

j=i+1

ε−( j−i) Ni N j A1+β

i Aβ

j .
(28)

Substitution of the scaling relation eq. (20) into eq. (28) gives

2x2(i−2) Ai−1 + xi−1
i−1∑
k=1

ε−(i−k)xk−1 Ak =

2x2(i−1) Ai + Ai x2i−1

ε

∞∑
j=i+1

(
x

ε

) j−i−1

. (29)

Assuming the further self-similar scaling relation

xi−1 Ai = yi−1 (30)

and using eq. (24), the sum of the infinite geometrical series, and
eq. (30), we find that eq. (29) reduces to

2xyi−2 + x2ε1−i
i−1∑
k=1

(εy)k−1 = yi−1. (31)

The summation in this equation can be simplified using

i−1∑
k=1

(εy)k = (εy)i−1 − 1

εy − 1
. (32)

Substitution of eq. (32) into eq. (31) gives

2xyi−2 + ε1−i x2

[
(εy)i−1 − 1

εy − 1

]
= yi−1. (33)

This equation has a similarity solution only for large values of i, that
is when (εy)i−1 � 1, whereupon in this limit eq. (33) becomes

2
x

y
+ x2

εy − 1
= 1. (34)

Comparing eq. (24) with eq. (34), we observe that they become
identical if and only if we select

y = 1

x
. (35)

Substitution of eq. (35) into eq. (30) gives

Ai = x−2(i−1). (36)

From eq. (8) it follows that the area-order ratio RA for clustering is
given by

RA = Ai+1

Ai
= 1

x2
. (37)

The area-order scaling for clusters satisfies the same self-similar
scaling as drainage networks. In the Euclidean limit with ε = 1 and
x = 0.55496, we have RA = 3.2823.

Substitution of eq. (36) into eq. (20) gives

Ni = N1x (1+2β)(i−1). (38)

From eq. (7) it follows that the bifurcation ratio RB for clustering is
given by

RB = Ni

Ni+1
= 1

x1+2β
. (39)

The number-order scaling for clusters is also self-similar. In the
Euclidean limit β = 1/2 and ε = 1 we have RB = RA = x−2. Com-
bining eqs (36) and (38) gives

Ni = N1 A
− 1+2β

2
i . (40)

Thus our inverse cascade model gives power-law scaling. It must
be noted that our introduction of cluster orders is equivalent to log-
arithmic binning so that eq. (40) is equivalent to the cumulative
distribution given in eq. (2). Thus we have

α = β + 3

2
. (41)

In the Euclidean limit β = 1/2, we have α = 2.
It is also of interest to determine the mean lifetime of clusters of

order i , τ i . In terms of the planting rate of single trees C1 introduced
in eq. (16), the mean lifetime of clusters of order 1 is

τ1 = N1

C
. (42)

Since r i−1,i−1 is the rate of formation of clusters of order i, the mean
lifetime of clusters of order i is given by

τi = Ni

ri−1,i−1
. (43)

Substitution of r i−1,i−1 from eq. (15) gives

τi = Ni

RN 2
i−1 A2β

i−1

(44)

and further substitution of eqs (20), (38) and (26) gives

τi = N1

C
x (2β−1)(i−1). (45)

In the Euclidean limit β = 1/2 we have τ i = N 1/C = τ 1 and clusters
of all orders have the same mean lifetime.

In analogy to the branching ratios for stream networks, T i j defined
in eq. (11), we introduce a cluster coalescence ratio T i j that is the
average number of clusters of order i that coalesce with a cluster of
order j. In terms of the rate of coalescence between clusters of order
i and j , r i j defined in eq. (15), we can write

ti j = ri jτ j

N j
. (46)

Substitution of eq. (15) gives

ti j = Rτ jε
−( j−i) Ni Aβ

i Aβ

j . (47)

Further substitution of eqs (20), (36), (45), and (26) reduces this to

ti j = x2(εx)−( j−i). (48)

Letting k = j − i this can also be written as

ti,i+k = tk = x

ε

(
1

εx

)k−1

. (49)

Thus our self-similar cluster coalescence satisfies the Tokunaga self-
similar branching statistics introduced in eq. (12) with a = x/ε and
c = (εx)−1. In the Euclidean limit with ε = 1 and x = 0.55469, we
have a = 0.55469 and c = 1.8028.
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4 N U M E R I C A L S I M U L AT I O N S

In order to test the self-similar analysis of cluster coalescence given
above, we have carried out a series of numerical simulations. These
simulations use a modified version of the forest-fire model as de-
scribed previously. A square L × L grid of sites is considered. A site
is chosen at random at each time step, and a tree is planted on the
site if it is unoccupied. Cluster sizes of trees grow by coalescence
primarily when a planted tree bridges the gap between two adjacent
clusters as illustrated in Fig. 2.

The order of each cluster as defined above is tracked and the
number of clusters and their areas are determined. Clusters at or
above a prescribed area threshold are removed from the grid at the
time when they form. This allows us to avoid the space filling implied
in our analysis presented above. A particular value of this prescribed
threshold is based on percolation theory results (Stauffer & Aharony
1994). It is known that the largest cluster at the percolation threshold
is on the verge of becoming a space-filling object. We choose the area
threshold to be about 10 times smaller then the area of the percolation
cluster at the percolation threshold which scales ∝ L1.895 with the
linear grid size L. It should be noted that our numerical results do
not change significantly when we vary the area threshold value by an
order of magnitude in either direction. After a sufficiently long initial
transient, the system experienced only small fluctuations for major
system parameters like average grid occupancy and average cluster
count. Thus, the model is in a quasi-steady state with a continuous
introduction of single trees and the removal of trees when they are
in a cluster of the prescribed maximum area. There is an inverse
cascade of trees from clusters of lower order to clusters of higher
order. The orders of all subclusters that have coalesced to each cluster
are tracked.

For the simulation reported here we utilized a 30 000 × 30 000
grid. Clusters at and above 2 per cent of the grid size were instan-
taneously removed from the grid when formed by coalescence. A
typical distribution of tree clusters on the grid is given in Fig. 3. The
number of clusters of order i , Ni, and the mean area of clusters of
order i , Ai are given in Fig. 4.

The mean cluster areas are well represented by the power-law
fit

Ai = 0.06 × (4.325)i−1. (50)

From eq. (37) this corresponds to an area-order ratio RA = 4.325 and
gives x = 0.4808. From eq. (25) we find that the required scaling
factor is ε = 0.6875.

From Fig. 4 we also see that cluster numbers Ni are well fitted by
the power-law

Ni = 5 × 1010(0.186)i−1. (51)

From eq. (39) this corresponds to a bifurcation ratio RB = 5.376.
Taking x = 0.4808 from the above, we find from eq. (39) that β =
0.6484. This is somewhat larger than the Euclidean value β = 0.5.

For each cluster order, the number of clusters Ni is plotted against
the mean cluster area Ai in Fig. 5. This dependence is well repre-
sented by the power-law fit

Ni = 8 × 109 A−1.147
i . (52)

Since the binning by order is equivalent to a cumulative distribution,
we find from eq. (2) that α = 2.147. Also included in Fig. 5 is
the actual frequency-area distribution of clusters as measured. The
power-law fit for this dependence is given by

NA = 8 × 109 A−2.184. (53)

Since this is a non-cumulative distribution we find using eq. (4)
that α = 2.184. The two distributions in Fig. 5 are in quite good
agreement.

The dependency of the mean lifetime τ i of clusters of order i is
shown in Fig. 6. For cluster orders 2 to 9 this dependence is well
represented by the power-law fit

τi

τ2
= 0.755i−2. (54)

Comparing eq. (45) with eq. (54) we require

0.775 = x2β−1. (55)

Taking x = 0.4808 as obtained from eq. (50), we require from eq.
(55) that β = 0.692. This compares with the value β = 0.6484 ob-
tained previously from eq. (51). These two values are in reasonably
good agreement. The results given in Fig. 6 deviate from the power-
law correlation for orders 10 to 12. We attribute this deviation to the
termination of the cascade so that clusters of these orders are not
lost to higher order clusters and their lifetimes are longer than those
given by the power-law scaling in eq. (54).

We have also obtained the cluster coalescence ratios t i j . These
values are tabulated in Table 1. Our inverse cascade model predicts
that the t i,i+k should be independent of i. An inspection of the data in
Table 1 shows that this condition is reasonable well approximated.
Using the values given in the Table 1 we find the mean value of the
t i,i+k for each k using

tk = 1

n − k

n−k∑
i=1

ti,i+k, (56)

where n is the total number of orders considered. The resulting val-
ues of tk are plotted against k in Fig. 7. This dependence is reasonably
well represented by the power-law fit

tk = 2.778k−1. (57)

Comparing eq. (49) with eq. (57), we require

2.778 = 1

εx
. (58)

Taking x = 0.4808 as obtained from eq. (50), we require ε = 0.749.
This is about 10 per cent larger than the value obtained previously.
In general, we conclude that the agreement between our simulations
and predictions of the inverse cascade model are quite good.

5 D I S C U S S I O N

In this paper, we have developed an inverse cascade model for the
scale-invariant development of metastable regions. The inverse cas-
cade is dominated by the coalescence of metastable clusters. We
have shown that the statistics of coalescence are identical to the
statistics of self-similar drainage networks. We have verified the ap-
plicability of our model using numerical simulations of a modified
form of the forest-fire model.

We will now show that our inverse-cascade model is also appli-
cable to the standard forest-fire model in its scaling region. To do
this, we will show that, in the standard model, significant numbers
of trees are lost only in the largest model fires. As discussed above,
the rate r f i at which trees in clusters of order i are burned in model
fires is given by

r f i ∝ Ai N f i ∝ A2
i Ni , (59)
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Figure 3. A typical distribution of trees on the grid. The clusters of different orders are colour coded.

since N f i ∝ AiNi. The rate rci at which trees pass through clusters
of order i in our inverse cascade model is given by

rci ∝ Ai Ni

τi
. (60)

Combining eqs (59) and (60) gives

r f i

rci
∝ Ai

τi
. (61)

Substitution of eqs (36) and (45) gives

r f i

rci
∝ x−(1+2β)i . (62)

For our simulations, we found x ≈ 0.4808 and β = 0.6484; substi-
tuting these values into eq. (62), we find

r f i

rci
∝ 2.082.30i . (63)

Thus, r f i/rci � 1 except for the largest values of i (largest clusters).
Very few trees are burned by fires that destroy the smaller clusters.
The role of model fires in eliminating trees is restricted to the highest
order i (largest) clusters. In the forest-fire model, significant numbers
of trees are lost only in the highest order (largest) clusters. There is
an inverse cascade of trees from the smallest clusters to the largest
clusters that terminate the cascade and its power-law region. The
firing frequency f determines the size (order i) of the largest clusters
but does not effect the scaling region.

The discovery by Bak et al. (1988) of the behaviour of the orig-
inal sandpile model represented a major step in the subject of self-
organizing complexity. The steady-state behaviour of the model
with a steady input and an output in avalanches with a power-law
frequency-size distribution is now recognized as being quite univer-
sal. The only variable parameter in this model is the system size.
The power-law distribution of avalanches extends to this size. We
believe our inverse-cascade model provides a direct explanation for
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Figure 4. Dependence of the number of clusters of order i , Ni, and the mean
area of clusters of order i , Ai on cluster order i. The straight line correlation
with the number Ni is from eq. (51) and the straight line correlation with
areas is from eq. (50).

Figure 5. The square data points give the dependence of the number of
clusters of order i , Ni, on the mean area of clusters of order i , Ai. The
straight line is the power-law correlation with eq. (4) taking α = 1.147. The
circular points give the dependence of the number of clusters NA of area A
on the area A. The straight line correlation is with eq. (4) taking α = 2.184.

the behaviour of this model. The boxes over which an avalanche
spreads once triggered corresponds to our metastable clusters. As
in our model, the metastable regions grow by coalescence.

A second model that exhibits this behaviour is the slider-block
model. The two important parameters are the system size (number of
blocks) and the stiffness (the ratio of the connecting spring constant
to the driver spring constant). For large system sizes, the size of the
largest avalanches (slip events) is determined by the stiffness. The
role of the stiffness parameter in the slider-block model is identical
to the role of the sparking frequency f in the forest-fire model. The
metastable region is the region over which a slip event spreads when
the force on any single block exceeds the static frictional resistance.
Once again, we attribute the power-law frequency-area scaling of
slip events to the coalescence of metastable regions in an inverse

Figure 6. Dependence of the mean lifetime of clusters of order i , τ i , on
order i. The straight line correlation is with the relation τ i /τ 2 = 0.755i−2.

cascade. It should be noted that the behaviour of slider-block models
can be quite complex (Rundle & Klein 1993).

Ben-Zion et al. (2003) pointed out that the evolution of seismic-
ity on a heterogeneous fault in an elastic solid is associated with
both direct and inverse cascades. The inverse cascade involves the
coalescence of stress fluctuations to larger scales in analogy to the
coalescence of tree clusters in this paper. The direct cascade is asso-
ciated with transfer of stress from large wavenumber scales to short
wavenumber scales. The loading of the fault through tectonics is at
the largest scale.

The behaviour of the forest-fire model is clearly explained in
terms of an inverse cascade. Individual trees are planted and clus-
ters of trees grow by coalescence. The primary mechanism for the
coalescence of clusters is bridging of gaps between clusters as il-
lustrated in Fig. 1. The inverse cascade is further quantified by in-
troducing the concept of a cluster order which is identical to the
classification of stream networks illustrated in Fig. 2. The joining of
streams as stream networks evolve is analogous to the coalescence
of clusters as they grow. Streams can be classified according to both
the primary branching and side or secondary branching. Clusters
can be similarly defined. When two clusters of equal order coalesce
it is analogous to the joining of two streams of the same order. When
a cluster of lower order coalesces with a cluster of higher order it
is analogous to the side branching between a stream of lower and
higher order.

In the forest-fire model, fires sample the population of smaller
clusters but do not deplete their number. Individual trees cascade
from smaller clusters to larger clusters until the cascade is terminated
in the largest fires. These largest fires define the upper limit of the
power-law frequency-area scaling of both clusters and fires.

In this paper the behaviour of the cascade is quantified in terms
of balance equations for the creation and loss of clusters of each
order. The cascade is self-similar and the populations of clusters
in terms of primary and secondary coalescences are identical to the
populations of branches in Tokunaga self-similar drainage networks.
In this paper we have also carried out extensive simulations that
confirm the self-similar behaviour given by the cascade model.

The behaviour of the forest-fire model in terms of an inverse-
cascade also explains the behaviour of the sandpile and slider-block
models. In each case there are metastable regions over which a
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Table 1. Cluster coalesce ratios tij from our simulations.

Order i = 2 3 4 5 6 7 8 9 10

j = 3 0.98
4 1.76 0.95
5 3.65 1.86 0.96
6 8.48 3.99 1.91 0.95
7 20.86 9.26 4.08 1.88 0.94
8 55.11 23.31 9.69 4.10 1.87 0.93
9 167.50 67.35 26.55 10.38 4.24 1.90 0.93

10 634.40 240.70 89.49 32.69 12.10 4.70 2.02 0.96
11 3243.00 1192.00 425.40 146.60 49.49 16.89 6.06 2.40 1.07

Figure 7. Dependence of the mean cluster coalescence ratios tk on k. The
straight line is the Tokunaga scaling from eq. (49) with (εx)−1 = 2.778.

triggered avalanche spreads. In the forest-fire model the metastable
regions are the tree clusters. Once ignited, the tree cluster is elim-
inated by the resulting fire. In the sandpile model the metastable
region is the group of boxes over which an avalanche spreads when
it is initiated by the addition of a fourth particle to a box. In the
slider-block model the metastable region is the group of blocks over
which a slip event spreads when any one block begins to slip (when
the force on the block exceeds the static friction resisting motion).

The concepts presented in this paper are also applicable to the
three natural hazards discussed previously. Despite the many factors
influencing forest fires (vegetation, topography, winds, fire-fighting
efforts) the frequency-area distributions of actual forest fires are re-
markably similar to the behaviour of the forest-fire model. In the
case of landslides the metastable regions are the regions over which
landslides spread once triggered. Typical landslide triggers are earth-
quakes, snow-melt events and severe rain storms. The observed
power-law frequency-size distribution of large landslides is the ev-
idence that the frequency-area distribution of metastable regions is
also power law. These metastable regions grow as a mountain region
experiences tectonic uplift. We argue that this growth of metastable
regions dominated by the coalescence of smaller metastable regions.

In the case of earthquakes, the metastable region is the region
over which a rupture spreads once triggered. Scaling studies—see
for example Turcotte (1997)—have shown that the total offset on
faults scales with a power-law dependence on the length of the fault.
The increase in fault length is likely to occur by the coalescence of
smaller faults to form large faults.
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