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In this paper methods are given for constructing combinatorial formulas for Pontryagin 
classes, which for the case of the first Pontryagin class reduce to the formula obtained 
in the paper of Gel'fand, Losik, and myself [3]. The definition of Pontryagin classes in 
terms of the degeneration of systems of sections of fiber bundles (see [i, 2]) serves as the 
starting point for the construction of such formulas. Here this definition is reformulated 
in terms of GL-invariant chains in the space Hom (R m, Rn), i.e., chains that are invariant 
with respect to the action of the group GL(n, R) on this space (Sec. 4). To each cycle in 
the complex of such chains and collection of m sections of the bundle E + X with fiber R n, 
corresponds a characteristic cycle in X. Here for eachk there exists a GL-invariant cycle 
Pk such that the corresponding characteristic cycle represents the k-th Pontryagin 61ass of 
the bundle E. 

Thus, GL-invariant chains are equivalent here with characteristic differential forms 
used in [3]. Replacing forms by chains allowed one to avoid complicated analytic computa- 
tions in the formulations and proofs and clarified the connection between the combinatorial 
formulas obtained and the classically defined Pontryagin classes. 

In order to see how a characteristic cycle changes upon passage from one collection of 
sections to another, in Sec. 4, with each GL-invariant cycle ~ is associated a collection 

of GL-invariant chains (~J), called a hypersimplicial GL-invariant cycle. The definition of 
this collection is closely connected with the concept of hypersimplex introduced in [3]. 
From such a collection one can, under certain conditions on the combinatorial manifold X 
which satisfies condition (A) of [3], construct a combinatorial cycle in X, whose homology 
class is determined by the original cycle ~ (Secs. 2 and 5). The basic result of the paper 
(Theorem 5.2) is that for the cycle Pk, corresponding to the k-th Pontryagin class, the com- 
binatorial cycle constructed represents the k-th Pontryagin class of the manifold X. 

• 

In SecS. I, 2, and 3 of this paper there is a reformulation in a convenient form for 
what follows of the theory of cooriented chains, spaces of configurations and hypersimplices 
from [3] (see also [4, 5]) with a series of changes which turned out to be necessary for the 
generalization of the .formula of [3] to the higher classes. 

In Sec. 4 the connection of GL-invariant chains with characteristic classes is shown 
and the existence of hypersimplicial GL-invariant characteristic cycles is proved (Proposi- 
tion 4.6), which plays a key role in all the constructions. 

In Sec. 5, with the aid of the constructions given in the previous points, combinatorial 
characteristic cycles are defined. 

The author thanks I. M. Gel'fand, M. V. Losik, D. B. Fuks, A. V. Chernavskii, and M. A. 
Shtan'ko for helpful discussions. 

i. Cooriented Chains 

Let X be a smooth manifold and Y be a submanifold with corners in X. We denote by NxY 
the normal bundle, of Y in X. 

Definition I.i. By a coorientation of Y is meant an orientation of NxY. 

Let Y and Y' be cooriented submanifolds such that Y'C@Y,' dim Y' = dim ~--! . Then 
Nx Y' = Nx~IY'~ATrY', so the coorientation of Y determines a coorientation of Y' if one 

considers the bundle NyY' to be oriented by the exterior normal to Y' in ¥. We set e(Y, Y')= 
i, if this coorientation coincides with the original coorientation of Y', and elY, Y') = --i 
in the opposite case. The number s(Y, Y') is called the incidence coefficient of the coor- 
iented manifolds Y and Y'. 
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Definition 1.2. By (rational, closed) cooriented chains of codimension p we mean lo- 
cally finite linear combinations EciYi, where c i are rational numbers and Yi are cooriented 

submanifolds with corners of codimension p in X, where change of coorientation corresponds 

to multiplication by --i. The space of such chains is denoted by ~P (X). The boundary oper- 

ator ~: ~(X)-~+I(X), defined by the incidence coefficients e(Y, Y'), turns ~P(X) 
~0 

into a complex, which is denoted by ~* (X). 

Remark 1.3. A coorientation of the manifold Y~.X allows one to define at each point 
y~Y corresponding orientations of Y and X such that TXv~---TY~(DNx Y,. If Y' is a co- 

oriented submanifold of X,Y'~Y, dimY' =dimY--~, and the orientations of Y and Y' are 
chosen in correspondence with some Orientation of X, then e(Y, Y') coincides with the usual 
incidence coefficient of oriented manifolds. Corresponding orientations of Y and X can also 
be taken as a definition of coorientation (see [4]). Such a definition also makes sense in 
the case when X and Y have no smooth structures. We shall make use of this in what follows, 
speaking of coorlentatlons of simplices in a combinatorial manifold. 

Let f: X' + X be a smooth map, transverse to the cooriented submanifold Y~X. Then 
the manifold Y' =~-*(Y~ in X' is equipped with a natural coorientation, since ~x'Y'~ 

l*Nx Y. 

Definition 1.4. Let Z = EciY i be a cooriented chain in X and f: X' + X be a smooth 

map which is transverse to Z (i.e., to all Yi). By f*Z is denoted the cooriented chain 
~c~-X(Y~) in X'. 

If f is also transverse to @Z, then ~)Z = j*~Z. In particular, if f is a submersion, 

then there is defined a homomorphism of complexes /*: ~ (X)-~ ~ (X'). 

If f is an arbitrary smooth map and Z is a cycle from ~(X) such that f is transverse 

to Z, then f*Z is a cycle from ~(X') whose homology class depends only on the homology 

class of Z. Hence there is defined a map /~: H~ (~ (X))-+H~ (~* (X')). 

Let Y be a cooriented submanifold of codimension p in X and S be an oriented p-dimen- 
sional.submanifold of X which is transverse to Y. At each point U~S ~ Y one can identify 
TSy and NXYy. We set ey = 1 if the orientations of these spaces coincide, ey = --i if not. 
We define the intersection index (S, Y) as the sum of the numbers ey over all points y of 

s n r .  
Definition 1.5. Let Z = EciYi be a cooriented chain and ~ = EdjSj be an oriented chain 

transverse to Z, ~im Z = dim ~. The number (u,Z) =~.~=t~(S], Yt) is called the intersection 

index of the chains ~ and Z. 

Propositio 9 1.6. If Z is a cooriented chai~ of codimension p -- i and o is an oriented 
chain of dimension p, such that ~o and Z, o and ~Z:are transverse, then (8~, Z)=(--~)~(u,~. 

COROLLARY 1.7. If Z is a cycle from ~(X) and o is a cycle from^Cp(X, Q) transverse 
Z, then (~, Z) depends only on the homology classes of Z and ~ in H~(C*(X)) and Hp(X, Q) re- 
spectively. 

Thus, there is defined a map ~:H~(~ ~ (X)) -~H ~ (X, ~). 

Proposition 1.8. The map ~ is an isomorphism and for any smooth map f: X' + X there is 
a commutative diagram 

H, (2* (x))_'. H~ (x, Q) 

'*1 I'* 
a% (c* (x')) ~ H,(x',Q). 

Remark 1.9. If X is an algebraic manifold, then one can define semialgebralc cooriented 
chains in X. To define such chains, instead of submanifolds with corners it is necessary to 
take semlalgebraic sets. All the assertions about cooriented chains carry over to semial- 
gebraic coorlented chains (with the replacement of smooth maps by algebraic ones). 
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2. Combinatorial Manifolds and configuration Spaces 

Let X be a simplicial complex. For each simplex X~X, one denotes by SX i the star 
of Xi, i.e., the subcomplex of X formed by simplices containing X i. 

Definition 2.1. The complex X is called an M-dimensional combinatorial manifold if 
for each simplex X~X there exists a continuous map SX~--~ ~ linear on each simplex of 
SXi and carrying a neighborhood (in SX i) of any interior point of the simplex X i into an 
open set in RM. Each such map is called a smoothing. Two smoothings are called equivalent 
if one of them is obtained from the other by an affine transformation in R M. The set Ei of 
equivalence classes of smoothings is called the configuration space% of the simplex X i. This 
space has a natural structure as a smooth algebraic manifold. 

If X~X~, then SX~SXI~ so there is defined a map ~i~: E~-~E~, which.is a submer- 
sion. 

If X i ~  X ~ X ~ ,  then obviously ~ = ~ .  

Definition 2.2. We say that the combinatorial manifold X satisfies condition Ap if for 
each simplex X~_.X 

Ho(E~, Q) = q for codlin X ~ < p ,  

H~(Ei ,  Q) = 0  .for l ~ q ~ . p - - c o d i m X ~ .  

Let us assume now that all simplices X i of the combinatorial manifold X are cooriented. 
For each simplex Xj we set ~(~) = {i: Xi~X], dim Xi =dim Xlq-|). If g~s(]), then by eij is 
denoted the incidence coefficient e(X i, Xj).$ 

We denote by E the system of spaces Z i and maps ~ij" 

Definition 2.3. By a cooriented chain Z of codimension p of the system of spaces E is 
meant a collection {Zi}, where Z i is a semialgebraic cooriented chain in Ei of codimension 

p -- codim Xi. The space of such chains is denoted by ~P(E). The boundary operator ~: ~ 

(E) -+~P+~(E) is defined by the formula 

(~Z).~ = ~Z~ + ( -  l)=°a~'z~ ÷1 ~, ~i~.~Z~. 
~ 0 )  

THEOREM 2 . 4 .  L e t  X be a c o m b i n a t o r i a l  m a n i f o l d  s a t i s f y i n g  t h e  c o n d i t i o n  Ap and Z be  a 

c y c l e  f rom ~P(E) .  

a)  To e a c h  f l a g  X i . ~ X i , ~ . . . ~ X i ~  ( ~ o d i m X i t ~ p )  o f  s i m p l i c e s  o f  X one can  a s s i g n  an 

oriented rational ~-chain gi .... i~ in Eio such that Uio is a point and 

[ 

0gi,...it = ~i.i, gi,...itOi,...it + ~ (-- i)~gi,..~...i t. 
~ l  • 

P 

b) L e t  F =  ~ ~ ~ioi,...~i~_xq(~i....i~,Zio) Xi~, where  ~ '  s i g n i f i e s  t h a t  t h e  s u m a t i o n  i s  t a k e n  
l = 0  i , . . . i  l 

o n l y  o v e r  t h o s e  c o l l e c t i o n s  i 0 . . . i~, f o r  which  L - ~ ~  s (L), codim Xi~ = p .  Then r i s  a c y c l e  

in 6~(z) .  
c) The homology  c l a s s  o f  t h e  c y c l e  r i s  i n d e p e n d e n t  o f  t h e  c h o i c e  o f  t h e  c h a i n  o i o . . . f ~  

and i s  unchanged  i f  one r e p l a c e s  t h e  c y c l e  Z by one which  i s  homologous  i n  ~P(E).  

The p r o o f  o f  P a r a g r a p h  a)  i s  t r i v i a l .  The p r o o f  o f  P a r a g r a p h  b) i s  done by d i r e c t  com- 
p u t a t i o n  u s i n g  P r o p o s i t i o n  1 . 6 .  

3. Hypersimplices 

Let V be a finite set, q~0 be an integer. We denote by Ip(V, q) the Abelian group 

with generators A~ 't (v I ..... v~+~), where {vl, • •., ~k+~} is any ordered collection of k + q dis- 

+This space is homotopically equivalent with the configuration space from [3]. 

SThis definition differs from the definition of [3] by the sign (--i) e°dimxj. 
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tinct elements of the set V, and k and Z can assume the values k = ~ = 0 for p =0, k> ~, 
i < l.~< q, k ~-I = p ~-~ for p > i. These generators are connected by the relations of skew- 
symmetry with respect to permutations of the first k + ~ elements of the collection {vx, ..., 
~+,} and s~etry with respect to permutations of the last q -- Z elements. ~e differential 
8: I~ (V, q)~ I~, (V, q) is defined by the fo~ula 

. . . . .  = . . . . .  _ . . . . .  p = 

~+~ 
= (- ' (v, .... .... + 

~ =I 
R++ 

+ 
9 ~I 

while for k = 1 (respectively, Z = i) the first (respectively, second) sum in £he last ex- 
pression is omitted. It is easy to verify that ~" = 0. The complex I* (V, q)=~I~ (V, q) 

is called a hypersimpllclal complex and its generators A~ '~ are called hypersimpllces. 

If V'~ ~, we denote by I,(V, V', q) the subcomplex of I,(V, q) generated by the hyper- 

h~'~ (~l, ~+~), in which {vk+~+l, ~} D V'. slmplices _~ ..... . .., 

Proposition 3.1. Hk([. (V, V', q)) = 0 for k>O, H0(I. (V, V', q)) =Z. 

If X is a combinatorial ~nifold and X i is a simplex of it, we denote by VX i and VSX i 
the sets of vertices of the simplex X i and of its star SX i. We set I,(i) = I,(VSXi, ~i, 

M + i), where M = dim X. It is obvious that if X~ ~X£, then I. (~)~ [. (~). 

Definition 3.2. By a hypersimplicial filament of the manifold X is meant a collection 
{bi}, where b~ ~ [~ (i), p =codim X,, andOb~ = ~ ,iyby. 

~e~(~) 

The existence of hypersimplicial filaments follows easily from Proposition 3.1. 

4. GL-Invariant Chains 

Let Lm0~ = Hom (R ~, R"). A point of the space Lm,n is determined by a collection (e,, 
• •., em) of m vectors in R n, where ej is the image of the J-th basis vector of the space 

R m. Let ~*(L~.,) be the complex of semialgebraic cooriented chains of the space Lm,n (see 

Remark 1.9)• The group GL(n, R) acts on Lm, n and hence on ~* (Lm.,). 

Definition 4.1. The subcomplex of ~ (L~,~),consisting of chains invariant with respect 

to the action of the group GL(n, R),is called the complex of GL-invariant cooriented chains 
a n d  i s  d e n o t e d  b y  E*(Lm,~).  

D e f i n i t i o n  4 . 2 .  L e t  ~ b e  a c y c l e  f r o m  E ~ ( L m , , i ,  X b e  a s m o o t h  m a n i f o l d ,  E b e  a b u n d l e  
o v e r  X w i t h  f i b e r  R n ,  a n d  e = ( e , ,  . ,  em) b e  a c o l l e c t i o n  o f  s e c t i o n s  o f  t h e  b u n d l e  E. 
I f  a t r i v i a l i z a t i o n  o f  E o v e r  t h e  o p e n  s e t  U c X  i s  c h o s e n ,  t h e n  t h e  c o l l e c t i o n  e d e t e r -  
m i n e s  a map ~v:EIu.-+Lm,,. L e t  u s  a s s u m e  t h a t  CU i s  t r a n s v e r s e  t o  ~ f o r  a l l  U ( t h i s  c o n d i -  
t i o n  does not depend on the choice of trivialization and is satisfied for collections e in 

general position , i.e., from a certain open, everywhere dense set). Then ~ is a coor- 

iented cycle in U which does not depend on the choice of trivializatlon. If V~ U, then 
• = " ~v~, so the collection .{~}~=x determines a cycle from ~P(X), which we denote by 
~e and call the characteristic cycle corresponding to the cycle ~ and the collection of sec- 
tions e. 

Proposition 4.3. Let ~, X, E,~ = (~,...,~) and ~e denote the same things as in Defini- 
tion 4.2. Then 

a) the homology class of the cycle ~e is independent of the choice of sections e~, . .., 
em; 

b) if f: Y ÷ X is a map which is transverse to ~e, and f*e is the collection of sec- 
tions of the bundle f*E which is determined by the collection e, then ~.~ =~; 

c) the homology class of the cycle ~e is unchanged if one replaces the cycle ~ by a 
homologous one. 
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The proof is trivial. 

Example 4.4. Let k > I, n • 2k, re> n-- 2~ ~- 2 and 

P~,,~ = {e~ . . . . .  e,~ I rk  (e~ . . . . .  e,,._~+~ ) < n - -  9&} ~ L,~, , , .  

The fiber of the normal bundle of Pk,n at a nonsingular point can be identified with I ~  
R ~, where R 2k is the supplement in Rn to the space generated by the vectors el,..., en-~+z. 
Since R2~ ~.~ , R ~-~ has a canonical orientation, Pk,n is a cooriented chain. It is easy to ver- 

if# that Pk,n is a cycle from E~ (Lm.~). The corresponding characteristic cycle is called 
the k-th Pontryagin cycle. 

The group S(m) of permutations of basis vectors in R TM acts on Lm, n (on the right) and 

consequently also on ~* (Lm,~). Under this action the complex E* (Lm.~)is carried into it- 
self so that S(m) acts on E* (L ..... ). Throughout in what follows, in speaking of permutations 
of ~vectors we shall have in mind the indicated action of the group S(m). 

The following construction is closely connected with the definition of hypersimplices. 

We consider the maps =~ : L ~ m,~ -+Lm-~.~ and ~ : Lm.~ --~ Lm,,, defined by the formulas 
~ (e~ . . . . .  e,~) = ( e , . . . . ,  e~.~, e~+x . . . .  , e,~), l~' (~, . . . . .  e,~) = (el . . . . .  e~_~, e~+~ . . . . .  e~,  e~-). 

These maps determine homomorphisms of complexes 

as*: ~* (L~_,. a) ~ ~* (L~,~), ~i*: -~,* (Lm,~) -~ ~* (L~,a). 

Definition 4.5. By a hypersimplicial GL-invariant cooriented p-chain of type (q, n) 
is meant a collection ~----- (~,~), where k = ~ = 0 or ~> I, i< ~ q, kq- ~<p q-i, .~°'°~ 
~.~ (L~,~), ~,~ ~ EP -~-~+~ (L~+~,~) for (~, ~) ~= (0, 0), the chain ~,~ is invariant with respect to 

permutations of the last q -- ~ vectors and skew invariant with respect to permutations of 
the first k + Z vectors. The space of such chains is denoted by Eqv,,. 

~p+l  The differential ~:=-q~,n-+-q.~ is defined by the formulas 

(~0 .o  = ~0.  o, ( ~ . ~  = ~ , 1  + (__ ~), [ ~ o , 0  __ ~ o . . l ,  

,.~÷~ ~aq ~ 

(~5~., = ~ . ,  + ( -  t)~-~-, | ~  ( -  ~ - ~ - ~ , ,  - ~. ( -  t ~ - ~ . ~ - ~  ] 
~=I ~=1  

for k-b l> 2, while for k -- 1 (respectively, for ~ = I) the first (respectively, second) 
sum in the last formula is omitted. 

It is not hard to verify that ~----0. We set =-~,n = {~ ~,u,~}. 
p~0 

Proposition 4.6. a) The cycle P~.n, obtained from the cycle P~,~ (Example 4.4) by aver- 

aging over the group of permutations of vectors, is homologous to ~,~ in ~* (Lm,u); 

b) for k> I, ~> 2k,and q> a--2k ~-2, there exists a cycle ~.---- (~*,I)~,=~n such that 
~o,o = p~,~. 

P r o o f .  The group GL(m, R) a c t s  (on the  r i g h t )  on Lm,n, and hence  a l s o  on ~* (Lm.,~). 
Since this action commutes with the action of GL(n, R), the group GL(m, R) also acts on 
~* (Lm~). We consider the subcomplex '.~.* (Lm.u)~ E* (Lm,u) , consisting of chains, invariant 
with respect to th~ action of the subgroup G~GL(m,R), generated by reflections in the ba- 
sic hyperplanes. 

LEMMA 4.7. .The group S(m) acts trivially on the homology of the Complex '~* (Lm,n). 

Proof. The homology of the comp~lex '~* (Lm,~) is the homology of the complex .~.* (Lm,,,), 
invariant with respect to the action of the group G. Since the space GL(m, R)/G is connected, 
this homology is invariant with respect to the action of the whole group GL(m, R), and in 
particular, with respect to the action of S(r~)~ GL(re, R), which is what was asserted. 

It is easy to verify that the cycle P~,n ~ Ea~ (Lm,~) belongs to ~=~ (Lm.a), so assertion 
a) of Proposition 4.6 follows from Lemma 4.7. 

..~ 
To prove assertion b), we consider in the complex =q.n the subcomplex ¢~* ~,~, consisting of 

collections (~,~) in which ~.~ ~ =-* (L~.+~.~). Using Lemma 4.7 and the skew invariance of the 
chains ~,~ ((k, l)~e (0, 0)) with respect to certain permutations, it is easy to prove that the 
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homology of this complex coincides with the homology of its quotient by the subcomplex of 
collections (~,~): ~0,0 = 0. Hence, for each S(q)-invariant cycle ~'E* (Lq,~) (in particular, 

, = ,=~ ~,0 ~, which is what had to be proved for P~ there exists a cycle ~ (~,~)~ .~,~, = ~ . 

5. Cycles of the Complex ~* and Combinatorial Formulas 
~ , . 

As before, let X be an M-dimensional combinatorial manifold, X i be a simplex of X, E i 
~,~ 

the corresponding configuration space, and A =A~+~(~,. .... ~+~+~) a hypersimplex of l,(i). 

We define a map ~A: E~ -+L~+~+~,~+~ in the following way. 

Let R m be imbedded in ~+~ as the hyperplane {z~ -~ ... ~ z~+~ = ~ and let ~ ..... ~+~ 
be the points of this hyperplane ~corresponding to the ends of the basis vectors in ~+~. 
Let ~ .... , =~+~ be vertices of any M-dimensional simplex of SXi. Then for each point ~-E~, 
i.e., class of affine-equivalent smoothings SX i ÷ R M, there exists a unique smoothing of 
this class for which =~ is carried into ~ for ~ = i, ., M + I. The images of the ver- 
tices ~,...,~+~+~ under this smoothing determine a point of ~+~+L~, which we denote by 
p~(~). The map ~A depends on the choice of vertices =~,..., =~+~o However, maps obtained by 
different choices differ by transformations from GL(M + i, R). Hence, for each chain ~E* 
(~+~+~,~+~), transverse to the image of ~A, there is a uniquely defined chain ~ ~ C  • (E~). 

~ 

If ~ is a chain from ~÷~,~+~, then the component ~,~ of this chain lies in E* (~+~+~,~+~). 

We set = 

Proposition 5.1. Let ~ be a cycle from =~ and {bi} be a hypersimplicial filament ~ + 1 ,  ~+~ 

of the combinatorial manifold ~,b~ "~ =~..~i~A~7, where Aij are hypersimplices of l,(i). We set 

Z{ = !C{yp~tj ~. Then 

a) the collection Z = {Z{} is a cycle of ~ (E) (Definition 2.3); 

b) the homology Z is independent of the choice of hypersimplicial filament and is un- 
changed if the cycle ~ is replaced by a homologous one. 

The proof proceeds by direct computation. 

THEOREM 5.2. Let us assume that the M-dimensional combinatorial manifold X satisfies 
~-=~ 

condition A~ k (Definition 2.2). Let ,~--~+L~+~ be a cycle corresponding to the cycle Pk, M+~ 

(Proposition 4.6). Let Z be the cycle of ~'~(E)- constructed from the cycle ~, and F be the 

cycle of ~'~(X), constructed from the cycle Z. If the manifold X is smoothable, then the 
homology class of the cycle F coincides with the k-th Pontryagin class of the manifold X. 

The proof of this theorem is rather cumbersome and will not be given here. 

l. 

2. 

. 

. 

5. 
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