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Abstract. We prove new upper bounds on homotopy and homology groups
of o-minimal sets in terms of their approximations by compact o-minimal sets.
In particular, we improve the known upper bounds on Betti numbers of semi-
algebraic sets defined by quantifier-free formulae, and obtain for the first time
a singly exponential bound on Betti numbers of sub-Pfaffian sets.

Introduction

We study upper bounds on topological complexity of sets definable in o-minimal
structures over the reals. The fundamental case of algebraic sets in R

n was first
considered around 1950 by Petrovskii and Oleinik [13, 14], and then in 1960s by
Milnor [12] and Thom [16]. They gave explicit upper bounds on total Betti numbers
in terms of degrees and numbers of variables of the defining polynomials.

There are two natural approaches to generalizing and expanding these results.
First, noticing that not much of algebraic geometry is used in the proofs, one can
obtain similar upper bounds for polynomials with the “description complexity”
measure different from the degree, and for non-algebraic functions, such as Kho-
vanskii’s fewnomials and Pfaffian functions [11]. A bound for algebraic sets defined
by quadratic polynomials was proved in [1].

Second, the bounds can be expanded to semialgebraic and semi-Pfaffian sets de-
fined by formulae more general than just conjunctions of equations. Basu [2] proved
an asymptotically tight upper bound on Betti numbers in the case of semialgebraic
sets defined by conjunctions and disjunctions of non-strict inequalities. The proof
can easily be extended to special classes of non-algebraic functions. For fewnomials
and Pfaffian functions, this was done by Zell [17]. For quadratic polynomials an
upper bound was proved in [3]. The principal difficulty arises when neither the set
itself nor its complement is locally closed.

Until recently, the best available upper bound for the Betti numbers of a semi-
algebraic set defined by an arbitrary Boolean combination of equations and in-
equalities remained doubly exponential in the number of variables. The first singly
exponential upper bound was obtained by the authors in [9] based on a construction
which replaces a given semialgebraic set by a homotopy equivalent compact semi-
algebraic set. This construction extends to semi-Pfaffian sets and, more generally,
to the sets defined by Boolean combinations of equations and inequalities between
continuous functions definable in an o-minimal structure over R. It cannot be ap-
plied to sets defined by formulae with quantifiers, such as sub-Pfaffian sets, but can
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be used in conjunction with effective quantifier elimination in the semialgebraic
situation.

In [10] we obtained a spectral sequence converging to the homology of the pro-
jection of an o-minimal set under the closed continuous surjective definable map.
It gives an upper bound on Betti number of the projection which, in the semialge-
braic case, is better than the one based on quantifier elimination. The requirement
for the map to be closed can be relaxed but not completely removed, which left
the upper bound problem unresolved in the general Pfaffian case, where quantifier
elimination is not applicable.

In this paper we suggest a new construction for approximating a large class
of definable sets, including the sets defined by arbitrary Boolean combinations
of equations and inequalities, by compact sets. The construction is applicable
to images of such sets under a large class of definable maps, e.g., projections.
Based on this construction we refine the results from [9, 10], and prove similar
upper bounds, individual for different Betti numbers, for images under arbitrary
continuous definable maps.

In the semialgebraic case the bound from [9] is squaring the number of differ-
ent polynomials occurring in the formula, while the bounds proved in this paper
multiply the number of polynomials by a typically smaller coefficient that does not
exceed the dimension. This is especially relevant for applications to problems of
subspace arrangements, robotics and visualization, where the dimension and de-
grees usually remain small, while the number of polynomials is very large. Applied
to projections, the bounds are stronger than the ones obtained by the effective
quantifier elimination.

In the non-algebraic case, for the first time the bounds, singly exponential in
the number of variables, are obtained for projections of semi-Pfaffian sets, as well
as projections of sets defined by Boolean formulae with polynomials from special
classes.

Notations. In this paper we use the following (standard) notations. For a topo-
logical space X , Hi(X) is its singular homology group with coefficients in some
fixed Abelian group, πi(X) is the homotopy group (provided that X is connected),
the symbol ' denotes the homotopy equivalence, and the symbol ∼= stands for the
group isomorphism. If Y ⊂ X , then Y denotes its closure in X .

1. Main result

In what follows we fix an o-minimal structure over R and consider sets, families
of sets, maps, etc., definable in this structure.

Definition 1.1. Let G be a definable compact set. Consider a definable family
{Sδ}δ>0 of compact subsets of G, such that for all δ′, δ ∈ (0, 1), if δ′ > δ, then
Sδ′ ⊂ Sδ. Denote S :=

⋃
δ>0 Sδ.

For each δ > 0, let {Sδ,ε}δ,ε>0 be a definable family of compact subsets of G
such that:

(i) for all ε, ε′ ∈ (0, 1), if ε′ > ε, then Sδ,ε ⊂ Sδ,ε′ ;
(ii) Sδ =

⋂
ε>0 Sδ,ε;

(iii) for all δ′ > 0 sufficiently smaller than δ, and for all ε′ > 0, there exists an
open in G set U ⊂ G such that Sδ ⊂ U ⊂ Sδ′,ε′ .

We say that S is represented by the families {Sδ}δ>0 and {Sδ,ε}δ,ε>0 in G.
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Let S′ (respectively, S′′) be represented by {S′δ}δ>0 and {S′δ,ε}δ,ε>0 (respectively,
by {S′′δ }δ>0 and {S′′δ,ε}δ,ε>0) in G.

Lemma 1.2. S′ ∩ S′′ is represented by the families {S′δ ∩ S′′δ }δ>0 and {S′δ,ε ∩
S′′δ,ε}δ,ε>0 in G, while S′ ∪S′′ is represented by {S′δ ∪ S′′δ }δ>0 and {S′δ,ε ∪S′′δ,ε}δ,ε>0

in G.

Proof. Straightforward checking of Definition 1.1. �

Let S be represented by {Sδ}δ>0 and {Sδ,ε}δ,ε>0 in G, and let F : D → H be
a continuous definable map, where D and H are definable, S ⊂ D ⊂ G, and H is
compact.

Lemma 1.3. Let D be open in G, and F be an open map. Then F (S) is represented
by families {F (Sδ)}δ>0 and {F (Sδ,ε)}δ,ε>0 in H.

Proof. Straightforward checking of Definition 1.1 (openness is required for (iii) to
hold). �

Consider projections ρ1 : G×H → G and ρ2 : G×H → H . Let Γ ⊂ G×H be
the graph of F . Suppose that Γ is represented by families {Γδ}δ>0 and {Γδ,ε}δ,ε>0

in G×H .

Lemma 1.4. The set F (S) is represented by the families

{ρ2(ρ−1
1 (Sδ) ∩ Γδ)}δ>0 and {ρ2(ρ−1

1 (Sδ,ε) ∩ Γδ,ε)}δ,ε>0

in H.

Proof. The set ρ−1
1 (S) is represented by the families

{ρ−1
1 (Sδ) ∩ Γδ}δ>0 and {ρ−1

1 (Sδ,ε) ∩ Γδ,ε}δ,ε>0

in G×H , and the projection ρ2 satisfies Lemma 1.3. �

Along with this general case we will be considering the following important
particular cases.

Let S = {x|F(x)} ⊂ R
n be a bounded definable set of points satisfying a Boolean

combination F of equations of the kind h(x) = 0 and inequalities of the kind
h(x) > 0, where h : R

n → R are continuous definable functions (e.g., polynomials).
As G take a closed ball of a sufficiently large radius centered at 0. We now define
the representing families {Sδ} and {Sδ,ε}.
Definition 1.5. For a given finite set {h1, . . . , hk} of functions hi : R

n → R define
its sign set as a non-empty subset in R

n of the kind

hi1 = · · · = hik1
= 0, hik1+1 > 0, . . . , hik2

> 0, hik2+1 < 0, . . . , hik
< 0,

where i1, . . . , ik1 , . . . , ik2 , . . . , ik is a permutation of 1, . . . , k.

Let now {h1, . . . , hk} be the set of all functions in the Boolean formula defining S.
Then S is a disjoint union of some sign sets of {h1, . . . , hk}. The set Sδ is the result
of the replacement independently in each sign set in this union of all inequalities
h > 0 and h < 0 by h ≥ δ and h ≤ −δ respectively. The set Sδ,ε is obtained by
replacing independently in each sign set all expressions h > 0, h < 0 and h = 0 by
h ≥ δ, h ≤ −δ and −ε ≤ h ≤ ε, respectively. According to Lemma 1.2, the set S,
being the union of sign sets, is represented by families {Sδ} and {Sδ,ε} in G.
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δ
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Figure 1. The set Sδ,ε (right) for the closed quadrant S (left).

Example 1.6. Let the closed quadrant S be defined as the union of sign sets
{x > 0, y > 0} ∪ {x > 0, y = 0} ∪ {x = 0, y > 0} ∪ {x = y = 0}. Fig. 1 shows the
corresponding set Sδ,ε for ε < δ.

Now suppose that the set S ⊂ R
n, defined as above by a Boolean formula

F , is not necessarily bounded. In this case as G take the definable one-point
(Alexandrov) compactification of R

n. Note that each function h is continuous in
G \ {∞}. Define sets Sδ and Sδ,ε as in the bounded case, replacing equations
and inequalities independently in each sign set of {h1, . . . , hk}, and then taking
the conjunction of the resulting formula with |x|2 ≤ 1/δ. Again, S is represented
by {Sδ} and {Sδ,ε} in G, and in the sequel we will refer to this instance as the
constructible case.

Definition 1.7. Let P := P(ε0, . . . , ε`) be a predicate (property) over (0, 1)`+1.
We say that the property P holds for

0 < ε0 � ε1 � · · · � ε` � 1,

if there exist definable functions fk : (0, 1)`−k → (0, 1), k = 0, . . . , ` (with f` being
a positive constant) such that P holds for any sequence ε0, . . . , ε` satisfying

0 < εk < fk(εk+1, . . . , ε`) for k = 0, . . . , `.

Now we return to the general case in the Definition 1.1, which we will refer to,
in what follows, as the definable case.

Definition 1.8. For a sequence ε0, δ0, ε1, δ1, . . . , εm, δm, where m ≥ 0, introduce
the compact set

T (S) := Sδ0,ε0 ∪ Sδ1,ε1 ∪ · · · ∪ Sδm,εm .

From Definition 1.1 it is easy to see that for any m ≥ 0, and for

(1.1) 0 < ε0 � δ0 � ε1 � δ1 � · · · � εm � δm � 1,

there is a surjective map C : T → S from the finite set T of all connected compo-
nents of T (S) onto the set S of all connected components of S, such that for any
S′ ∈ S, ⋃

T ′∈C−1(S′)

T ′ = T (S′).

Lemma 1.9. If m > 0 then C is bijective.



APPROXIMATION BY COMPACT FAMILIES 5

Proof. Let S be connected and m > 0. We prove that T (S) is connected. Let
x,y ∈ Sδi,εi ⊂ T (S). Let xε, yε be a definable connected curves such that xεi = x,
x0 := limε↘0 xε ∈ Sδi , yεi = y, and y0 := limε↘0 yε ∈ Sδi . Let Γ ⊂ S be a
connected compact definable curve containing x0 and y0. Then Γ is represented
by the families {Sδ ∩ Γ} and {Sδ,ε ∩ Γ} in Γ, hence T (Γ) ⊂ T (S). It is easy to see
that, under the condition m > 0, the one-dimensional T (Γ) is connected. It follows
that x and y belong to a connected definable curve in T (S). �

In what follows we denote T := T (S), and let m > 0. We assume that S is
connected in order to make the homotopy groups πk(S) and πk(T ) independent of
a base point.

Theorem 1.10. (i) For (1.1) and every 1 ≤ k ≤ m, there are epimorphisms

ψk : πk(T ) → πk(S),

ϕk : Hk(T ) → Hk(S),

in particular, rank Hk(S) ≤ rank Hk(T ).
(ii) In the constructible case, for (1.1) and every 1 ≤ k ≤ m − 1, ψk and ϕk

are isomorphisms, in particular, rank Hk(S) = rank Hk(T ). Moreover, if
m ≥ dim(S), then T ' S.

The plan of the proof of Theorem 1.10 is as follows. We consider a simplicial
complex R in R

n such that it is a triangulation of G, and S is a union of some open
simplices of R. For any sequence ε0, δ0, ε1, δ1, . . . , εm, δm we construct a subset V
of the complex R, which is a combinatorial analogy of T , and prove that there are
isomorphisms of k-homotopy groups of V and S for k ≤ m − 1 and an epimor-
phism for k = m. We prove the same for homology groups. We then show that
for (1.1) there are epimorphisms ψk : πk(T ) → πk(V ) and ϕk : Hk(T ) → Hk(V )
for every k ≤ m. We prove that if the pair (R, {Sδ}δ>0) satisfies a certain “sep-
arability” property (Definition 5.7), then ψk and ϕk are isomorphisms for every
k < m. In particular, in the constructible case (R, {Sδ}δ>0) is always separable.
This completes the proof.

Remark 1.11. We conjecture that in the definable case the statement (ii) of Theo-
rem 1.10 is also true, i.e., for (1.1) and every 1 ≤ k ≤ m− 1, the homomorphisms
ψk, ϕk are isomorphisms, and T ' S when m ≥ dim(S).

2. Topological background

In this section we formulate some topological definitions and statements which
we will use in further proofs.

Recall that a continuous map between topological spaces f : X → Y is called
a weak homotopy equivalence if for every j > 0 the induced homomorphism of
homotopy groups f#j : πj(X) → πj(Y ) is an isomorphism.

Theorem 2.1 (Whitehead Theorem on weak homotopy equivalence, [15], 7.6.24).
A map between connected CW-complexes is a weak homotopy equivalence iff it is a
homotopy equivalence.

Let f : X → Y be a continuous map between path-connected topological spaces.
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Theorem 2.2 (Whitehead Theorem on homotopy and homology, [15], 7.5.9). If
there is k > 0 such that the induced homomorphism of homotopy groups f#j :
πj(X) → πj(Y ) is an isomorphism for j < k and an epimorphism for j = k,
then the induced homomorphism of homology groups f∗j : Hj(X) → Hj(Y ) is an
isomorphism for j < k and an epimorphism for j = k.

Definition 2.3 ([5]). A map f : P → Q, where P and Q are posets with order
relations �P and �Q respectively, is called poset map if, for x,y ∈ P , x �P y
implies f(x) �Q f(y). With a poset P is associated the simplicial complex ∆(P ),
called order complex, whose simplices are chains (totally ordered subsets) of P .
Each poset map f induces the simplicial map f : ∆(P ) → ∆(Q).

Theorem 2.4 ([5], Th. 2). Let P and Q be connected posets and f : P → Q a
poset map. Suppose that the fibre f−1(∆(Q�q)) is k-connected for all q ∈ Q. Then
the induced homomorphism f#j : πj(∆(P )) → πj(∆(Q)) is an isomorphism for all
j ≤ k and an epimorphism for j = k + 1.

Remark 2.5. In the formulation and proof of this theorem in [5] the statement
that f#k+1 is an epimorphism, is missing. Here is how it follows from the proof of
Theorem 2 in [5]. In the proof, a map g : ∆(k+1)(Q) → ∆(P ) is defined, where
∆(k+1)(Q) is the (k+1)-dimensional skeleton of ∆(Q), such that f◦g : ∆(k+1)(Q) →
∆(Q) is homotopic to the identity map id. Then the induced homomorphism

f#k+1 ◦ g#k+1 = (f ◦ g)#k+1 = id#k+1 : πk+1(∆(k+1)(Q)) → πk+1(∆(Q))

is an epimorphism, since any map of a j-dimensional sphere to ∆(Q) is homotopic
to a map of the sphere to ∆(j)(Q). It follows that f#k+1 is also an epimorphism.

Corollary 2.6 (Vietoris-Begle Theorem). Let X and Y be connected simplicial
complexes and f : X → Y a simplicial map.

(i) If the fibre f−1(B) is k-connected for every closed simplex B in Y , then
the induced homomorphism f#j : πj(X) → πj(Y ) is an isomorphism for
all j ≤ k and an epimorphism for j = k + 1.

(ii) If the fibre f−1(B) is contractible, then X ' Y .

Proof. (i) Consider barycentric subdivisions X̂ and Ŷ of complexes X and Y

respectively. Note that X̂ = ∆(P ) and Ŷ = ∆(Q) where P and Q are simplex
posets of X and Y respectively (i.e., closed simplices ordered by containment). For
a closed simplex B ∈ Q the subcomplex ∆(Q�B) of Ŷ is the union of all simplices
of the barycentric subdivision of B. Now (i) follows from Theorem 2.4.

(ii) Since the fibre f−1(B) is contractible, according to (i), the induced homo-
morphisms f#j are isomorphisms for all j > 0, hence, by Whitehead theorem on
weak homotopy equivalence (Theorem 2.1), f induces the homotopy equivalence
X ' Y . �

Definition 2.7. Let ∆ be a simplicial complex and X be a topological space. A
map C taking simplices B to subspaces C(B) of X is called carrier if C(B) ⊂ C(K)
for all simplices B, K in ∆ such that B is a subsimplex of K. A continuous map
f : ∆ → X is carried by C if f(B) ⊂ C(B) for all simplices B in ∆.

Theorem 2.8 (Carrier Lemma, [5], Lemma 1). Fix k ≥ 0, and let ∆(k) be the
k-skeleton of ∆.
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(i) If C(B) is dim(B)-connected for all simplices B in ∆(k), then every two
maps f, g : |∆(k)| → X that are both carried by C are homotopic, f ∼ g.

(ii) If C(B) is (dim(B) − 1)-connected for all simplices B in ∆(k), then there
exists a map |∆(k)| → X carried by C.

Definition 2.9. The nerve of a family {Xi}i∈I of sets is the (abstract) simplicial
complex N defined on the vertex set I so that a simplex σ ⊂ I is in N iff

⋂
i∈σ Xi 6=

∅.
Let X be a connected regular CW-complex and {Xi}i∈I be a family of its sub-

complexes such that X =
⋃

i∈I Xi. Let |N | denote the geometric realization of the
nerve N of {Xi}i∈I .

Theorem 2.10 (Nerve Theorem, [5], Th. 6). (i) If every nonempty finite in-
tersection Xi1 ∩· · ·∩Xit , t ≥ 1, is (k− t+1)-connected, then there is a map
f : X → |N| such that the induced homomorphism f#j : πj(X) → πj(|N |)
is an isomorphism for all j ≤ k and an epimorphism for j = k + 1.

(ii) If every nonempty finite intersection Xi1 ∩ · · · ∩Xit , t ≥ 1, is contractible,
then X ' |N |.

Remark 2.11. As with Theorem 2.4, in the formulation and proof of this theorem
in [5] the statement that f#k+1 is an epimorphism, is missing. This statement
follows from the proof of Theorem 6 in [5] by the same argument as described in
Remark 2.5.

Remark 2.12. Let X be a connected triangulated set, {Xi}i∈I be a family of all
of its (open) simplices, and the nerve NX is defined on the index set I so that a
simplex σ ⊂ I is in NX iff the family {Xi}i∈σ, after a the suitable ordering, forms
a |σ|-flag (see Definition 3.1 below). For this version of the nerve the Theorem 2.10
also holds true. Indeed, it is applicable to the union X ′ :=

⋃
i Xi of simplices Xi in

X that are contained in X with their closures (hence X ′ may be a proper subset
of X). Since X ′ ' X and |NX′ | ' |NX |, Theorem 2.10 is also applicable to X and
{Xi}i∈I .

Definition 2.13. For two continuous maps f1 : X1 → Y and f2 : X2 → Y, the
fibred product is defined as

X1 ×Y X2 := {(x1,x2) ∈ X1 ×X2| f1(x1) = f2(x2)}.
Theorem 2.14 ([10], Th. 1). Let f : X → Y be a continuous closed surjective
o-minimal map. Then there is a spectral sequence Er

p,q converging to H∗(Y ) with
E1

p,q = Hq(Wp), where Wp := X ×Y · · · ×Y X︸ ︷︷ ︸
p+1 times

.

Corollary 2.15. For f : X → Y as in Theorem 2.14 and for any k ≥ 0

bk(Y ) ≤
∑

p+q=k

bq(Wp),

where bk := rankHk is the k-th Betti number.

3. Simplicial construction

Since G and S are definable, they are triangulable ([6], Th. 4.4), i.e., there exists
a finite simplicial complex R = {∆j} and a definable homeomorphism Φ : |R| → G,
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where |R| is the geometric realization of R, such that S is a union of images under
Φ of some simplices of R. By a simplex we always mean an open simplex. If ∆ is a
simplex, then ∆ denotes its closure. In what follows we will ignore the distinction
between simplices of |R| and their images in G.

Definition 3.1. For a simplex ∆ of S, its subsimplex is a simplex ∆′ 6= ∆ such
that ∆′ ⊂ ∆. A k-flag of simplices of R is a sequence ∆i0 , . . . ,∆ik

such that ∆iν

is a subsimplex of ∆iν−1 for ν = 1, . . . , k.

Definition 3.2. The set S is marked if for every pair (∆′,∆) of simplices of S,
such that ∆′ is a subsimplex of ∆, the simplex ∆′ is classified as either hard or soft
subsimplex of ∆. If ∆′ is not in S, it is always soft.

In what follows we assume that S is marked.
Let R̂ be the barycentric subdivision of R. Then each vertex vj of R̂ is the center

of a simplex ∆j of R. Let B = B(j0, . . . , jk) be a k-simplex of R̂ having vertices
vj0 , . . . , vjk

. Assume that the vertices of B are ordered so that dim∆j0 > · · · >
dim∆jk

. Then B corresponds to a k-flag ∆j0 , . . . ,∆jk
of simplices of R. Let Ŝ be

the set of simplices of R̂ which belong to S. Then S is the union of all simplices of
Ŝ.

Definition 3.3. The core C(B) of a simplex B = B(j0, . . . , jk) of Ŝ is the maximal
subset {j0, . . . , jp} of the set {j0, . . . , jk} such that ∆jν is a hard subsimplex of ∆jµ

for all µ < ν ≤ p. Note that j0 is always in C(B), in particular, C(B) 6= ∅. Assume
that for a simplex B not in Ŝ, the core C(B) is empty.

Lemma 3.4. Let B = B(i0, . . . , ik) be a simplex in Ŝ, and K = K(j0, . . . , j`)
be a simplex in R̂, with B ⊂ K, i.e., I = {i0, . . . , ik} ⊂ J = {j0, . . . , j`}. Then
I \ C(B) ⊂ J \ C(K).

Proof. Straightforward consequence of the definitions. �

Definition 3.5. For two simplices B and B′ of Ŝ, let B′ � B if either B′ is a
subsimplex of B (reverse inclusion) and C(B′) ∩ C(B) = ∅, or B′ = B. If B′ � B
and B′ 6= B, then we write B′ � B. Lemma 3.4 implies that � is a partial order
on the set of all simplices of Ŝ. The rank r(Ŝ) of Ŝ is the maximal length r of a
chain ∆0 � · · · � ∆r of simplices in Ŝ. Let B be a simplex in Ŝ. The set SB of
simplices B′ ⊂ B ∩ Ŝ is a poset with partial order induced from (Ŝ,�). The rank
r(SB) of SB is the maximal length of its chain.

Definition 3.6. Let simplices B and K be as in Lemma 3.4. For 0 < δ < 1, define

B(δ) :=

{ ∑
iν∈I

tiν viν ∈ B(i0, . . . , ik)

∣∣∣∣∣ ∑
iν∈C(B)

tiν > δ

}
.

For 0 < ε < 1 and 0 < δ < 1, define

KB(δ, ε) :=

{ ∑
jν∈J

tjνvjν ∈ K(j0, . . . , j`)

∣∣∣∣∣ ∑
iν∈C(B)

tiν > δ,
∑
iν∈I

tiν > 1− ε,

∀iν ∈ I ∀jµ ∈ (J \ I) (tiν > tjµ)

}
.
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Definition 3.7. Let B be a simplex in Ŝ. Fix some m ≥ 0 and a sequence
ε0, δ0, ε1, δ1, . . . , εm, δm. Define VB as the union of sets KB′(δi, εi) over all simplices
B′ ∈ SB, simplices K of R̂ such that B ⊂ K, and i = 0, . . . ,m. Define V as the
union of the sets VB over all simplices B of Ŝ.

4. Topological relations between V and S

Lemma 4.1. Let B = B(i0, . . . , ik) be a simplex in Ŝ, and K = K(j0, . . . , j`) be a
simplex in R̂, with B ⊂ K. Then

KB(δ, ε) ∩KB(δ′, ε′) = KB(max{δ, δ′},min{ε, ε′}),
for all 0 < δ, ε, δ′, ε′ < 1.

Proof. Straightforward consequence of the definitions. �

Lemma 4.2. For any two simplices B and B′ of Ŝ, a simplex K of R̂ such that B
and B′ are subsimplices of K, and all 0 < δ, ε, δ′, ε′ < 1,

(i) if KB(δ, ε) ∩KB′(δ′, ε′) 6= ∅, then either B ⊂ B′ or B′ ⊂ B;
(ii) KB(δ, ε) ∩KB′(δ′, ε′) is convex.

Proof. Straightforward consequence of the definitions. �

Lemma 4.3. Let K be a simplex of R̂, and let B0, . . . , Bk be a flag of simplices
of Ŝ, with B0 ⊂ K. Then for (1.1) and a sequence i0, j0, . . . , ik, jk of integers in
{0, 1, . . . ,m}, the intersection

ZK(i0, j0, . . . , ik, jk) := KB0(δi0 , εj0) ∩ · · · ∩KBk
(δik

, εjk
)

is non-empty if and only if Bµ � Bν implies jµ > iν for any µ, ν ∈ {0, 1, . . . , k}.
Proof. The necessity of the condition is straightforward. To show that it is sufficient
we will construct a point v :=

∑
tjvj , where the sum is taken over all vertices vj

of K, such that v ∈ ZK(i0, j0, . . . , ik, jk). This will be done in three steps.
(a) Define `ν as the last index in C(Bν) (i.e., v`ν is the center of the smallest

simplex ∆j of R such that j ∈ C(Bν)). Set t`ν := δiν . If `ν is the same index for
several ν, set t`ν to be the maximum of the corresponding δiν .

(b) Fix a sequence γ0, . . . , γk+1 such that 0 < γ0 < · · · < γk+1 � ε0. For a vertex
vj of Bν−1 which is not one of v`µ and not a vertex of Bν , set tj := γν + max δiµ ,
where the maximum is taken over all µ such that Bν � Bµ (or equals 0 if there is
no such µ). For any vertex vj of K that does not belong to B0, set tj := γ0. For a
vertex vj of Bk that is not one of v`ν set tj := γk+1 +max δiµ , where the maximum
is taken over µ = 0, . . . , k.

(c) For the last vertex vω of Bk set tω := 1 − ∑
vj
tj, where the sum is taken

over all vertices vj of K other than vω . If ω = `k, this overrides the setting in (a).
If ω 6= `k, this overrides the setting in (b).

It is easy to check that v ∈ ZK(i0, j0, . . . , ik, jk). �

Lemma 4.4. Let B0, . . . , Bk be a flag of simplices of Ŝ, and i0, j0, . . . , ik, jk be a
sequence of integers in {0, 1, . . . ,m}. For (1.1), if Bµ � Bν implies jµ > iν for any
µ, ν ∈ {0, 1, . . . , k}, then the set

Z(i0, j0, . . . , ik, jk) :=
⋃
K

ZK(i0, j0, . . . , ik, jk),
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where the union is taken over all simplices K of R̂ with B0 ⊂ K, is an open
contractible subset of G. Otherwise Z(i0, j0, . . . , ik, jk) = ∅.
Proof. By Lemma 4.3, Z(i0, j0, . . . , ik, jk) 6= ∅ if and only if Bµ � Bν implies
jµ > iν for any µ, ν ∈ {0, 1, . . . , k}. So, suppose that Z(i0, j0, . . . , ik, jk) 6= ∅, and
consider two simplices, K and K ′, such that B0 ⊂ K ′ ⊂ K. Then the intersection
of the closure of the complement in K of ZK(i0, j0, . . . , ik, jk) with K ′ coincides
with the complement in K ′ of ZK′(i0, j0, . . . , ik, jk). Hence, ZK′(i0, j0, . . . , ik, jk)∪
ZK(i0, j0, . . . , ik, jk) is open in K. It follows that Z(i0, j0, . . . , ik, jk) is open in G,
and has a closed covering by convex sets ZK(i0, j0, . . . , ik, jk) ∩ Z(i0, j0, . . . , ik, jk)
over all simplices K of R̂. This covering has the same nerve as the star of B0 in
the complex R̂, this star is contractible. An intersection of any number of elements
of the covering of Z(i0, j0, . . . , ik, jk) is convex, and therefore contractible. By
the Nerve Theorem (Theorem 2.10 (ii)), both Z(i0, j0, . . . , ik, jk) and the star are
homotopy equivalent to the geometric realization of the nerve, and hence to one
another. It follows that Z(i0, j0, . . . , ik, jk) is contractible. �

Lemma 4.5. For (1.1) and for each simplex B in Ŝ and every m ≥ 1 the set VB

(see Definition 3.7) is open in G and (m− 1)-connected.

Proof. For every simplex B′ ∈ SB consider the set UB′,i :=
⋃

K KB′(δi, εi), where
the union is taken over all simplices K of R̂ with B ⊂ K. Obviously, the family
{UB′,i| B′ ∈ SB, 0 ≤ i ≤ m} is an open covering of VB . Let MB denote the
nerve of this covering. From Lemmas 4.1, 4.4, MB is the simplicial complex whose
k-simplices can be identified with all sequences of the kind ((p0, i0), . . . , (pk, ik)),
where pν are indices of the simplices B′pν

∈ SB, such that

(a) B′pν
⊂ B′pν−1

,
(b) 0 ≤ iν ≤ m,
(c) if B′pµ

� B′pν
and µ > ν, then iµ > iν .

By Lemma 4.4 any non-empty intersection of sets UB′,i is contractible. Therefore,
due to the Nerve Theorem (Theorem 2.10 (ii)), VB is homotopy equivalent to MB,
and in order to prove that VB is (m − 1)-connected it is sufficient to show that
MB is an (m− 1)-connected simplicial complex. This follows from Proposition 4.6
below. �

Let � be a poset on {0, . . . , N} such that if p � q and p 6= q, then p > q. For each
p ∈ {0, . . . , N}, let r(p) be the maximal length of a poset chain with the maximal
element p (i.e., the rank of the order ideal generated by p). Let m0, . . . ,mN be
nonnegative integers. Let M(m0, . . . ,mN) be the simplicial complex containing all
k-simplices ((p0, i0), . . . , (pk, ik)) such that

(a) pν ∈ {0, . . . , N}, p0 ≤ · · · ≤ pk,
(b) iν ∈ {0, . . . ,mν},
(c) if pµ � pν and µ > ν, then iµ > iν .

Let m := min{m1, . . . ,mN}.
An example of the complex M(2, 2) with 1 � 0 is shown on Fig 2.

Proposition 4.6. The simplicial complex M(m0, . . . ,mN ) is (m− 1)-connected.
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(0,0) (0,1) (0,2)

(1,1) (1,2)(1,0)

0

1

ρ

Figure 2. The complex M(2, 2) with 1 � 0.

Proof. Let ∆N be the N -simplex, and ∆N (m) be the m-dimensional skeleton of its
closure. There is a natural simplicial map

ρ : M(m0, . . . ,mN ) → ∆N ,
(p, i) 7→ p.

It is easy to see that ∆N (m) ⊂ ρ(M(m0, . . . ,mN )), hence ρ(M(m0, . . . ,mN)) is
(m− 1)-connected.

Consider any face ∆L of ∆N , L ≤ N , which has nonempty pre-image under ρ.
Without loss of generality assume that its vertices are 0, . . . , L. Let M(m0, . . . ,mL)
be the simplicial complex defined over the poset on {0, . . . , L} induced by �. We
prove inductively on L that for any point x ∈ ∆L the fibre ρ−1(x) is contractible.
The proposition then follows from Vietoris-Begle Theorem (Corollary 2.6 (ii)). The
base of induction, for L = 0, is obvious. Assume that the statement is true for
L− 1. For any simplex K = ((p0, i0), . . . , (pk, ik)) of M(m0, . . . ,mL) that projects
surjectively onto ∆L, if pν = L then iν ≥ r(L). Let s = i` be the minimal of these
iν in K, so that pν < L for ν < `, while p` = L. Then ((p0, i0), . . . , (p`−1, i`−1))
is a simplex of the simplicial complex M(s) := M(m′

0, . . . ,m
′
L−1), defined over the

poset on {0, . . . , L−1} induced by�, wherem′
p := min{mp, r(p)+s−r(L)} if L � p,

and m′
p := mp if L is incomparable with p. It follows that K is a simplex of the join

ofM(s) and ∆mL−s, where ∆mL−s is the simplex with vertices s, . . . ,mL. Since the
complex M(s) is contractible due to the induction hypothesis, its join with ∆mL−s

has a contractible fibre over any x ∈ ∆L. The fibre over x of M(m0, . . . ,mL) is
the union of these contractible fibres for s = r(N), . . . ,mL. The intersection of any
number of these fibres is nonempty and contractible, being a fibre of the join of
Mmin and ∆mL−smax . Due to the Nerve Theorem (Theorem 2.10 (ii)), their union
is homotopy equivalent to its nerve, a simplex, and thus is contractible. �

Corollary 4.7. In the definition of the simplicial complex M(m0, . . . ,mN ) assume
additionally that mj ≥ r(j) for every j = 0, . . . , N . Then M(m0, . . . ,mN) is
contractible.

Proof. The condition mj ≥ r(j) guarantees that the map ρ is surjective, hence
ρ(M(m0, . . . ,mN )) is contractible. �

Theorem 4.8. For (1.1) there are homomorphisms χk : Hk(V ) → Hk(S) and
τk : πk(V ) → πk(S) such that χk, τk are isomorphisms for every k ≤ m − 1, and
χm, τm are epimorphisms. Moreover, if m ≥ dim(S), then V ' S.

Proof. Due to Lemma 4.2(i), for any three simplices B0, B1, B2 in Ŝ, the equality
B0 = B1 ∩ B2 is equivalent to VB0 = VB1 ∩ VB2 . Hence, a nonempty intersection
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of any number of sets VB is a set of the same type, and therefore is (m − 1)-
connected. Moreover, there is an isomorphism ξ : |NV | → |NbS | between the
geometric realization of the nerve NbS of the covering of Ŝ by its simplices and the
geometric realization of the nerve NV of the open covering of V by sets VB .

Since intersections of any number of elements of the covering of Ŝ (i.e., sim-
plices) are contractible if non-empty, the Nerve Theorem (Theorem 2.10 (ii) and
Remark 2.12) implies that Ŝ ' |NbS |, i.e., there is a continuous map ψbS : Ŝ → |NbS |
which induces isomorphisms of homotopy groups ψbS# : πk(Ŝ) → πk(|NbS |) for all
integers k ≥ 0.

On the other hand, by the Nerve Theorem (Theorem 2.10 (i)), there is a con-
tinuous map ψV : V → |NV | inducing isomorphisms of homotopy groups ψV # :
πk(V ) → πk(|NV |) for every k ≤ m − 1 and an epimorphism ψV # : πm(V ) →
πm(|NV |). As τk take

ψ−1
bS#
◦ ξ ◦ ψV # : πk(V ) → πk(Ŝ).

By Whitehead Theorem on homotopy and homology (Theorem 2.2), ψbS induces
isomorphisms of homology groups ψbS∗ : Hk(Ŝ) → Hk(|NbS |) for all k ≥ 0, while
ψV induces isomorphisms of homology groups ψV ∗ : Hk(V ) → Hk(|NV |) for every
k ≤ m− 1, and an epimorphism ψV ∗ : Hm(V ) → Hm(|NV |). As χk take

ψ−1
bS∗ ◦ ξ ◦ ψV ∗ : Hk(V ) → Hk(Ŝ).

If m ≥ dim(S) then, by Corollary 4.7, a nonempty intersection of any number of
sets VB is contractible. Then, according to Nerve Theorem, sets V and Ŝ are ho-
motopy equivalent to geometric realizations of the respective nerves, and therefore
V ' S. �

5. Proof of Theorem 1.10

We now need to re-define the simplicial complex R so that it would satisfy ad-
ditional properties. Recall that definable functions are triangulable [6], Th. 4.5.
Consider a finite simplicial complex R′ such that R′ is a triangulation of the pro-
jection

ρ : G× [0, 1] → [0, 1],

and R′ is compatible with ⋃
δ∈(0,1)

(Sδ, δ) ⊂ G× [0, 1].

Define R as the triangulation induced by R′ on the fibre ρ−1(0).

Definition 5.1. Along with the sequence ε0, . . . , δm, consider another sequence
ε′0, δ

′
0, ε

′
1, δ

′
1 . . . ε

′
m, δ

′
m. Let T ′ be the set defined as in Definition 1.8 replacing all

δi, εi by δ′i, ε
′
i. Let V ′ be the set defined as in Definition 3.7 replacing all δi, εi by

δ′i, ε
′
i.

5.1. Definable case. In the definable case we specify the hard–soft relation for
the set V ′ as follows. For any pair (∆1,∆2) of S such that ∆1 is a subsimplex of
∆2, we assume that ∆1 is soft in ∆2.
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Definition 5.2. Let B and K be as in Lemma 3.4. For 0 < ε < 1 define

KB(ε) :=

{ ∑
jν∈J

tjνvjν ∈ K(j0, . . . , j`)

∣∣∣∣∣ ∑
iν∈I

tiν > 1− ε,

∀iν ∈ I ∀jµ ∈ (J \ I) (tiν > tjµ)

}
.

Introduce a new parameter ε′′, and define V ′′ as the union of KB(ε′′) over all
simplices B of Ŝ, and all simplices K of R̂ such that B ⊂ K.

In each of the following Lemmas 5.3, 5.4, 5.5, and 5.6, the statement holds for

0 < ε′0 � · · · � ε′i � εi � δi � δ′i � · · · � δ′m � ε′′ (i = 0, . . . ,m).

Lemma 5.3. S ' V ′′.

Proof. Let B be a simplex of Ŝ, and let UB :=
⋃
KB(ε′′), where the union is taken

over all simplices K of R̂ such that B ⊂ K. Then the family of all sets UB forms
an open covering of V ′′ whose nerve we denote by NV ′′ . Each UB is contractible,
since B is a deformation retract of UB. Any intersection U := UB0 ∩ · · · ∩ UBk

is
nonempty iff, after the suitable reordering, the sequence Bi1 , . . . , Bik

is a k-flag of
simplices. If U 6= ∅, then Bik

is its deformation retract, hence U is contractible.
By Nerve Theorem (Theorem 2.10 (ii)), V ′′ ' |NV ′′ |. On the other hand, the
simplices of Ŝ form a covering of S with nerve NS (in the sense of Remark 2.12),
therefore, S ' |NS | by Nerve Theorem. Then S ' V ′′, since nerves NV ′′ and NS

are isomorphic. �

Lemma 5.4. V ′ ⊂ T ⊂ V ′′.

Proof. Let Vδ,ε be the union of sets KB(δ, ε) over all simplices K of R̂ and simplices
B of Ŝ such that B ⊂ K. We first show that Vδ′,ε′ ⊂ Sδ,ε which immediately implies
V ′ ⊂ T . Fix δ′, and let xε′ ∈ Vδ′,ε′ be a definable curve. Then x0 := limε′↘0 xε′ ∈
B(δ′), where B is a simplex in Ŝ (this follows from Definition 2.6). Let ∆ be the
simplex in S containing x0. Since every subsimplex of ∆ is soft in ∆, x0 ∈ Sδ for
δ � δ′. Also an open neighborhood of x0 in G, of the size independent of ε′, is
contained in Sδ,ε for ε� δ � δ′. Hence xε′ ∈ Sδ,ε for ε′ � ε� δ � δ′.

Next, we show that Sδ,ε ⊂ V ′′, and therefore T ⊂ V ′′. Fix δ, and let xε ∈ Sδ,ε

be a definable curve. Then x0 := limε↘0 xε ∈ Sδ. Hence x0 belongs to a simplex
B of Ŝ. According to Definition 5.2, an open neighbourhood of x0 of the radius
larger than ε is contained in KB(ε′′) for any simplex K of R̂ such that B ⊂ K. In
particular, xε ∈ KB(ε′′) and therefore xε ∈ V ′′. �

Lemma 5.5. The inclusion map ι : V ′ ↪→ V ′′ induces isomorphisms of homotopy
groups ιk# : πk(V ′) → πk(V ′′) for every k ≤ m− 1, and an epimorphism ιm#.

Proof. Recall that V ′ admits an open covering by sets of the kind V ′B := VB (Defi-
nition 3.7), over all simplices B in Ŝ, such that every non-empty intersection of sets
V ′B is (m − 1)-connected (Lemma 4.5). Similarly, the set V ′′ has an open covering
by sets V ′′B , where V ′′B is the union of sets KB′(ε′′) over all simplices B′ ∈ SB, and
simplices K of R̂ such that B ⊂ K. Every non-empty intersection of sets V ′′B is
contractible (cf. the proof of Lemma 5.3).
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The inclusion relation V ′B ⊂ V ′′B implies that these two coverings have the same
nerve N , up to isomorphism. Let N (m) be the m-skeleton of N . Following the
proof of Theorem 6 in [5], we now describe a carrier (see Definition 2.7) C′ assigning
certain intersections of the sets V ′B to simplices σ of the barycentric subdivision of
N (m).

Let Q be the face poset of N (m) (i.e., simplices ordered by subsimplex relation),
and ∆(Q) its order complex (see Definition 2.3). Then ∆(Q) is homeomorphic to
|N (m)| being its barycentric subdivision. For σ in ∆(Q) let

C′(σ) =
⋂

V ′
B∈minσ

V ′B .

In a similar way a carrier C′′ from simplices in the barycentric subdivision of N
to intersections of sets V ′′B is defined.

According to Carrier Lemma (ii) (Theorem 2.8), there exist continuous maps
g′ : N (m) → V ′ and g′′ : N → V ′′ such that g′ is carried by C′ and g′′ is carried
by C′′. On the other hand, g′ is also carried by C′′ because V ′B ⊂ V ′′B implies
g′(σ) ⊂ C′(σ) ⊂ C′′(σ). Since all non-empty intersections of V ′′B are contractible,
in particular m-connected, Carrier Lemma (i) implies that

(5.1) ι ◦ g′ ∼ g′′|N (m) .

Due to Nerve Theorem (Theorem 2.10 (ii), details in [5]) g′′ is a homotopy
equivalence. Passing to homomorphisms of homotopy groups, we have that g′′#k :
πk(N ) → πk(V ′′) is an isomorphism for all k hence, by (5.1), ι#k is an epimorphism
for all k ≤ m. According to Nerve Theorem, g′#k : πk(N (m)) → πk(V ′′) is an
isomorphism for k ≤ m− 1, thus, ι#k is also a monomorphism for k ≤ m− 1. �
Lemma 5.6. For every k ≤ m, there are epimorphisms ζk : πk(T ) → πk(V ′′) and
ηk : Hk(T ) → Hk(V ′′).

Proof. Due to Lemmas 5.4, 5.5,

V ′
p
↪→ T

q
↪→ V ′′,

where ↪→ are the inclusion maps, and q ◦p induces isomorphisms (q ◦p)# = q# ◦p#

of homotopy groups πk(V ′) ∼= πk(V ′′) for every k ≤ m − 1, and an epimorphism
πm(V ′) → πm(V ′′). Then ζk := q# is an epimorphism for every k ≤ m.

By Whitehead Theorem on homotopy and homology (Theorem 2.2), q ◦ p also
induces isomorphisms (q ◦ p)∗ = q∗ ◦ p∗ of homology groups Hk(V ′) ∼= Hk(V ′′) for
every k ≤ m − 1, and an epimorphism Hk(V ′) → Hk(V ′′). Hence, ηk := q∗ is an
epimorphism for every k ≤ m. �

Theorem 1.10(i) immediately follows from Lemmas 5.3 and 5.6.

5.2. Separability and constructible case.

Definition 5.7. For the simplicial complex R and the family {Sδ}δ>0 we call the
pair (R, {Sδ}δ>0) separable if for any pair (∆1,∆2) of simplices of S such that ∆1

is a subsimplex of ∆2, the equality ∆2 ∩ Sδ ∩∆1 = ∅ is equivalent to the inclusion
∆1 ⊂ ∆2 \ Sδ for all sufficiently small δ > 0.

Recall that in the constructible case we assume that S is defined by a Boolean
combination of equations and inequalities with continuous definable functions, and
the set Sδ is defined using sign sets of these functions (see Section 1).
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Lemma 5.8. In the constructible case (R, {Sδ}δ>0) is separable.

Proof. Observe that R is compatible with the sign set decomposition of S.
Consider a pair (∆1,∆2) of simplices of S such that ∆1 is a subsimplex of ∆2.

If both ∆1 and ∆2 lie in the same sign set, then ∆2 ∩ Sδ ∩∆1 = ∆1 ∩ Sδ 6= ∅ and
∆1 6⊂ ∆2 \ Sδ.

If ∆1 and ∆2 lie in two different sign sets, then there is a function h in the
Boolean combination defining S such that h(x) = 0 for every point x ∈ ∆1, while
h(y) satisfies a strict inequality, say h(y) > 0, for every point y ∈ ∆2. Then
∆2 ∩ Sδ ⊂ ∆2 ∩ {h ≥ δ} and ∆2 ∩ {h ≥ δ}∩{h = 0} = ∅. Hence ∆2 ∩ Sδ∩∆1 = ∅.
On the other hand, ∆2 \ Sδ ⊃ ∆2 ∩ {h < δ} ⊃ ∆2 ∩ {h = 0} ⊃ ∆1. �

Now we return to the general definable case, and assume for the rest of this
section that (R, {Sδ}) is separable. For any pair (∆1,∆2) of simplices of S such
that ∆1 is a subsimplex of ∆2, we assume that ∆1 is soft in ∆2 if ∆2 ∩ Sδ ∩∆1 = ∅
(equivalently, ∆1 ⊂ ∆2 \ Sδ) for all sufficiently small δ > 0. Otherwise, ∆1 is hard
in ∆2.

Lemma 5.9. If ∆1 is hard in ∆2, then for every x ∈ ∆1 there is a neighbourhood
Ux of x in ∆2 such that for all sufficiently small δ ∈ (0, 1), Ux ⊂ ∆2 ∩ Sδ.

Proof. Suppose that contrary to the claim, for some x ∈ ∆1, Ux \∆2 ∩ Sδ 6= ∅ for
any neighbourhood Ux of x in ∆1, for arbitrarily small δ > 0.

Since the set Sδ grows (with respect to inclusion) as δ ↘ 0, and ∆1 is hard
in ∆2, the intersection ∆2 ∩ Sδ ∩ ∆1 is non-empty and also grows. If for any
neighbourhood Wx of x in ∆1, Wx 6⊂ ∆2 ∩ Sδ ∩ ∆1 for arbitrarily small δ > 0,
then the limits of both ∆2 ∩ Sδ ∩ ∆1 and its complement in ∆1, as δ ↘ 0, have
non-empty intersections with ∆1. This contradicts to the assumption that ∆1 is a
simplex in the complex R compatible with R′, thus there is a neighbourhood Wx

in ∆1 such that Wx ⊂ ∆2 ∩ Sδ ∩ ∆1 for sufficiently small δ > 0. It follows that
Ux \ ∆2 ∩ Sδ ⊂ ∆2. Since x ∈ ∆2 \ Sδ, and using again the compatibility of the
complex R with R′, we conclude that ∆1 ⊂ ∆2 \ Sδ, i.e., ∆1 is soft in ∆2, which is
a contradiction. �

In each of the following Lemmas 5.10, 5.11, and Theorem 5.12 the statement
holds for

(5.2) 0 < ε′0 � · · · � ε′i � εi � δi � δ′i � · · · � δ′m � 1 (i = 0, . . . ,m).

Lemma 5.10. T ′ ⊂ V and V ′ ⊂ T .

Proof. We show first that Sδ′,ε′ ⊂ Vδ,ε, for ε′ � ε� δ � δ′, where Vδ,ε is the union
of KB(δ, ε) over all simplices K of R̂ and simplices B of Ŝ such that B ⊂ K.

Let us fix δ′, and let xε′ ∈ Sδ′,ε′ be any definable curve. It is enough to show
that xε′ ∈ Vδ,ε for ε′ � ε � δ � δ′. Clearly, x0 =: limε′↘0 xε′ belongs to Sδ′ .
Hence x0 belongs to a simplex B = B(j0, . . . , j`) of Ŝ. Suppose that x0 6∈ B(δ).
Let x0,δ ∈ B \ B(δ) be a definable curve. Then x0,0 =: limδ↘0 x0,δ belongs to a
subsimplex B′ = B(i0, . . . , ik) of B. It follows that x0,0 ∈ ∆j0 ∩ Sδ′ ∩∆i0 , therefore
∆i0 is hard in ∆j0 . On the other hand, by the definition of B(δ) (Definition 3.6),
∆i0 is soft in ∆j0 . This contradiction shows that x0 ∈ B(δ).

For ε′ � ε, the distance from xε′ to x0 ∈ Sδ′ ∩B is much smaller than ε. From
Definition 2.6, for ε� δ � δ′, the union of K(δ, ε) over all simplices K of R̂ such
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that B ⊂ K contains an open in G neighborhood of x0 ∈ B of the size that is
independent of ε′. Hence xε′ ∈ Vδ,ε for ε′ � ε� δ � δ′.

Next, we want to show that Vδ′,ε′ ⊂ Sδ,ε. As before, fix δ′. Let xε′ ∈ Vδ′,ε′

be a definable curve. Then x0 := limε′↘0 xε′ ∈ B(δ′), where B = B(j0, . . . , j`)
is a simplex in Ŝ (this follows from Definition 3.6). Suppose that x0 6∈ Sδ, then
x0 ∈ B \ Sδ. Let x0,δ ∈ B \ Sδ be a definable curve. Therefore x0,0 := limδ↘0 x0,δ

belongs to a subsimplex B′ = B(i0, . . . , ik) of B. Then by Lemma 5.9, ∆i0 is soft
in ∆j0 , and thus x0,0 6∈ Vδ′,ε′ . The same is true for xε′ as well, namely xε′ 6∈ Vδ′,ε′

for ε′ � δ � δ′. This contradiction shows that x0 ∈ Sδ.
Since x0 ∈ S, an open neighborhood of x0 in G, of the size independent of ε′, is

contained in Sδ,ε for ε� δ � δ′. Hence xε′ ∈ Sδ,ε for ε′ � ε� δ � δ′. �

Lemma 5.11. The inclusion maps T ′ ↪→ T and V ′ ↪→ V are homotopy equiva-
lences.

Proof. Proofs of homotopy equivalences are similar for the both inclusions, so we
will consider only the case of T ′ ↪→ T .

Consider ε0, δ0, . . . , εm, δm as variables, then T ⊂ R
n+2m+2. From the o-minimal

version of Hardt’s triviality, applied to the projection ρ : T → R
2m+2 on the

subspace of coordinates ε0, δ0, . . . , εm, δm, follows the existence of a partition of
R

2m+2 into a finite number of connected definable sets {Ai} such that T is definably
trivial over each Ai, i.e., for any point (ε̄, δ̄) := (ε0, δ0, . . . , εm, δm) ∈ Ai the pre-
image ρ−1(Ai) is definably homeomorphic to ρ−1(ε̄, δ̄) × Ai by a fibre preserving
homeomorphism.

There exists an element Ai0 of the partition which is an open connected set in
R

2m+2 and contains both points (ε̄, δ̄) and (ε̄′, δ̄′) for (5.2). Let γ : [0, 1] → Ai0 be a
definable simple curve such that γ(0) = (ε̄, δ̄) and γ(1) = (ε̄′, δ̄′). Then ρ−1(γ(0)) =
T , ρ−1(γ(1)) = T ′ and ρ−1(γ([0, 1])) is definably homeomorphic to T × γ([0, 1]).
Let Φt,t′ : ρ−1(γ(t′)) → ρ−1(γ(t)) for 0 ≤ t ≤ t′ ≤ 1 be the homeomorphism of
fibres. Replacing if necessary (ε̄, δ̄) by a point closer to (ε̄′, δ̄′) along the curve γ,
we can assume that ρ−1(γ(t′)) ⊂ ρ−1(γ(t)) for all 0 ≤ t ≤ t′ ≤ 1. Then T ′ is a
strong deformation retract of T defined by the homotopy F : T × [0, 1] → T as
follows. If x ∈ ρ−1(γ(t′)) for some t′ ≤ t and x 6∈ ρ−1(γ(t′′)) for any t′′ > t′, then
F (x, t) = Φt′, t(x). If x ∈ ρ−1(γ(t′)) with t′ > t, then F (x, t) = x. �

Theorem 5.12. T ' V

Proof. Consider four sequences (ε(j), δ(j)) := (ε(j)0 , δj
0, . . . , ε

(j)
m , δ

(j)
m ), 1 ≤ j ≤ 4. Let

T (ε(j), δ(j)) (respectively, V (ε(j), δ(j))) be the set defined as in Definition 1.8 (resp.,
Definition 3.7) replacing all δi, εi by δ(j)i , ε

(j)
i .

Due to Lemmas 5.10, the following chain of inclusions holds

T (ε(1), δ(1))
p
↪→ V (ε(2), δ(2))

q
↪→ T (ε(3), δ(3))

r
↪→ V (ε(4), δ(4)),

for
0 < ε

(j)
0 � δ

(j)
0 � · · · � ε(j)m � δ(j)m � 1,

where
δ
(j−1)
i−1 � ε

(j−1)
i � ε

(j)
i � δ

(j)
i � δ

(j−1)
i

for all i = 1, . . . ,m, j = 2, 3, 4.
According to Lemma 5.11, q ◦ p and r ◦ q are homotopy equivalences. Passing to

induced homomorphisms of homotopy groups, we have that (q ◦p)# = q# ◦p# is an
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isomorphism, hence q# is epimorphism. Similarly, since (r◦q)# = r# ◦q# is an iso-
morphism, q# is a monomorphism. It follows that q# is an isomorphism, therefore
T ' V by Whitehead Theorem on weak homotopy equivalence (Theorem 2.1). �

Theorem 1.10(ii) immediately follows from Theorems 5.12 and 4.8.

6. Upper bounds on Betti numbers

The method described in this section can be applied to obtain upper bounds on
Betti numbers for sets defined by Boolean formulae with functions from various
classes which admit a natural measure of “description complexity” and a suitable
version of “Bezout Theorem”, most notably for semialgebraic and semi- and sub-
Pfaffian sets (see, e.g., [8]). We give detailed proofs for the semialgebraic case. The
proofs can be extended to the Pfaffian case straightforwardly.

Definition 6.1. Let f, g, h : N
` → N be three functions, n ∈ N. The expression

f ≤ O(g)n means: there exists c ∈ N such that f ≤ (cg)n everywhere on N
`. The

expression f ≤ gO(h) means: there exists c ∈ N such that f ≤ gch everywhere on
N

`.

6.1. Semialgebraic sets defined by quantifier-free formulae. Consider the
constructible case with S = {x| F(x)} ⊂ R

n, where F is a Boolean combination
of polynomial equations and inequalities of the kind h(x) = 0 or h(x) > 0, h ∈
R[x1, . . . , xn]. Suppose that the number of different polynomials h is s and their
degrees do not exceed d. The following upper bounds on the total Betti number
b(S) of the set S originate from the classic works of [13, 14, 12, 16]. Their proofs
can be found in [4].

(i) If F is a conjunction of any number equations, then b(S) ≤ d(2d− 1)n−1.
(ii) If F is a conjunction of s non-strict inequalities, then b(S) ≤ (sd+ 1)n.
(iii) If F is a conjunction of s equations and strict inequalities, then b(S) ≤

O(sd)n.
The following statement applies to more general semialgebraic sets.

Theorem 6.2 ([2], Th. 1; [4], Th. 7.38). If F is a monotone Boolean combination
(i.e., exclusively connectives ∧, ∨ are used, no negations) of only strict or only
non-strict inequalities, then b(S) ≤ O(sd)n.

In [9], Th. 1 the authors proved the bound b(S) ≤ O(s2d)n for an arbitrary
Boolean formula F . Theorem 1.10 implies the following refinement of this bound.

Theorem 6.3. Let ν := min{k + 1, n− k, s}. Then the k-th Betti number

bk(S) ≤ O(νsd)n.

Proof. Assume first that k > 0. For m = k construct T (S) in the compactification
of R

n, as described in Section 1. T (S) is a compact set defined by a Boolean formula
with 4(k+1)s polynomials in R[x1, . . . , xn] of the kind h+δi, h−δi, h+εi or h−εi,
0 ≤ i ≤ k, having degrees at most d. According to Lemma 1.9, there is a bijection
C from the set T of all connected components of T (S) to the set S of all connected
components of S such that C−1(S′) = T (S′) for every S′ ∈ S. By Theorem 1.10
(i), bk(S′) ≤ bk(T (S′)). I follows that

bk(S) =
∑
S′∈S

bk(S′) ≤
∑
S′∈S

bk(T (S′)) = bk(T (S)).
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Then, applying the bound from Theorem 6.2 to T (S),

(6.1) bk(S) ≤ bk(T (S)) ≤ O((k + 1)sd)n.

On the other hand, since T (S) is compact, bk(T (S)) = bn−k−1(Rn \ T (S)) by
Alexander’s duality. The semialgebraic set R

n \ T (S) is defined by a monotone
Boolean combination of only strict inequalities, hence, due to Theorem 6.2,

(6.2) bk(S) ≤ bn−k−1(Rn \ T (S)) ≤ O((n− k)sd)n.

The theorem now follows from (6.1), (6.2) and the bound b(S) ≤ O(s2d)n from [9].
In the case k = 0, b0(S) ≤ b0(T (S)) since the map C is surjective, hence by

Theorem 6.2,
b0(S) ≤ b0(T (S)) ≤ O(sd)n.

�

6.2. Projections of semialgebraic sets. Let ρ : R
n+r → R

n be the projection
map, and S = {(x,y)|F(x,y)} ⊂ R

n+r be a semialgebraic set, where F is a Boolean
combination of polynomial equations and inequalities of the kind h(x,y) = 0 or
h(x,y) > 0, h ∈ R[x1, . . . , xn, y1, . . . , yr]. Suppose that the number of different
polynomials h is s and their degrees do not exceed d.

Effective quantifier elimination algorithm ([4], Ch. 14) produces a Boolean
combination Fρ of polynomial equations and inequalities, with polynomials in
R[x1, . . . , xn], defining the projection ρ(S). The number of different polynomi-
als in Fρ is (sd)O(nr), and their degrees are bounded by dO(r). Then Theorem 6.3
(or Theorem 1 in [9]) implies that

(6.3) bk(ρ(S)) ≤ (sd)O(n2r)

for any k ≥ 0. We now improve this bound as follows.

Theorem 6.4. The k-th Betti number of ρ(S) satisfies the inequality

bk(ρ(S)) ≤
∑

0≤p≤k

O((p+ 1)(k + 1)sd)n+(p+1)r ≤ ((k + 1)sd)O(n+kr).

Proof. For k = 0 the bound immediately follows from Theorem 6.3, so assume that
k > 0. The set S is represented by families {Sδ}δ, {Sδ,ε}δ,ε in the compactification
of R

n+r as described in Section 1. According to Lemma 1.3, the projection ρ(S)
is represented by families {ρ(Sδ)}δ, {ρ(Sδ,ε)}δ,ε in the compactification of R

n. Fix
m = k, then the set T (ρ(S)) = ρ(T (S)) is defined. According to Corollary 2.15,

bk(ρ(T (S))) ≤
∑

p+q=k

bq(Wp),

where
Wp = T (S)×ρ(T (S)) · · · ×ρ(T (S)) T (S)︸ ︷︷ ︸

p+1 times

.

The fibred product Wp ⊂ R
n+(p+1)r is definable by a Boolean formula with

4(p+ 1)(k + 1)s

polynomials of degrees not exceeding d. Hence, by Theorem 6.2,

bq(Wp) ≤ O((p+ 1)(k + 1)sd)n+(p+1)r.
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It follows that

(6.4) bk(T (ρ(S))) ≤
∑

0≤p≤k

O((p + 1)(k + 1)sd)n+(p+1)r ≤ ((k + 1)sd)O(n+kr).

Finally, by Theorem 1.10 (i), bk(ρ(S)) ≤ bk(T (ρ(S))), which, in conjunction with
(6.4), completes the proof. �
6.3. Semi- and sub-Pfaffian sets. Necessary definitions regarding semi-Pfaffian
and sub-Pfaffian sets can be found in [8, 7] (see also [11]).

Let S = {x| F(x)} ⊂ (0, 1)n be a semi-Pfaffian set, where F is a Boolean
combination of equations and inequalities with s different Pfaffian functions (here
and in the sequel (0, 1) can be replaced by any, bounded or unbounded, interval).
Assume that all functions are defined in (0, 1)n, have a common Pfaffian chain of
order `, and degree (α, β). A straightforward generalization of Theorem 6.2 gives
the following upper bound.

Theorem 6.5 ([17], Th. 1; [8], Th. 3.4). If F is a monotone Boolean combination
of only strict or only non-strict inequalities such that S ⊂ (0, 1)n, then

b(S) ≤ sn2`(`−1)/2O(nβ + min{n, `}α)n+`.

In conjunction with Theorem 1.10 this implies the following bound for the set S
defined by an arbitrary Boolean formula F .

Theorem 6.6. Let ν := min{k + 1, n− k, s}. Then the k-th Betti number

bk(S) ≤ (νs)n2`(`−1)/2O(nβ + min{n, `}α)n+`.

Proof. Analogous to the proof of Theorem 6.3. �
Remark 6.7. Unlike Theorem 6.5, the condition S ⊂ (0, 1)n is not required in
Theorem 6.6, since taking the conjunction of inequalities 0 < xi < 1, for i =
1, . . . , n, with F , guarantees that the closed set T (S) ⊂ (0, 1)n.

Now we consider the sub-Pfaffian case. Let ρ : R
n+r → R

n be the projection
map, and S = {(x,y)| F(x,y)} ⊂ (0, 1)n+r be a semi-Pfaffian set, where F is a
Boolean combination of Pfaffian equations and inequalities. Suppose that all dif-
ferent Pfaffian functions occurring in F are defined in (0, 1)n+r, have a common
Pfaffian chain of order `, their number is s, and their degree is (α, β). Since the
Pfaffian o-minimal structure does not admit quantifier elimination (i.e., the projec-
tion of a semi-Pfaffian set may not be semi-Pfaffian, see [8]), it is not possible to
apply in the Pfaffian case the same method that we used to obtain the bound (6.3).
On the other hand, the method employed in the proof of Theorem 6.4 extends
straightforwardly to projections of semi-Pfaffian sets, and produces the following
first general singly exponential upper bound for Betti numbers of sub-Pfaffian sets.

Theorem 6.8. The k-th Betti number of ρ(S) satisfies the inequality

bk(ρ(S)) ≤ (ks)O(n+(k+1)r)2O(k`)2((n+ (k + 1)r)(α + β))n+(k+1)r+k`.

Proof. Analogous to the proof of Theorem 6.4. �
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