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Abstract. We construct an algorithm for a cylindrical cell decomposition of
a closed cube In ⊂ Rn compatible with a “restricted” sub-Pfaffian subset Y ⊂
In, provided an oracle deciding consistency of a system of Pfaffian equations
and inequalities is given. In particular, the algorithm produces the complement
Ỹ = In \Y . The complexity bound of the algorithm, the number and formats
of cells are doubly exponential in n3.

Introduction

Subanalytic sets are defined as images of relatively proper real analytic maps of
semianalytic sets. In [8] Gabrielov proved that the complement of any subanalytic
set is also subanalytic. This complement theorem, being a natural extension of the
Tarski-Seidenberg principle for semialgebraic sets, plays a key role in real analytic
geometry (see [2, 5]) as well as in model-theoretic study of o-minimality [7, 6, 17].

The complement theorem immediately follows from the existence of a cylindrical
decomposition of the ambient space compatible with a subanalytic set. The exis-
tence was proved in [9] by means of a quasi-constructive process of manipulating
with symbols of real analytic functions and their derivatives.

In the present paper we modify the method from [9] so that being applied to
subanalytic sets defined by Pfaffian functions it yields an algorithm (a real numbers
machine [3] with an oracle) producing a cylindrical decomposition. Pfaffian func-
tions are solutions of triangular systems of first order partial differential equations
with polynomial coefficients. Semi-Pfaffian sets, defined by systems of equations
and inequalities between these functions, are characterized by global finiteness prop-
erties [13, 14]. This means that their basic geometric and topological characteristics
can be explicitly estimated in terms of formats of their defining formulae. In the pa-
per we prove some global finiteness properties for sub-Pfaffian sets (relatively proper
images of semi-Pfaffian sets) as a consequence of an explicit complexity bound of
our algorithm for a cylindrical decomposition. The bound is doubly exponential in
a polynomial in the number of variables.

Note that for a special case of semialgebraic sets similar or better complexity
results are well known [4, 18, 12, 1].

1. Pfaffian functions and sub-Pfaffian sets

Definition 1.1. (See [13, 14] , and [11].) A Pfaffian chain of the order r ≥ 0 and
degree α ≥ 1 in an open domain G ⊂ Rn is a sequence of real analytic functions
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f1, . . . , fr in G satisfying Pfaffian equations

dfj(x) =
∑

1≤i≤n
gij(x, f1(x), . . . , fj(x))dxi

for 1 ≤ j ≤ r. Here gij(x, y) are polynomials in x = (x1, . . . , xn) and y =
(y1, . . . , yj) of degree not exceeding α. A function

f(x) = P (x, f1(x), . . . , fr(x))

where P (x, y1, . . . , yr) is a polynomial of degree not exceeding β ≥ 1 is a Pfaffian
function of order r and degree (α, β).

For examples of Pfaffian functions see [14, 11].

Lemma 1.2. (See [14, 11].)

1. The sum (resp. product) of two Pfaffian functions, f1 and f2, of orders r1
and r2 and degrees (α1, β1) and (α2, β2), is a Pfaffian function of the order
r1 + r2 and degree (α,max(β1, β2)) (resp. α, β1 +β2) where α = max(α1, α2).
If the two Pfaffian functions are defined by the same Pfaffian chain of order
r, then the order of the sum and product is also r.

2. A partial derivative of a Pfaffian function of order r and degree (α, β) is a
Pfaffian function of the order r and degree (α, α + β − 1).

The following definitions are slightly more restrictive than the usual ones. In
particular, we only consider the “restricted” case in which Pfaffian functions are
defined also on the boundary of the domain.

Definition 1.3. (Semi- and sub-Pfaffian set.)

1. A set X ⊂ Rs is called semi-Pfaffian in an open domain G ⊂ Rs if it consists
of points from G satisfying a Boolean combination of atomic equations and
inequalities f = 0, g > 0, where f, g are Pfaffian functions having a common
Pfaffian chain defined in the domain G. A semi-Pfaffian set is called basic if
the Boolean combination is just a system of equations and inequalities.

2. Consider the closed unit cube Im+n ⊂ G, where G ⊂ Rm+n is an open
domain, and the projection map

π : Rm+n −→ Rn.

A subset Y ⊂ Rn is called (restricted) sub-Pfaffian if Y = π(X) for semi-
Pfaffian set X ⊂ Im+n.

Definition 1.4. (Format.) For a semi-Pfaffian set

X =
⋃

1≤l≤M′
{fl1 = · · · = flIl = 0, gl1 > 0, · · · , glJl > 0} ⊂ G ⊂ Rs, (1)

where fij , gij are Pfaffian functions with a common Pfaffian chain, of order r and
degree (α, β), defined in an open domain G, its format is a triple (N,D, s), where
N ≥

∑
1≤l≤M′(Il + Jl), D ≥ α+ β. For s = m+ n and a sub-Pfaffian set Y ⊂ Rn

such that Y = π(X), its format is the format of X.

Definition 1.5. For a set of differentiable functions h = (h1, . . . , hk) in variables
x1, . . . , xn, a set of distinct indices i = (i1, . . . , ik) with 1 ≤ iν ≤ n, and an index
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j, 1 ≤ j ≤ n, different from all iν , we define a partial differential operator

∂h,i,j = det


∂h1

∂xi1
· · · ∂h1

∂xik

∂h1

∂xj

· · · · · · · · · · · ·
∂hk
∂xi1

· · · ∂hk
∂xik

∂hk
∂xj

∂
∂xi1

· · · ∂
∂xik

∂
∂xj

 .

When k = 0, the corresponding operator is simply ∂j = ∂
∂xj

.

Lemma 1.6. For a Pfaffian function g of the order r and degree α, for a set
h = (h1, . . . , hk) of Pfaffian functions of the order r and degrees α defined by the
same Pfaffian chain as g, and for the set of distinct indices i = (i1, . . . , ik), j, the
function ∂h,i,jg is a Pfaffian function of the order r and the degree O(kα).

Proof. This statement follows from Lemma 1.2.

Definition 1.5 implies the following statement.

Lemma 1.7. Let a system of equations and inequalities defining a semi-Pfaffian
set X ⊂ Rn of codimension k include a set of k Pfaffian functions h1, . . . , hk such
that the restriction hj |X ≡ 0 for each 1 ≤ j ≤ k, and dh1 ∧ · · · ∧ dhk 6= 0 at every
point of X. Let x ∈ X be a critical point of a Pfaffian function g : X −→ R.
Define the matrix

Mh,g = (∂h,i,j∂h,r,sg)i,j,r,s.

Then x is a non-degenerate critical point of g|X if and only if rank(Mh,g(x)) =
n− k.

Lemma 1.8. Let a sub-Pfaffian set Y = π(X) ⊂ Rn, where X ⊂ Rn+m is a semi-
Pfaffian set defined by Pfaffian functions of order r and π : Rn+m −→ Rn is
a projection map, have a format (L,D, n + m). Let dim(Y ) < n and Rn have

coordinates x1, . . . , xn. Denote M = 2r
2

(n + m)r(LD)n+m+r. Then there is an
integer vector γ = (γ1, . . . , γn) such that 0 ≤ γi ≤M and γ 6∈ Y .

Proof. We conduct the proof by induction on n. If n = 1, then dim(Y ) ≤ 0 and
therefore the number of points in Y does not exceed the number of connected
components in X. According to [13, 14], the latter is at most M , so for at least
one 0 ≤ γ1 ≤M the intersection X ∩ {x1 = γ1} = ∅.

For n > 1 suppose that for all 0 ≤ γn ≤M the dimension dim(Y ∩{xn = γn}) =
n− 1. Then for a vector (a1, . . . , an−1) the intersection

Y ∩ {x1 = a1, . . . , xn−1 = an−1} =
⋃

0≤γn≤M
{xn = γn}

consists of M + 1 points. On the other hand, the number of points in the inter-
section does not exceed the number of all connected components of X ∩ {x1 =
a1, . . . , xn−1 = an−1} which is at most M , according to [13, 14]. This contradic-
tion shows that there exists 0 ≤ γn ≤ M such that dim(Y ∩ {xn = γn}) < n − 1.
Applying the inductive hypothesis to Y ∩ {xn = γn} we conclude the proof.

Definition 1.9. (Weak stratification.) A weak stratification of a semi-Pfaffian set
X is a subdivision of X into a disjoint union of smooth, not necessarily connected,
possibly empty, basic semi-Pfaffian subsets Xα, called strata. Each stratum Xα is
effectively non-singular, that is the system of equations and inequalities for Xα of
codimension k includes a set of k Pfaffian functions hα,1, . . . , hα,k such that the
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restriction hα,j |Xα ≡ 0 for each 1 ≤ j ≤ k, and dhα,1 ∧ · · · ∧ dhα,k 6= 0 at every
point of Xα.

As a model of computation we use a real numbers machine (Blum-Shub-Smale
model) [3] equipped with an oracle for deciding the feasibility of any system of
Pfaffian equations and inequalities. An oracle is a subroutine which can be used by
the algorithm any time the latter needs to check feasibility. We assume that this
procedure always gives the correct answer though we do not specify how it actually
works. For some classes of Pfaffian functions the feasibility problem is decidable
on real numbers machines or Turing machines with explicit (singly-exponential)
complexity bounds. Apart from polynomials, such class form, for example, terms
of the kind P (eh, x1, . . . , xn) where h is a fixed polynomial in x1, . . . , xn and P is
an arbitrary polynomial in x0, x1, . . . , xn (see [16]). For such classes the oracle can
be replaced by a deciding procedure, and we get an algorithm in the usual sense.
As far as the computational complexity is concerned, we assume that each oracle
call has the unit cost.

Proposition 1.10. ([11], Theorem 3) There is an algorithm which for a semi-
Pfaffian set X in an open domain G ⊂ Rs of format (L,D, s) and defined by (1)

produces a finite stratification of X. The number of strata is less than Ls+rDrO(s)

.
The format of each stratum is

(LDrO(s)

, DrO(s)

, s).

All functions defining a stratum have the same Pfaffian chain as the input functions.

The complexity of the algorithm does not exceed Ls+rDrO(s)

.

Definition 1.11. The closure X of a semi-Pfaffian set X in an open domain G is
an intersection with G of the usual topological closure of X:

X = {x ∈ G : ∀ε > 0 ∃z ∈ X (|x− z| < ε)}.
The frontier ∂X of X is ∂X = X \X.

Proposition 1.12. ([10], Theorem 1.1) Let X be a semi-Pfaffian set in an open
domain G ⊂ Rs, of format (L,D, s) and defined by (1). Then the closure X and
frontier ∂X are semi-Pfaffian sets. Moreover, there is an algorithm which produces
X and ∂X with formats

((LD)O((s+r)s), DO(s), s).

The complexity of the algorithm does not exceed (LD)O((s+r)s).

Definition 1.13. ([6, 17]) Cylindrical cell is defined as follows.

1. Cylindrical 0-cell in Rn is an isolated point.
2. Cylindrical 1-cell in R is an open interval (a, b), a, b ∈ R.
3. For n ≥ 2 and 0 ≤ k < n, a cylindrical (k + 1)-cell in Rn is either a graph

of a continuous bounded function f : C −→ R, where C is a cylindrical
(k + 1)-cell in Rn−1, or else a set of the form

(f, g) ≡ {(x1, . . . , xn) ∈ Rn : (x1, . . . , xn−1) ∈ C and

f(x1, . . . , xn−1) < xn < g(x1, . . . , xn−1)},
where C is a cylindrical k-cell in Rn−1, and

f, g : C −→ R
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are continuous bounded functions satisfying

f(x1, . . . , xn−1) < g(x1, . . . , xn−1)

for all points (x1, . . . xn−1) ∈ C.

Clearly, a cylindrical k-cell is a topological cell, i.e. a homeomorphic image of
an open k-dimensional ball.

Definition 1.14. Cylindrical cell decomposition, say D, of a subset A ⊂ Rn is
defined as follows.

1. If n = 1, then D is a finite family of pairwise disjoint cylindrical cells (i.e.,
isolated points and intervals) whose union is A.

2. If n ≥ 2, then D is a finite family of pairwise disjoint cylindrical cells in Rn
whose union is A and there is a cell decomposition of π(A) such that π(C) is
its cell for each cell C of D, where π : Rn −→ Rn−1 is the projection map
onto the coordinate subspace of x1, . . . , xn−1.

Definition 1.15. If B ⊂ A ⊂ Rn and D is a cylindrical cell decomposition of A,
then D is compatible with B if for all C ∈ D either C ⊂ B or C ∩B = ∅ (i.e., some
D′ ⊂ D is a cylindrical cell decomposition of B).

Lemma 1.16. 1. Let X be a smooth manifold in Rn. Let fc(x) = f(x) −∑
α cαgα(x) be a family of smooth functions on X, depending on parameters

c ∈ Rm. Suppose that, for any x ∈ X, differentials of gα generate cotangent
space to X at x. Then, for a generic c, fc(x), has only non-degenerate critical
points. More precisely, the set

S = {c : fc(x) has a degenerate critical point}
has zero measure in Rm.

2. Let X be a smooth manifold in Rn, and f(x) a smooth non-vanishing function
on X. For a generic c = (c1, . . . , cn), all critical points of a function f(x)(1+
(c, x)) are non-degenerate. More precisely, the set

V = {c : f(x)(1 + (c, x)) has a degenerate critical point}
has zero measure in Rn.

3. Consider a smooth manifold X in Rn+d and the projection Y of X onto
Rd. Let for any fixed y ∈ Y the set Xy = X ∩ {y = const} be smooth. Let
F (x, y) be a smooth non-vanishing function on X. For a fixed y ∈ Y , consider
fy(x) = F (x, y) as a function on Xy. For a generic c, the set

Wc = {y : fy(x)(1 + (c, x)) has a degenerate critical point}
has zero measure in Y .

Proof. 1. This is a variant of Thom’s transversality theorem. For convenience,
we give a proof here. Let d = dimX. Fix x0 ∈ X. One can renumber gα so
that differentials of g1, . . . , gd generate cotangent space to X at x0. Let us change
coordinates in the neighborhood U of x0 so that gi(x) = xi − ai, for i = 1, . . . , d.
Consider the mapping df : U → Rd in these coordinates. The set of critical points
of fc in U coincides with df−1(c), and all these points are non-degenerate when
c is not a critical value of df . From Sard’s theorem, the set SU of critical values
of df has zero measure. Since the sets U selected for different points x0 cover X,
a countable covering of X by these sets can be found. Accordingly, the set S, a
countable union of the sets SU , has zero measure.
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2. Consider the following family: fa,c = f(x) − af(x) + (c, x)f(x). It is easy
to see that differentials of f(x) and xif(x) generate cotangent space to X at each
point x0 ∈ X. Part 1 of this lemma implies that the set

S = {(a, c) : fa,c has a degenerate critical point}

has zero measure in Rn+1. Since multiplication by a constant does not change
critical points and their degeneracy, S∩{a 6= 1} is a cylinder over the set V . Hence
V has zero measure in Rn.

3. Part 2 of this lemma implies that, for each y ∈ Y , the set

Sy = {c : fy(x)(1 + (c, x)) has a degenerate critical point}

has zero measure in Rn. Let S = ∪y(Sy, y) ⊂ Rn × Y . Due to Fubini theorem, S
has measure zero in Rn × Y . This implies, again due to Fubini theorem, that, for
a generic c, the set Wc = S ∩ {c = const} has zero measure in Y .

2. The main result

The aim of this paper is to describe an algorithm for producing a cylindrical
decomposition of a sub-Pfaffian set Y in the unit cube In ⊂ Rn. More precisely,
an input of the algorithm is a semi-Pfaffian set X in an open domain G ⊂ Rm+n

defined by (1) with s = m+n. Assume that X is contained in the closed unit cube
Im+n. Let for the projection function

π : Rm+n −→ Rn,

π(X) = Y , and dim(Y ) = d.
The output of the algorithm is a cell decomposition (i.e. subdivision into finite

disjoint family of topological cells) of In = π(Im+n) compatible with Y . The
decomposition is cylindrical after some linear change of coordinates. Each cell is
described by a formula of the type

π′
( ⋃

1≤i≤M′

⋂
1≤j≤M′′

{hij ∗ij 0}
)
,

where hij are Pfaffian functions in n′ ≥ m+n variables, π′ is the projection function

π′ : Rn
′ −→ Rn,

∗ij ∈ {=, >}, and M ′,M ′′, are certain integers.
Using an oracle the algorithm can then decide which cells belong to Y and which

to its complement Ỹ = In \ Y .
We prove that the number of cells in the decomposition is less than

N (d!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

,

the format of each cell is

(N ((d−1)!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

, (α+ β)r
O(d(m+dn))

,

N ((d−1)!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

).

The complexity of the algorithm is

N (r+m+n)O(d)

(α+ β)r
O(d(m+dn))

.
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3. Algorithm

3.1. Computing the dimension of Y . The algorithm applies the weak strati-
fication subroutine from Proposition 1.10 to X. Consider a stratum Xα = {f =
0, g > 0} of X, with dim(Xα) = d′, dim(π(Xα)) = d, where f = (f1, . . . , fk), g =
(g1, . . . , gk′) are vectors of Pfaffian functions and relations =, > are understood
component-wise. The stratum Xα is effectively non-singular, i.e the list f1, . . . , fk
includes m + n − d′ Pfaffian functions fi1 , . . . , fim+n−d′ such that the restriction

fij |Xα ≡ 0 for each 1 ≤ j ≤ m + n − d′, and dfi1 ∧ · · · ∧ dfim+n−d′ 6= 0 at every

point of Xα. Let for a subspace Rn its coordinates be y = (x1, . . . , xn), while the
coordinates of the complement space Rm be x = (xn+1, . . . , xn+m). Then the fiber
π−1(y) for any y ∈ π(Xα) is at least (d′ − d)-dimensional, so

rank(
∂f

∂x
) ≤ m− d′ + d

at any y ∈ π(Xα). The algorithm chooses among all values of d from 0 the maximal
such that the set

X̂α = Xα ∩ {rank(
∂f

∂x
) = m− d′ + d}

is non-empty. This value is dim(π(Xα)). Then the algorithm selects the maximum
of these dimensions over all strata of X.

3.2. The “down” procedure. After determining d = dim(Y ) the algorithm uses
one after another two procedures: “down” and “up”. We start with the description
of the “down” procedure.

The input of the lth recursion step is a pair Xl, Yl where Xl ⊂ Rnll for some
nl ≥ n+m, Yl ⊂ Rnl (the sub-index l in Rnll and Rnl indicates that the coordinate
systems linearly change depending on l), dim(Yl) = dl and πl(Xl) = Yl for a
projection

πl : Rnll −→ Rnl ,

πl(x1, . . . , xn, xn+1, . . . , xnl) = (x1, . . . , xn).

Here X1 = X, Y1 = Y , R1 = R, n1 = n + m, d1 = d, π1 = π. Let d0 = n, and
ρ0 : Rn −→ Rn be the identity map.

In the description of a recursion step we drop for brevity the sub-indices in Xl

and Yl, i.e. write X and Y respectively.
The algorithm applies the weak stratification subroutine from Proposition 1.10

to X. Let y = (x1, . . . , xn), x = (xn+1, . . . , xnl). For each stratum Xα = {f =
0, h > 0} of the dimension r ≥ dl the algorithm performs a further decomposition
into semi-Pfaffian sets

X ′α = Xα ∩ {rank(
∂f

∂x
) = nl − n− r + dl}

and

V ′α = Xα ∩ {rank(
∂f

∂x
) < nl − n− r + dl},

i.e. into sets of regular and critical points of the projection πl|Xα . By Sard’s
theorem, dim(πl(V

′
α)) < dl. Note that for any y ∈ Y \ πl(V ′α) the intersection

π−1
l (y) ∩X ′α is smooth.
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The algorithm finds an integer vector c and a semi-Pfaffian set V ′′α ⊂ X ′α such
that dim(πl(V

′′
α )) < dl, and for any y ∈ Y \ πl(V ′α ∪ V ′′α ) the critical points of the

function
g = (

∏
j

hj)(1 + (c, x))

(the product of zero factors is assumed to be 1) on π−1
l (y)∩X ′α are non-degenerate,

in particular isolated. More precisely, introduce a function

g(x, y, z) = (
∏
j

hj(x, y))(1 + (z, x)),

which for fixed y, z is considered as a function on π−1
l (y) ∩X ′α, and a set

A(x, y, z) = {(x, y, z) ∈ (X \ V ′α)× Rnl−nl :

g(x, y, z) has a degenerate critical point at x}.
Due to Lemma 1.7,

A(x, y, z) = {(x, y, z) ∈ (X \ V ′α)× Rnl−nl : rank(Mf,g) < r − dl}.
Consider two projection functions

τ1 : R2nl−n
l −→ Rnll

(x, y, z) 7−→ (y, z),

and
τ2 : Rnll −→ Rnl−nl

(y, z) 7−→ z.

Then according to part 3 of Lemma 1.16, for the set

B(y, z) = {(y, z) ∈ τ1(A(x, y, z)) : dim((τ−1
2 τ2(y, z)) ∩ τ1(A(x, y, z)) = dl},

the dimension dim(τ2(B(y, z))) < nl − n.
Let

A(x, y, z) =
⋃
β

Aβ(x, y, z)

be a weak stratification of A(x, y, z), and C(x, y, z) be the union of critical sets of
τ2τ1|Aβ(x,y,z) for all strata Aβ(x, y, z) of dimensions at least dl. Then B(y, z) is a
subset of τ1(C(x, y, z)). The set C(x, y, z) is semi-Pfaffian and

dim(τ2τ1(C(x, y, z))) < nl − n
due to Sard’s theorem. According to Lemma 1.8, there is an integer vector

λ = (λ1, . . . , λnl−n) 6∈ τ2τ1(C(x, y, z))

such that 0 ≤ λi ≤ M , where M is a certain explicit function of the format of
C(x, y, z).

The algorithm computes the set C(x, y, z) by applying the procedure from Propo-
sition 1.10 to A(x, y, z) and writing out the conditions on the rank (cf. the definition
of V ′α). The algorithm tests each vector λ for membership to τ2τ1(C(x, y, z)) by
checking (with a use of the oracle) whether τ−1

1 τ−1
2 (λ)∩C(x, y, z) = ∅. If yes, then

λ 6∈ τ2(B(y, z)) ⊂ τ2τ1(C(x, y, z)), and the algorithm takes λ as c. According to
Lemma 1.7, we also define

V ′′α = X ′α ∩ {rank(Mf,g) < r − dl}.
Thus, the vector c and the set V ′′α are constructed.
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Observe that each connected component of π−1
l (y)∩X ′α contains a critical point

of g|π−1
l (y)∩X′α . Note that dim(πl(V

′
α ∪ V ′′α )) < dl.

Denote

X ′′α = X ′α ∩ {rank(
∂(f, g)

∂x
) = nl − n− r + dl} \ (V ′α ∪ V ′′α ),

thus for each y ∈ Y \ πl(V ′α ∪ V ′′α )) the intersection X ′′α ∩ π−1
l (y) is the finite set of

all critical points of g on π−1
l (y) ∩X ′α. It follows that dim(X ′′α) = dl.

The algorithm applies the weak stratification subroutine from Proposition 1.10
to X ′′α. For each stratum Xαβ = {f̂ = 0, ĥ > 0} of the (maximal) dimension dl the
algorithm performs a further decomposition into semi-Pfaffian sets

X ′αβ = Xαβ ∩ {rank(
∂f̂

∂x
) = nl − n}

and

V ′αβ = Xαβ ∩ {rank(
∂f̂

∂x
) < nl − n},

i.e. into sets of regular and critical points of the projection πl|Xαβ . Note that
dim(πl(V

′
αβ)) < dl.

Let Vαβ = V ′α∪V ′′α ∪V ′αβ , and T be the union of all strata of X of the dimension
less than dl. The following properties are true.

1. Y =
⋃
α,β πl(X

′
αβ ∪ Vαβ) ∪ πl(T );

2. X ′αβ is effectively non-singular, dim(X ′αβ) = dl, and πl|X′
αβ

has rank nl − n
at every point of X ′αβ , for each α, β;

3. dim(πl(
⋃
α,β Vαβ)) < dl;

4. X ′αβ ∩X ′α′β′ = ∅, for (α, β) 6= (α′, β′).

If dl = n (this can only happen when l = 1, so n = d), then setting

Z =
⋃
α,β

πl(∂X
′
αβ ∪ Vαβ) ∪ πl(T )

(note that dim(Z) < d), the algorithm uses the subroutine from Proposition 1.12
to find the semi-Pfaffian set ∂X ′αβ and then sets Y2 = Z, X2 =

⋃
α(∂X ′αβ ∪Vα)∪T .

If dl < n, the algorithm computes integer coefficients of a linear (dl−1 − dl)-

dimensional subspace L in Rdl−1

l such that for the map ρl = ρρl−1, where ρ is the

projection map along L, and for each y ∈ Y the set ρ−1
l (ρly) is finite. According

to the Koopman-Brown theorem [15], a generic subspace satisfies this requirement.
More precisely, observe that becauseX is bounded (contained in a cube), the closure
Y coincides with the projection π(X). Using the procedure from Proposition 1.12,
the algorithm computes the closure X. Then the algorithm considers the sub-
Pfaffian set

Aε,z = {(ε, z) ∈ Rn(n−dl−1+dl)+1 : ∃y ∈ Y ,

∃x′ ∈ ρ−1
l (ρly),∃x′′ ∈ ρ−1

l (ρly), ‖x′ − x′′‖ = ε, ε > 0}.
Fix a sufficiently small positive value ε̂ of ε, then Aε̂,z is the set of all coefficient
vectors of subspaces L for which this finiteness condition is not valid. Due to
Lemma 1.8, there is an integer vector

γ = (γ1, . . . , γn(n−dl−1+dl)) 6∈ Aε̂,z
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such that 0 ≤ γi ≤M , where M is a certain explicit function of the format of Aε̂,z.

The algorithm computes the closure Aε,γ by applying the procedure from Proposi-
tion 1.12 to the quantifier-free part of the formula defining Aε,γ . The algorithm tests

each vector γ in this range for membership to Aε̂,z by checking whether 0 6∈ Aε,γ .
If yes, then γ 6∈ Aε̂,z, and the algorithm takes γ as the vector of coefficients of L.

Let Rnl+1 denote the result of a linear coordinate change in Rnl such that L
becomes a (dl−1 − dl)-dimensional coordinate subspace. Accordingly, all the sub-
and super-spaces of Rnl+1 get the sub-index l + 1.

Consider the set

Sαβ = X ′αβ ∩ {rank(
∂f̂

∂(x, z)
) < nl − n+ dl−1 − dl},

where z are coordinates in L, i.e. the set of critical points of the projection ρlπl|X′
αβ

on Rdll+1. Observe that dim(ρlπl(Sα)) < dl by Sard’s theorem, and dim(πl(Sα)) < dl
due to the definition of L.

Introduce the sets

W ′i = {y, ε : y = (z1, . . . , zn−dl , yn−dl+1, . . . , yn) ∈ Y, ε ∈ R1,

∃y′ = (z′1, . . . , z
′
n−dl , yn−dl+1, . . . , yn) ∈ Y,

ρl(y
′) = ρl(y), z′1 = z1, . . . , z

′
i−1 = zi−1, z

′
i 6= zi, |z′i − zi| < ε},

Wi = W ′i ∩ {ε = 0},

W =
⋃

1≤i≤n−dl

Wi,

Z = ρlπl(
⋃
α,β

(∂X ′αβ ∪ Vαβ ∪ Sαβ)) ∪ ρl(W ) ∪ ρlπl(T ).

Then dim(Z) = dim(Y ∩ ρ−1
l (Z)) < dl. Taking into the account Proposition 1.12,

observe that W is a sub-Pfaffian set, more precisely, there exist an integer nl+1,
nl ≤ nl+1 ≤ nl +n, and a semi-Pfaffian set U ′ ⊂ Rnl+1

l+1 such that for the projection

πl+1 : Rnl+1

l+1 −→ Rnl+1,

πl+1(U ′) = W .
Let U ′′ denote the semi-Pfaffian set defined in Rnl+1

l+1 by the same formula as⋃
α,β

(∂X ′αβ ∪ Vαβ ∪ Sαβ) ∪ T ⊂ Rnll+1.

The algorithm finds Z and sets

Yl+1 = Y ∩ ρ−1
l (Z) = πl+1(U ′ ∪ U ′′), Zl = Z

and

Xl+1 = π−1
l+1(Y ∩ ρ−1

l (Z)) = U ′ ∪ U ′′.
Observe that Xl+1 is defined by an explicit quantifier-free formula with Pfaffian
functions in nl+1 variables. The algorithm determines dl+1 = dim(Yl+1) = dim(Z)
using the subroutine from Section 3.1.

On the last step l̂ ≤ d of the “down” procedure the dimension dim(Yl̂) = 0 and
Zl̂ = ∅.
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3.3. The “up” procedure. Then the algorithm starts the “up” recursion pro-
cedure. An input of the rth recursion step is a pair Yl̂−r+1, Zl̂−r+1 ⊂ Rn

l̂
of

sub-Pfaffian sets constructed in the “down” process (in the description of the step
we drop for brevity the sub-index in Y , Z, ρ and d = dim(Y )), and a cylindrical cell
decomposition D of In ⊂ Rn

l̂
compatible with Y ∩ ρ−1(Z). The decomposition D,

being cylindrical, induces a cell decomposition D of ρ(In) = Id ⊂ Rd
l̂

compatible

with Z, namely the elements of D are exactly the ρ-projections of the elements of
D. By the definition of Z, for any d-dimensional cell C of the decomposition D, for
any y ∈ C the cardinality of the set ρ−1(y) ∩ Y is a constant, say M . Moreover,
the union ⋃

1≤ν≤M+1

{y ∈ ρ−1(C) ∩ In : ∃y1 ∈ Y, . . . ,∃yM ∈ Y,

y1 ≺ · · · ≺ yν−1 ≺ y ≺ yν ≺ · · · ≺ yM , ρ(y1) = · · · = ρ(yM) = ρ(y)},
where the relation u ≺ v for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn

l̂
stands for the

disjunction ∨
d+1≤i≤n+1

{u1 = v1, . . . , ui−1 = vi−1, ui < vi},

represents a cylindrical cell decomposition of ρ−1(C) ∩ In compatible with Y ∩
ρ−1(C). Thus, if

yν−1,1 = yν,1, . . . , yν−1,i−1 = yν,i−1, yν−1,i < yν,i

for a certain i, d+ 1 ≤ i ≤ n+ 1, then the decomposition contains the cells
ρ−1(C) ∩ In ∩ {y : yν−1,i < yi < yν,i},
ρ−1(C) ∩ In ∩ {y : yν−1,i = yi, yν−1,i+1 < yi+1}, . . . ,
ρ−1(C) ∩ In ∩ {y : yν−1,i = yi, . . . , yν−1,n = yn},
ρ−1(C) ∩ In ∩ {y : yi = yν,i, yi+1 < yν,i+1}, . . . ,
ρ−1(C) ∩ In ∩ {y : yi = yν,i, . . . , yn = yν,n}.

The algorithm finds M and computes the cell decomposition.
Combining the cell decompositions for ρ−1(C)∩ In for all d-dimensional cells C

of D, with the cell decomposition D, the algorithm gets a cylindrical cell decompo-
sition of In compatible with Y . This finishes the description of the recursive step
of the “up” procedure.

On the last step of the “up” process the algorithm produces a cylindrical decom-
position of In compatible with Y1 = Y .

4. Complexity

We first estimate the complexity of computing the dimension of Y . Recall that
X has a format (N,α + β, n + m). According to Proposition 1.10, the format of
each stratum Xα is

(N(α + β)r
O(n+m)

, (α+ β)r
O(n+m)

, n+m),

the number of strata does not exceed Nn+m+r(α+β)r
O(n+m)

, the complexity of the

stratification is bounded by Nn+m+r(α + β)r
O(n+m)

. For each of
(
n
d′

)
subspaces of

Rn the algorithm constructs the set X̂α. The matrix (∂f
∂x

) is (m+n− d′)× (n− r)-
matrix, so the number of all minors is less than 22(n+m). The degrees of maximal
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minors are less than (n+m)(α+ β)r
O(n+m)

. It follows that the format of each X̂α

is

(N(α + β)r
O(n+m)

, (α+ β)r
O(n+m)

, n+m).

Thus, the complexity of computing dim(Y ) is Nn+m+r(α+ β)r
O(n+m)

.
Now we estimate the complexity of constructing, and the formats of the sets Z

in a recursive step of the “down” procedure. At the input of a step we have sets X
and Y both of format (L,D, s) (i.e. nl = s). On the first step L = N , D = α + β
and s = n+m.

1. Computing setsXα (stratification). According to Proposition 1.10, the format
of each stratum Xα is

(LDrO(s)

, DrO(s)

, s), (2)

the number of strata does not exceed Ls+rDrO(s)

, the complexity up to this

stage is bounded by Ls+rDrO(s)

.
2. Computing sets X ′α and V ′α. The number of all minors in the matrix (∂f

∂x
) is

less than 22s. The degrees of maximal minors are less than DrO(s)

. It follows
that the format of each X ′α or V ′α is(2), the number of these sets is less than

Ls+rDrO(s)

, the complexity up to this stage is bounded by Ls+rDrO(s)

.
3. Computing sets X ′′α and V ′′α . The matrixMf,g has the order less than

(
s
s−r
)
,

so the number of all minors is less than 22·2s . According to Lemma 1.6,
the degrees of minors do not exceed O(s2sD). It follows that the format of
A(x, y, z) is

(LDrO(s)

, DrO(s)

, 2s− n).

According to Proposition 1.10, the format of each stratum Aβ(x, y, z) is the

same, the number of strata is less than LO(s+r)DrO(s)

, the complexity up to

this stage is bounded by LO(s+r)DrO(s)

. These bounds imply that the format
of C(x, y, z) is

(LDrO(s)

, DrO(s)

, 2s− n).

It follows from Lemma 1.8 that the range limit M for λi can be taken as

LDrO(s)

. Thus, the number of vectors λ for which the condition τ−1
1 τ−1

2 (λ)∩
C(x, y, z) = ∅ is tested is less than MO(s), which is LDrO(s)

. It follows that

the complexity of computing c is LO(s+r)DrO(s)

.
The format of each set V ′′α is (2), the number of these sets is less than

Ls+rDrO(s)

. Computing of sets X ′′α is similar to step 2, the format of each

X ′′α is (2), the number of these sets is less than Ls+rDrO(s)

. The complexity

up to this stage is bounded by LO(s+r)DrO(s)

.
4. Computing sets Xα,β (stratification) is similar to step 1. Due to Propo-

sition 1.10, the format of each stratum Xαβ is (2), the number of strata

does not exceed Ls+rDrO(s)

, the complexity up to this stage is bounded by

LO(s+r)DrO(s)

.
5. Computing sets X ′αβ and V ′αβ is similar to step 2. The format of each X ′αβ or

V ′αβ is (2), the number of these sets is less than Ls+rDrO(s)

, the complexity

up to this stage is bounded by LO(s+r)DrO(s)

.
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6. Computing the subspace L. Due to Proposition 1.12, the format of the semi-
Pfaffian set X is

((LD)O((s+r)s), DO(s), s).

It follows that the format of Aε,z is,

((LD)O((s+r)s), DO(s), O(s+ n2)).

Lemma 1.8 now implies that the range limit M for integers γi can be taken
as

(s+ n2)O(r)(LD)O(s(s+r)(s+r+n2).

Thus, the number of vectors γ for which the membership to Aε̂,z is tested is

less than MO(n2), which is

(s+ n2)O(rn2)(LD)O(s(s+r)(s+r+n2)n2).

Taking into the account the complexity of the procedure from Proposition 1.12,
we conclude that the complexity of computing the subspace L is bounded by

(s+ n2)O(rn2)(LD)O(s(s+r)(s+r+n2)n2).

7. Computing sets Sαβ is similar to steps 2 and 3. The format of each Sα is

(2), the number of these sets is less than Ls+rDrO(s)

. Taking step 6 into the
account, we conclude that the complexity up to this stage is bounded by

LO(s(s+r)(s+r+n2)n2)DrO(s)

. (3)

8. Computing sets ∂X ′αβ. According to Proposition 1.12, the format of each

∂X ′αβ is (2), the number of these sets is less than Ls+rDrO(s)

, the complexity

up to this stage is bounded by (3).
9. Computing the set W .

(a) Sets W ′i . From the formula defining W ′i it follows that the format of each
W ′i is

(L+ n,D, s+ n),

the number of these sets is less than n, the complexity of computing them
is O((L+ n)Ds).

(b) Sets Wi. According to Proposition 1.12, the format of each Wi is

(LD)O((s+r)s), DO(s), s+ n),

the number of these sets is less than n, the complexity of computing them
is (LD)O((s+r)s).

(c) Set W . From (b) it follows that the format of W is

(LD)O((s+r)s), DO(s), s+ n),

the complexity of computing W is (LD)O((s+r)s).
10. Computing the set Z. Combining steps 5 and 6(c), we get that the format of

Z is

(LO((s+r)s)DrO(s)

, DrO(s)

, s+ n),

the complexity up to this stage is (3).
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11. Computing the sets Xl+1, Yl+1. According to the defining formulae for sets
Xl+1, Yl+1, their formats are

(LO((s+r)s)DrO(s)

, DrO(s)

, s+ n),

and the total complexity of the recursive step of the “down” procedure is (3).

The “down” procedure consists of at most d recursion stages each of which
includes steps 1–11. Iterating the bounds from (11) d times we conclude that for
all l, 1 ≤ l ≤ d formats of the sets Xl, Yl, Zl are

(N ((d−1)!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

, (α+ β)r
O(d(m+dn))

,

O(d(m+ dn))), (4)

and the complexity of the “down” procedure is bounded by

N (r+m+n)O(d)

(α+ β)r
O(d(m+dn))

. (5)

Now we estimate the complexity of constructing and the formats of the cell
decompositions of In compatible with Y in a recursion step of the “up” procedure.

The upper bound (4) on the format of Z implies that on each recursion step the
cardinality M of ρ−1(y)∩ Y for any y in a d-dimensional cell of the decomposition
on Id is less than

(N ((d−1)!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

.

On the first step Z = ∅, dim(Y ) = 0, and the decomposition is described by the
formula⋃
1≤ν≤M+1

{y ∈ In : ∃y1 ∈ Y, . . . ,∃yM ∈ Y, y1 ≺ · · · ≺ yν−1 ≺ y ≺ yν ≺ · · · ≺ yM}.

The number of cells is less than 2nM + 1, the number of variables in formulae
describing each cell is less than O(d(m + dn)), thus the format of each cell is
bounded by

(N ((d−1)!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

, (α+ β)r
O(d(m+dn))

,

N ((d−1)!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

). (6)

The complexity of constructing the decomposition is bounded by (5).
On a general recursion step, let the number of cells in the decomposition D

compatible with Y ∩ ρ−1(Z) will be less than T . Then the number of cells in the
induced decomposition D, compatible with Z is also less than T (in particular, the
number of cells C of the maximal dimension is less than T ). It follows that there
are less than 2nM + 1 cells in ρ−1(C) ∩ In and thus less than T (2nM + 1) cells in
the decomposition of In compatible with Y . As a result, on the last step d of the
recursion, the algorithm produces a cell decomposition having less than

(2nM + 1)d < N (d!)2(m+2n)d(r+m+2n)d(α+ β)r
O(d(m+dn))

cells. The formats of all intermediate cell decompositions continue to be (6). It
follows that the complexity of the whole algorithm is bounded by (5).
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