INTERSECTION MATRICES FOR CERTAIN SINGULARITIES

A. M. Gabriélov

In this paper a method is determined for computing intersection matrices in homologies of a non-
critical level manifold of a complex analytic function of the form P(x) * Q(y) in a neighborhood of an iso-
lated singular point. As a corollary, the intersection matrices are computed and the generators of the
monodromy group are determined for the singularities Ex‘.:i,

Introduction

As is well-known (see [1-3]), a noncritical level manifold of a complex analytic function in a neigh-~
borhood of an isolated singular point is homotopically equivalent to a bouquet of spheres of mean dimen-
sion ("vanishing cycles”). The homology group of mean dimension of this manifold is generated by these
vanishing cycles. The intersection index of these cycles defines a bilinear form on this homology group.
Closely connected with this form is the monodromy group of the singularity, which acts in the homologies
of the noncritical level manifold (the image of the representation of the local fundamental group of the com-
plement of the bifurcation diagram of the singularity).

This paper uses special bases consisting of vanishing cycles in the homology group (distinguished
and weakly distinguished bases) to investigate the bilinear form and the monodromy group of the singu--
larity. ‘

1f distinguished bases in the homologies are known for the singularities of P(x) and Q(y), then from
these bases a distinguished basis can be constructed for P(x) + Q(y), whose intersection matrix is ex-
pressed by a simple formula in terms of the intersection matrices of the distinguishéd bases for the singu-
larities of P(x) and Q(y).

, The monodromy group of a singularity is uniquely defined by the intersection matrix of a weakly
distinguished basis: it is generated by the reflections in the hyperplanes that are orthogonal (in the sense
of the bilinear form of the intersections) to the elements of the basis.

As a corollary, distinguished bases are constructed and the intersection matrices are computed for
the singularities Ya%.

For the "parabolic" singularities x® + y3 + 2%, x* + y* + 22, and x® + y® + 22 the monodromy groups are
computed.

The method of constructing a basis for P(x) + Q(y) given in this paper resembles the method of M.
Sebastiani and R. Thom [4] for computing the Picard—Lefschetz monodromy operator for a singularity of
the form P(x) + Q(y).

Another method of computing intersection matrices and monodromies was given by E. Brieskorn in
a report to the conference in Thilisi in October 1972. His method is based on first investigating the gen-
erators and relations of the fundamental group of the complement of the bifurcation diagram, and then ob-
taining, with the help of the Picard— Lefschetz theorem, information about the intersections of the vanish-
ing cycles. Brieskorn pointed out that Lazzeri computed the intersection matrix for x2 + y® by this method.

F. Pham [6] found a basis for the singularity _\::r':' and computed the intersection matrix of this ba-
sis. The basis for this singularity constructed in the present paper can be deformed to the basis given by
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Pham, and the intersection matrix of this basis can be obtained from his formulas. V. 1. Arnol'd gave a
direct proof of the fact that Pham's basis is distinguished.

The structure of the monodromy group of "parabolic" singularities was determined by J. Milnor in a
letter to Arnol'd on October 31, 1972.

I would like to take this opportunity to express my deep thanks to V. I. Arnol'd for numerous useful
discussions.

1. Distinguished Bases

Let P, be an analytic function with an isolated singularity at the origin in CP. The number u =
dimcC{x}/ ("—Z——(ﬂ) will be called the multiplicity of the singularity of P,. Let P)(\x € CH) be a versal de-
i

formation of P, (see [2]) and Z= CH the bifurcation diagram of Fy, i.e., the set of A such that P) has zero
as a critical value.

For sufficiently small r > 0 and sufficiently small (less than some function of r) A not belonging to £
{x: Ix] < r, PA(x) = 0f is a real (2p = 2)-dimensional manifold homotopically equivalent to a bouquet u of
spheres of dimension p— 1, and its (p — 1)~dimensional homologies are generated by Picard —Lefschetz
vanishing cycles.*

In the sequel we shall not indicate the number r explicitly nor the related constraints on x and A.

Let A= @' u) (#"=0C"1, u=C; be a decomposition of the parameter space of the versal deforma-
tion such that #» = Pp- — u . If A' does not belong to some proper analytic subset A of CH™1, then T
has p nondegenerate critical points, and all its eritical values are distinet. A function ) that satisfies
this condition will be called a morsovization of P, and denoted simply by P.

Definition 1. Let P(x) (x € CP) be an analytic function, x a nondegenerate critical point of P(x), u =
P(x) the corresponding critical value, and u’ some noncritical value of P(x). A cycle
7) is called vanishing (along the path u(s)) if the following conditions are satisfied:

1) in the plane of values of P there is defined a smooth path u(s) (s € [0, 1]) that is equal to u’ for
s = 0,u for s = 1, and does not pass through a critical value of F for s = 1;

2) for s < 1 smooth spheres e(s) < ix: P(x) = u(s)JL are defined such that e(0) = e, the mapping

U e(s)---[0,1) is a smooth fibration, and, if 1 — s is sufficiently small, there exists a change of coordi-
0=t

nates z a2’ in a neighborhood of the point x (x is the origin of x') such that P (z') = i +Ya"} ande(s) =
Vi = u(s)8P~! where S* = {«' =RP, 7% =1} is the standard sphere.

Definition 2. Let Py(x) be a function with an isolated singularity of multiplicity ¢, F(x) a morsoviza-
tion of Py(x), um(m =1, . . ., u) the critical values of P(x), and u’ a noneritical value of F(x).

A basis (ey) in H,., ({# (») — 1}, Z) is said to be distinguished if:
1) the ey are vanishing cycles and the corresponding paths um(s) are equal to up, fors = 1;
2} the upy (s) are non-self-intersecting paths,and for m' = m the paths uy(s) and up(s) intersect only

at uf

fu, d
3) arg —mst (0) < arg —%;"—(O).

ds

Remark 1. The existence of a distinguished basis was essentially proved in the addendum to Bries-
korn's article [3]. Moreover, it follows from Brieskorn's arguments that any system of cycles that satis-
fies conditions 1).and 2) of Definition 2 is a basis in H,_; ({P () = u°}, Z).

Remark 2. By deforming u’ and the system of paths um(s), we can always guarantee that, in addition
to conditions 1)-3) of Definition 2,the following conditions will be satisfied:

*Henceforth, by the homologies of a space X we mean (and denote by Hx, 2) integral reduced homologies,
i.e., the kernel of the natural mapping H(X, Z) — Hx (a point of 2).
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4) Re u’ < Re uyy, for all m;

5) Re um(s) > Re u’ for s > 0.

2. Intersection Matrices

THEOREM 1. Let Py(x) (x € CP) and Qy(y) (y € CY) be analytic functions with isolated singularities of
multiplicities ¢ and ¥, respectively, and let P(x) and Q(y) be morsovizations of them. Let (e,;) [respect-
ively, (hp)] be a distinguished basis in ﬁp_l ({P (z) = u"}, Z) (respectively, in H,, ({Q (y) =1}, Z) ).
Consider the function Py(x) + Qi(y). It has an isolated singularity of multiplicity uv. We can choose P(x)
and Q(y) so that P(x) + Q(y) is a morsovization of Py(x) + Q,(y) and u® + v’ is a noneritical value of P(x) +

QY.

There exists a basis (ymn) in H,,,; ({P () + Q@ (y) = «® + +*}, Z) whose intersection matrix is
defined by the formulas.

pe-1

- 2(~— 1) 2, if p+g—1 iseven (1) -
(Youns Youn) = . )
0, : if p4+g—1 isodd
poe BB (2)

(Tmnv Tmn') = sgn (n’ - "')p(— i) 2 (hm hu')v if

. a1 )
(i Ymr) = sgu(m’ —m)8(— 1T 7T (ep, o) if m = m's n 0 (3)

(Ymns Ym'n') = U, if  sgn (m' — m) sgn (n" — n = —1;

(¥mn, Ymear) = sgn (m' — m)  (—1)" (em, €m’) (fin, Fin')s (5)
if sgn(m'—m) sgn(n'—n) =1.

If the pairs (m, n) are ordered lexicographically (i.e., (m', n") > (m, n) if m'>m,or m' = m and
n'> n), then (yyp) is a distinguished basis.

Froof. 1) Construction of the Cycles yyn. Let Cy (respectively Cy) be the range of values of P(x)
(respectively Q(y)). Let uyy(m = 1, ..., p) and vp(n = 1, .. ., ¥) be critical values of P(x) and Q(y) re-
spectively; let um(s) and vy(s) (s € [0, 1)) be paths in Cy and Cy corresponding to the distinguished bases
em and hy. We shall assume that the conditions of Remark 2 are satisfied for u’, v’, upy(s), and vy(s).

Define a mapping p: Cy — Cy by the formula p(v) = u’+ v’ —v. The paths pvp(s) join u’ and pvy and
lie (for s > 0) in the half-plane Re u < Re u’. The paths um(s) join u® and up, and lie in the half-plane
Re u > Re u’ (Fig. 1). Set

, pv, (1 —2t)  for 0<t<—1—,
Tnn () ==
Up (2t — 1)  for

and let mmp(t) be smooth paths obtained from 7'my(t) by a homotopy in a neighborhood of u’ and equal to u’
fort = 1/2.

Let e, () < {P(2) = up ()} and h, () = {Q{y) = v.(s)} be families of spheres corresponding to
the vanishing cycles ey and hn. Set eyy(1) = x(m) and hy(1) = y(n), where X(m) and y(n) are points to which
the spheres e (s) and hy(s) shrink as s — 1.

For each n we can define a smooth deformation emn(t) of ey, along the path myp(t), such that ¢, (1) =
{P(x) = 2y (D), ema (Y2) = €my €mn (£) = €m (26 — 1), if 1 —t is sufficiently small.

Moreover, U  enn () is diffeomorphic to ey x [0, 1) and U emn () is a smooth disk with
L0<t<1 01

boundary emn(0). Similarly, for each m we define a smooth deformation hyyp(t) of hy along the path mmn(t),
such that /o, () = {Q () = 0 W ()}, frmn (Vo) = fipy hiu () = hy (1—=21) , if t is sufficiently small.

U hme () is diffeomorphic to hy x (0, 1], and . {j () is a smooth disk with boundary hymn(1).
o<1 0<U<1

184



/
Z%jﬂ‘i) & - éf‘ﬁ‘ <

g ) mmye%\\ “~ E
\\"/
\
/}, ,/,/ \
Q. D)
__.—-’ 7

~

~—

PalS)

Fig. 1 Fig. 2

set  yYmn = U< €mn (1) X I, (t) . The set ypmp is contained in {P (z) + Q (y) = u® + +*} and is dif-
[IESZ}

feomorphic to a sphere. An orientation on v,y is introduced so that the orientation of the direct product

isinduced on U ey () X lypy (8) © Yuw. which is diffeomorphic to eyy x hp x (0, 1) (we assume that
o<I<t

the interval (0, 1) is positively oriented).

2. {ymn) is a Distinguished Basis. Suppose that the function Q(y), the point vY, and the paths vp(s)
are chosen so that |vy(s) = v'| < €, where & is sufficiently small. Theu the function P(x) + Q(y} has u»
distinct critical values um * vy, and so it is a morsovization of Py(x) * Q,(y).

Let Cy be the range of values of P(x) + Q(y). We shall construct smooth paths wmn. (A) ( & 0,11,
Wmn (0) = 2% 4- 0°, Wy (1)= um + v,), in Cyw that satisfy the conditions of Definition 2,and a smooth homotopy
Tmn(t, A of the paths myn(t) in Cy such that:

1% Tmnlt, 0) = mmnlt);
2*) Tmn (O, ;‘) = Wmn (A) = Uny Tmn (1, }") = Um;

3% for fixed A the path mmn(t, A) does not contain points um' and wmp(A) ~ vy’ for m' # n, n' # n or
the points uy and wgpp(d) ~ vy fort = 0, 1;

4% sty (8, A) = (1 — t) ty + t (Wma (A) —v,), if (1 — 1) is sufficiently small.

By means of the homotopy mmn(t, N) we can construct a smooth deformation emp(t, A) of the family
of spheres emnp(t), such that:

1) emy (8, 2) € {P(2) = T (8, 1))
2) emn(t, 0) = emn(t);

3) if we let 1 — A be sufficiently small and if we set wyp(A) —upy ~vp = *(A) (x(d) - 0as A - 1),
then mmp(t, A) = um + tr(A), and there exists a change of variables zws 2’ in a neighborhood of x(m) such

that P (z') = up -+ 2 and en, (¢, A) = Vir (b) SP-L

Similarly, we construct a smooth deformation hpy,p(t, A) of the family of spheres hmn(t), such that:
1) by (8, 2) < {Q () = wmn A) — 7 (8, M}

2) hpmnit, 0) = hyn(t);

3) if we let 1 — A be sufficiently small, then wy, (A) — %ms (6, A) = v, + (1 — ) r(A) , and there exists

a change of variables y >y  in a neighborhood of Y(n) such that Q@ (y') = v, + 2 and  hy,, (¢ A) =
V0 =0 r() S

Set yma (M) = U emn (& A) X My (¢, 1) « Obviously, vm, (}) < {P (2) + Q (1) = wmn M)}, Yma (0) =

[E<Fw}
Ymn and, if 1 — A is sufficiently small, then in a neighborhood of (x(m), Y(n))

P@)4+ QW) = thn + 00+ Szt + Sy,

Tun (M) = V1 (R) ) Y (VTSP x YT —189%) =V r(a) st

<1
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where S" = {(o, y) @ R™, Xa? + 3% == 1} is the standard sphere. Therefore the cycles ymp van-
ish along the paths wp(M), and from Remark 1 it follows that (ymp is a distinguished basis.

Let us turn to the construction of the paths wyp(2) and mymn(t, A). More precisely, we shall con-
struct (nonsmooth) paths w}nn(x) and homotopies n{nn(t, M), which canthen be replaced by homotopic
smooth paths wy,,(X) that satisfy the conditions of Definition 2 and smooth homotopies ™ mn()\} that satisfy
conditions 1¥)-4%), '

The construction will be in three stages.

1) If e is sufficiently small, then the path up(s) satisfies the following conditions:
the disk |z — u,, (s} | <{ 4e does not contain points up(m' = m);+

there exists an s* such that

ltm —upn () [ << 2 for s*<s<1, and |‘um— Um ()| > 2 for 0<s<<s*,

for 0 <A<Cs*/2 the path u, (s) (2h<<s<C1) intersects the circle I = {u:|u — up (24)| = 26} at
precisely one point um(s3).

Let A* = 8*/2. For 0<<A<<A* set wmn(h) = 0 + up (24) . Setfimn (b, &) = i (2 — 1) (1— 24) + 24)

. 1 5y —2) 1 1 sp — 2h ) .
e <2 —1)(1=24) + 2 <1, i, 5+ e <t<1- If--2—<t<_2.+mthepathw'mn(t,h)ls

2(1—23) "

and |mmn (4 2) —uny (22)] << 2¢; for t > 1/2 the path 1r'mn(t, 2) does not intersect the half-disk D) = {Reu=

Re um (24), |u — um~ (24) | <<e} (see Fig. 2, where the solid lines denote the path mmn(t, A for —%gtg

s —2A .
—12— +~2—2—?_—m for six different values of A from 0 to A*; the shading denotes the half-disk D»; and the

constructed $othat simn (t, 0)=tim (2t—1), Tmn(gs 3 = tim (), Tan (f, A) = i (sh) for t= ot

dotted line denotes the circle T'y).
For 0 =t =1/2set amn(t, A) = um (2) + 0* — v, (1—21).
2) Let A* A <<1/2 . Set

w:,m(k) = w;,m(?»') Uy — T (1 —_ Al;‘T . l‘)
1—24

(see Fig. 3, where the solid line denotes the path wpp(A) for A* <A <{1/2 ; the shading denotes the half-
disk {Rew > um + ", |um -+ v — w|<e} ; the dotted line denotes the circle {| iy, -- ¥ — w| = 2.

For —1——1'— }'_"t <t<<i set
ST
gy . A= . A— 2 L
Nnn (£ A) — 1 —_——% _ — I L |
mn ( ) mn (\t Lo , A >+um Tmn(\1 T2’ )1

and for 0<<t<— 4 1' — set

Ton () = Wiy (V) — 0, (1 — M_)_)

14-23—42"
(see Fig; 4, where the solid lines 1, 2, and 3 denote the path w{nn(t, N for Ay = Ay = A¥,A* < A< 1/2 and Ay =1/2).
) Let1/2=Ar=1, Set

© Wmn (M) = um + v, (2 — 1),
Tin (8, 1) = wian (A) — v, (1—26(1 — A)).

~ 3. Computation of the Intersection Indices. Formula (1) follows from the fact that the Ymn are van-
ishing cycles (see [5]).

11f this condition is satisfied, then the paths wmn(}) constructed below for various m intersect only at u” +
v’ and the paths # ppn(t, A do not contain points um' for m' = m.
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Let n' < n. Then, replacing the paths T mn(t) and Tmn'(t) by homotopic ones, we can assume that:
1) ™ mn(t) and 7 mn'{t) intersect only for t = 1 at the point up;

2) in a neighborhood of up,

Tmn (t) = Uy _;‘ (1 - t)ei"bi Tmn’ (t) = Up + (1 - t)ei(: z"))x
0<a,<<m,

where the path 7yn'(t) is obtained from mpy,(t) by means of the deformation
b=y, + e (u—uy,), a0, agl ‘ (6)

Let x(m) be a critical point of P(x) with critical value um. Then as t — 1 the spheres emp(t) and
emn'(t) shrink to the point x(;m). Therefore all the intersection points of the cycles ymnp and ymq' lie in
the set {zum} X {Q (y) = p~lu,,} - Let 2m 1’ be a change of coordinates in a neighborhood of x(m) such
that P (z') = upm - 2 2.° ,and let B? = {z' = R?, Ya> < 1} be a p-dimensional disk, SP™! = 3BP. 1f6 > 0
is sufficiently small, we can assume that for 1 -6 =t =1

Cmn (t) = Vl —1 ej —;-_Sp-[a D-- lJ i [ (t) = V—S—C’i ;:Bp.

-8t
It follows from (6) that

P+ 2 EXDN

Cmn’ (t) = Vi - t(‘}—g_S“—,l D= v emu'(t) :TVé— ei : B
1Bt <t
where 0 < %, < 7, and D' is obtained from D by the deformation
- e{.'-’_z’, a & 1{0, gp. (7

1 Lo-1)

Therefore D and D' intersect transversally at zero, and (0, D')=(—1) 2 . Ina neighborhood of the
set {rm} X {0 () = p™'u.} Ymn is diffeomorphic to D x hyp(1) (the orientation in D is induced by this
diffeomorphism); ymn' is diffeomorphic to D' x hymn'(1) [the orientation in D' is determined by the orienta-
tion in D from (7), and the diffeomorphism preserves the orientation]; and {P (z) 4 @ (y) = u* + *} s
diffeomorphic to C? X {Q (y) = p~u,} (with preservation of orientation). Therefore the intersection in-
dex of ymn and ymn' in {P(x) + Q(y) = u’ + v is equal to the intersection index of D x hyp(1) and D' x
hyn'(1) in €7 X {Q () = p~'un} » which equals '

P (p-1)

(— 1P @0(D, D) (s, (4). himn (1) = (— 1P @ (D, D) oy ) = (= )7 T3 ().
Formula (2) now follows from the fact that
(Trans Tran) = (= VP (T Yma)s (o ) = (— 1)1 (R ).
Formula (3) is proved just as formula (2).

Formula (4) follows from the fact that for sgn (m' — m) sgn (n' —n) = — 1 we can choose paths that
are homotopic to mmn(t) and 7pp'(t) and do not intersect at any point.

Let m' < m, n' <n. Then we can assume that the paths 7 pyn(t) and mpp:(t) intersect only at u’, and
: A e
(d;';'“ (u®), 1{;’; - (u")) is a positively oriented basis in Cy.
Therefore ymn and ym'n' intersect only at points of the set {P (x) = «®} X {Q (y) ="} . In a neigh-
borhood of this set {P (z) + @ (y) = u* + v*} is diffeomorphic to {P (z) = «°} X {Q (y) = *} x C, (with

preservation of orientation), v,y is diffoemorphic to e, X /1, X 1, (f), and ymm' is diffeomorphic to
e X ku' K Ty (t)

Therefore
(Ymna Ym'n') = (__:1)(;7—1) * -1} + (P4} (1-1) (emg em’) (/l", hn") = (_1)pq+1 (emy em')(//,,- /1,( ').
Formula (5) follows from the fact that

(Ym'n’v Ymn) = (_1)p+q-1 (Ymm Ym’u’), (em’a em) = (_1)10‘1 (emv em’)v (hn” hn) = (_1)0-1 (/Lm }In')-
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This proves the theorem.

COROLLARY 1. Let the conditions of Theorem 1 be satisfied, where Qg (y) = ¥+ ... - ;3 . Then
v =1, and if we set ey = vy, then the basis (en) has intersection matrix -

pig-1

(e, €5) = 2(—1) =, if p+g—1 iseven
mr Cm O, if P + g— 1 s odd
. _a(g=~1)
(€ms €m) = sgu (m' — m)y (— )" T F (e, €m),

if m # m'. In particular, ifq = 2k, then (e,, e,) = (—1)¥ (¢, ) for all m, m',

COROLLARY 2. Let ey, be a distinguished basis in  Hp ({P (z) = 4°}, Z), and ep, the corres-
ponding basis (see Corollary 1) in Hp,qy ({P (2) + v¥ + ...+ y2 = u°}, Z) . Let hp be a distinguished basis
in H,,({Q () =", Z) and hy the corresponding basis in Hpqy ({af + ... + 25 + ¢ (y) == "}, Z) . Then
there exists a distinguished basis ymp in Hpp ({P (2) + Q () = u® + 1°}, Z) with intersection matrix

(Ymnv Ymn‘)z (hm hn')v
(Ymn, Ymn) = (€m, ).
(Ymns Ymm) =0, if sgn (m’ — m)sgn (0’ — n) = —1,
(pra)pra-1)
(Ymns Ymme) = sgn{m’ — m)pre-1(— 1) 2 (e, em-)(hy, hy), if sgn(m’ —m)sgh(n’ —n) =1,
PROPOSITION 1. The function y2 — )y for A = 0 is a morsovization of the function y2, and if v’ is a

noncritical value of y2 — )y, then there exists a distinguished basis hy(n = 1,...,2~1) in Hy({y* — Ay =
v%, Z) with intersection matrix

U’m Iln) = 2v (hm hn+1) = _11 (/[ru 'lln) = 01 i I”I —n I > 1. (8)
Proof. We can assume that A is a positive real number. The function y? — Ay has o — 1 nondegenerate
o 2D _ ;o
critical points yn) = ¢ f/Ma e @1 (1 < n<a— 1) with critical values v, = — @ - ) ka-]l/-h/—aeu;: 2

1f v¥ is a noncritical value of y& — Ay, then the set {y:y* — Ay = v*} consists of ¢ points z; (O <<k << a —1).

i (2h=1)
afvlis a negative real number and |¢° | >> A2te-n | then z,,.zf/ Jiofe @

=i(2l-1) . 7i(2l-1)
On the rays {y=te ' ,¢>0} the function yZ — Ay equals ¢ 21 (t"4-1f) , and so it cannot as-

a—1 at——

— Vhia, the

roots zi(s) of the equation »* — Ay = v, (s) do not intersect the boundaries of the sector — a_"_ii Largy <L

aiii . Since precisely two points that satisfy the equation y* — Ay = * (namely, z, and z;) are con-

sume a negative real value. Therefore, while moving along the path v, (s) = (1 — s)1° —s

tained in this sector for s = 0, and y(y) is a repeated root of the equation y" — Ay = v,, for s = 1, it fol-
lows that the points z,(s) and zy(s) merge at y(y); i.e., the cycle & = ({z;} — {z,}) vanishes along v (s).

Similarly, we can show that forn = 2, ..., a=~ 1 the cycles h, = ({z,} — {z.,}) vanish along the
paths

2nis (n-1)

Da(s) = ¢ o1 [(1—s)o? —s "”1“'1’/7»/71)

a

at the points y(p). Obviously, (hy) is a basis in H,({* — Ay ="}, Z) with intersection matrix (8), and
the system of paths vp(s) satisfies the conditions of Definition 2.

COROLLARY 3. Let the conditions of Theorem 1 be satisfied, where q = 1 and Q(y) = y2. Leteny
be a distinguished basis in A, ({P (z) = u*}, Z) and em the corresponding distinguished basis in Hp({P(x) +
yt= u"}. Z). Then for sufficiently small A there exists a distinguished basis yjp(m=1,..., 1 n =1,
cewa=1lin B, ({P () + y* — Ay = u®}, Z) with intersection matrix
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{(n-1)}p-2)
(Tm‘ n,y Tm, TH-l) = (_ 1) 2 » (Tm, nTme, ﬂ) == (enu em')y
(Ym, ns Yms an) = — (€, ems), if m' 5 m, .
(Ym,no Ymryn) = 0, if [n' —n|>1 or sgn(m' — m)sgn(n’ — n) = —1.

COROLLARY 4. Let Py =} + ... + 7, , P a morsovization of P;, and u’ a noncritical value of P.
Then there exists a distinguished basis e, (m=(m,, ..., m,), 1<m;<<a; —1 ,and the order is lexicogra-
phic) in Ho({P (x) = u°}, Z) with intersection matrix

P
J2(~1)2, if - p—1 iseven

(('mv em) = O, if p— { isodd
pP-1) o ,
(eme em?) = (— 1) 2 + 3 omi=m) . om =m0 mi —m; <A,
(ém,em") = 0if {m] ~mi|> 1 for some i or sgn(m{ — mi)sgn(mlf —mj) = — 1 for some i, j.

3. Dynkin Diagrams

Let Py be an analytic function in CP with an isolated singularity of multiplicity , P 2 morsovization

of Py, and ejy(m =1, . . ., p) a basis of vanishing cycles in H,_, ({P (z) = v°}, Z) . If p—1 is even, then
- p-1
(cm» em') = (pm,, Cm> and ((’n” em) = 2 ("‘1)T

For the intersection matrix of the cycles em we can construct a graph as follows:

1) the number of vertices of the graph is equal to y;
P+l
2) the vertices with the numbers m and m' are joined by k solid edges if (e, e,) = k(—1) ? , and

P-1
k dotted edges if (e, e.) = &(—1)2 .
Conversely, such a graph determines an intersection matrix of the basis (ey;). We shall call this
graph the Dynkin diagram of the basis (ey,). (In case all the interaction indices (em, em') for m = m'equal
2t -t
0 or {—1)® , the corresponding graph is an ordinary Dynkin diagram with the associated form (—1)2 X
(em, em" /2 (see [T].

Corollary 4 can now be stated as follows:

M

To the singularity ' + ... + 2P, where « >a, > ... > ax > apy = ... = @, = 2 , there corres-
ponds a distinguished basis whose Dynkin diagram has the form of a parallelepiped consisting of (a; — 2)
.« o {ak — 2) k-dimensional cubes, in each of which all the positive diagonals are drawn. Moreover, the dia-
gonal is drawn with a dotted line or a solid line, depending on whether an even or odd number of coordinates
increases as we move along this diagonal.

Examples. To the singularity x* + y* + z2 corresponds the Dynkin diagram
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To the singularity x® + y3 + z? corresponds the Dynkin diagram

A= "
// /// /////
Vs
7/
// // e //
y/ e /
See also.§ 6.
4. The Monodromy Group
As in §1, let Py be a function in CP with an isolated singularity of multiplicity a, a ver-

sal deformation of Py, Z its bifureation diagram, A == (A, u), and #:» =Po'o — u.

Since over CM\X the mapping {z: P;(z) = 0} = A is a smooth fibration, the group =,{C*\ZX) acts in
H,.,({P:(2)= 0}, Z). This representation is called a monodromy, and its image is the monodromy group of
the singularity of P;.

For a description of the generators of 1r,(C\2), we need the concept of a "simple loop.”

_ Let 2% = (A, u® be chosensothat A" X, A’y & A (see §1). Then 30 =35 {k o} X Cu) eon-

sists of u points uy, . . ., uy. Letum €Z° and let um(s) be a smooth path in Cy, um(0) = u’, up(l) = um,
um(s) € 2%, for s < 1. By a simple loop corresponding to the path um(s) we mean a closed path T €
m(Cu\Z¢, u°) which is obtained as follows: starting at the point u’, arrive at the point upy, along the path
um(s), then go around uy, in the positive direction and return to u’ along um(s) (Fig. 5.

Definition 3. Let (em) be a basis of vanishing cycles in H‘M ({Poy .0 () = u®}, Z) and um(s) corre-
. sponding paths in Cy. The basis (em) is said to be weakly distinguished if the simple loops that cor-
respond to the paths um(s) generate the group 7,(Cy\Z’, u).

Remark. A distinguished basis is obviously weakly distinguished.

PROPOSITION 2. Let (em) be a weakly distinguished basis. Then the monodromy group of the singu-
Alarity of P, is generated by the operators Tm by the formula

B(p+1)
T‘m (E) = ¢4 (_1) 2 ("3 "m) €om. (9)
Proof. It can be shown (see [8]) tha’ “he natural mapping p:a, (C. \ 29 u%) —a; (C*\ Z,2Y) is an
epimorphism. Since the simple loops Tm corresponding to the paths um(s) generate 7(C,\Z 0, u%, the
paths pTm generate m;(CH\ Z, A%. Therefore the operators Tm corresponding to these paths generate the
monodro'my group. Formula (9) is simply the Picard-Lefschetz formula (see [5]).

Remark 1. It follows from Proposition 2 that the monodromy group of a singularity is determined by
the intersection matrix of a weakly distinguished basis. Thus Theorem 1 allows one to compute the mono-
dromy group of the singularity of Py(x) + Qy(y) if the monodromy groups of the singularities of Py(x) and
Qo(y) are known (more precisely, special systems of generators of these groups).

Remark 2. For each singularity of P, Milnor defined a Picard—Lefschetz local monodromy operator
hp,. In our notation this is an element of the monodromy group that corresponds to the path {A=:(1), ue>""),
0<t<1} inCH\Z. If (ey) is a distinguished basis, then hp, = Ty o. .. Ty.

Sebastiani and Thom [4] proved that the operator hp +qQ, of a singularity of Py(x) + Qo(y) can be com-
puted by the formula hpﬂ.Q. = hp. ®th

5. Change of Basis

Let (em) be a basis of vanishing cycles, um(s) corresponding paths, and 7, simple loops correspond-
_ ing to the um(s). For any pair (m, m') we can construct a new basis of vanishing cycles as follows:

a) Replace upy'(s) by tmu, (s) . Moreover, according to the Picard-Lefschetz formula em' is re-

o)
placed by ¢, 4- (—1) 2 (en, em) €m. We denote this operation by apy(m').
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b) Replace um'(s) by Tmum'(s). Moreover, ey’ is replaced by
p(p+1)

em+ {—1) * (¢m, em) ém (the inverse Picard—Lefschetz transforma-
tion). Wedenote this operation by gm(m'").

PROPOSITION 3. The operations am(m') and Bm(m') send a
weakly distinguished basis to a weakly distinguished basis.

The proof is trivial.

If (em) is a distinguished basis, we denote by am the operation
om(m + 1) with successive transposition of the numbers m and m + 1,
and by B, the operation By,(m — 1) with successive transposition of the
numbers m and m — 1.

PROPGOSITION 4. The operations ay, and 8, send a distinguished basis to a distinguished basis.

Remark. It can be shown that any two distinguished bases can be sent into each other by a sequence
of operations @, fms and a change of orientation of the cycles.

6. Examples

Example 1. Let F(x,y, z) = x5+ y3 + 22, According to Corollary 4, to this singularity corresponds
a distinguished basis with Dynkin diagram

1 3

(the numbers on the vertices indicate the order of the elements of the distinguished basis). The sequence
of operations a,, B, e;1~> —¢, sends this basis to a distinguished basis with Dynkin diagram D;:

1 2 4

J

~ Example 2. Let F(x,y, 2) = x!+ y3 + z2, According to Corollary 4, to this singularity corresponds a
distinguished basis with Dynkin diagram

2 4 §
1 /7
Ve ,
4 4
7 -,
/s s
! J )

The sequence of operations

oy, Ba ﬁs’ Oy, @3y Ugy &y, G 1~> — €, ¢ '—{-— €
sends this basis to a distinguished basis with Dynkin diagram Eg:
1 2 3 5 I3

S

Example 3. Let F(x,y,2z) = x°+ y5 + 22, According to Corollary 4, to this singularity corresponds
a distinguished basis with Dynkin diagram
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The sequence of operations
dyy Pas Ber X @3, X2y Ay, gy ae,-as, By g, @3 B3 By 1> — €y Gy i——8
sends this basis to a distinguished basis with Dynkin diagram Eg:
7 2 3 § § 7 8

L

Example 4. Let F(x,y,z) =x°+ y? + 2%, For x® + y3 + 22, taking the distinguished basis of D, from
Example 1 and applying Corollary 3, for F(x, y, z) we obtain a distinguished basis with Dynkin diagram

2 4 8
4 4 [
/// //
L~ /’ 17
] INT %8

n

The sequence of operations
< T} (1-)¢ Qg (3)1 Qg (3)’ 2%} (4)1 aQy (1)

sends this basis to a weakly distinguished basis with Dynkin diagram

o—

(10)

Example 5. Let F(x,y, 2) = x! + y* + ;2. According to Corollary 4, to this singularity corresponds
a distinguished basis with Dynkin diagram

The sequence of operations
@, (G}, oy (8)1 27 (5)1 27} (1)1 &g (‘))1 ag (9), a5 (9)
sends this basis to a weakly distinguished basis with Dynkin diagram

AN ' (m

Example 6. Let F(x,y, z) = x®+y® + 22, Accordmg to Corollary 4, to this smgulartty corresponds a
distinguished basis with Dynkin diagram

2 4 6 I} 0
Ve // 7 //
// s // d
// // // //
1 3 5 79

The sequence of operations
al (1)1 g (4)1 Ay (G)a alo (7)v a!(s)’ a10(5)1 273 (9)9 g (5)’ a?(s)v a3(5)1
ag(3), a5 (6), 31— —e;
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sends this basis to a weakly distinguished basis with Dynkin diagram

e ( 1 2)

Remark. Let (em) be a basis with Dynkin diagram (10) (respectively (11), (12)), where (e;, e,) = — 2.
Then (ey — e,, ey = 0 for all m, and if e, is replaced by ey —e,, then the 1ntersect10n matrix reduces to
the form E, @ (0} (respectively, E, 0), E,& (0) ,where (0) is the zero form on Z. By using the well-
known properties of E.k’ it is not difficult to obtain the following assertion:

PROPOSITION 5. The intersection matrix of the singularity x® + y® + 2% (respectively, x* + y* + 2%,
x® + y3 + 29 is negative and singular. The corresponding bilinear form has corank 2 and splits into the di-
rect sum E; © 0? (respectively, E, ® 0%, E; ® 0%. (Here 0% denotes the zero form on Z2) The monodromy
group contains as a normal subgroup a free abelian subgroup of rank 12 (respectively, 14, 16) the factor
group of which is equal to E; (respectively, E;, Eg).
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