
INTERSECTION MATRICES FOR CERTAIN SINGULARITIES 

A. M. Gabr i~ lov  

In this paper  a method is determined for computing intersect ion mat r ices  in homologies of a non- 
cr i t ical  level manifold of a complex analytic function of the form P(x) + Q(y) in a neighborhood of an i so-  
lated singular point, As a coro l la ry ,  the intersect ion matr ices  are  computed and the genera tors  of the 

L-~ ( t .  monodromy group are determined for the singularit ies ~x~,. 

I n t r o d u c t i o n  

As is well-known (see [1-3]), a noncrit ical  level manifold of a complex analytic function in a neigh- 
borhood of an isolated singular point is homotopically equivalent to a bouquet of spheres  of mean dimen- 
sion ("vanishing cycles") .  The homology group of mean dimension of this manifold is generated by these 
vanishing cycles .  The intersect ion index of these cycles  defines a bil inear form on this homology group. 
Closely connected with this form is the monodromy group of the singulari ty,  which acts in the homologies 
of the noncritical level manifold (the image of the representat ion of the local fundamental group of the com-  
plement of the bifurcation diagram of the singularity).  

This paper uses special  bases consist ing of vanishing cycles in the homology group (distinguished 
and weakly distinguished bases) to investigate the bil inear form and the monodromy group of the singu.. 
larity. 

If distinguished bases in the homologies are  known for the singularit ies of P(x) and Q(y), then from 
these bases a distinguished basis can be constructed for P(x) + Q(y), whose intersect ion matrix is ex- 
pressed by a simple formula in t e rms  of the intersect ion matr ices  of the distinguished bases for the singu- 
lar i t ies  of P(x) and Q(y). 

The monodromy group of a singularity is uniquely defined by the intersect ion matr ix  of a weakly 
distinguished bas is :  it is generated by the reflections in the hyperplanes that are orthogonal (in the sense 
of the bil inear form of the intersections) to the elements of the basis .  

As a coro l la ry ,  distinguished bases are  constructed and the intersect ion mat r ices  are computed for 
a .  the singularities ~x~,. 

For  the "parabolic" singularit ies x 3 + y3 + z 3, x 4 + y4 + z 2, and x s + y3 + z 2 the monodromy groups are  
computdd. 

The method of constructir~g a basis for P(x) + Q(y) given in this paper  resembles  the method of M. 
Sebastiani and R. Thom [4] for computing the P i c a r d - L e f s c h e t z  monodromy opera tor  for a singulari ty of 
the form P(x) + Q(y). 

Another method of computing intersect ion matr ices  and monodromies was given by E. Br ieskorn  in 
a report  to the conference in Tbilisi in October 1972. His method is based on first  investigating the gen- 
e r a t o r s  and relations of the fundamental group of the complement of the bifurcation diagram,  and then ob- 
taining, with the help of the P i c a r d - L e f s c h e t z  theorem,  information about the intersect ions of the vanish- 
ing cycles .  Br ieskorn  pointed out that Lazzer i  computed the intersect ion matr ix  for x a + y3 by this method. 

\-~ a i F. Pham [6] found a basis for the singularity ~.x~ and computed the intersect ion matr ix of this ba-  

s is .  The basis for this s ingulari ty constructed in the present  paper  can be deformed to the basis given by 
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P h a m ,  and the  i n t e r s e c t i o n  m a t r i x  o f  th is  b a s i s  can be ob ta ined  f r o m  his  f o r m u l a s .  V. I .  A r n o l ' d  gave a 
d i r e c t  p r o o f  of the  fact  tha t  P h a m ' s  b a s i s  is  d i s t i ngu i shedo  

The s t r u c t u r e  o f  the  m o n o d r o m y  group of " p a r a b o l i c "  s i n g u l a r i t i e s  was  d e t e r m i n e d  by  J .  M i l n o r  in a 
l e t t e r  to A r n o l ' d  on O c t o b e r  31, 1972. 

I would l ike to  t ake  th i s  oppo r tun i t y  to  e x p r e s s  my  deep  thanks  to V. I.  A r n o l ' d  fo r  n u m e r o u s  u se fu l  
discussions. 

1 .  D i s t i n g u i s h e d  B a s e s  

Le t  P0 be an ana ly t i c  funct ion wi th  an i s o l a t e d  s i n g u l a r i t y  a t  the o r i g i n  in CP. The  n u m b e r  te = 

dime C {x} / [~F:,(.,)] w i l l  be ca l l ed  the m u l t i p l i c i t y  of  the  s i n g u l a r i t y  of P0. Let  P~t(). E C/~) be  a v e r s a l  d e -  

f o r m a t i o n  of  P0 (see  [2]) and Z ~ - C/~ the b i f u r c a t i o n  d i a g r a m  of  P~t, i . e . ,  the s e t  of  ~ such  tha t  F}, has  z e r o  
a s  a c r i t i c a l  v a l u e .  

F o r  s u f f i c i e n t l y  s m a l l  r > 0 and s u f f i c i e n t l y  s m a l l  ( l e s s  than  s o m e  funct ion of  r) ~ not b e l o n g i n g  to 
{x: ]xl < r ,  Pk(x) = 0} is  a r e a l  (2p - 2 ) - d i m e n s i o n a l  mani fo ld  h o m o t o p i c a l l y  e q u i v a l e n t  to a bouquet  ~ of  
s p h e r e s  of d i m e n s i o n  p - 1, and i t s  (p - D - d i m e n s i o n a l  h o m o l o g i e s  a r e  g e n e r a t e d  by  P i c a r d - L e f s c h e t z  
v a n i s h i n g  c y c l e s . *  

In the s eque l  we s h a l l  not  i nd i ca t e  the n u m b e r  r e x p l i c i t l y  n o r  the r e l a t e d  c o n s t r a i n t s  on x and ~t. 

Let  )~ = (~.', u) ().' ~ E~:-,, , ~ E) be a d e c o m p o s i t i o n  of the p a r a m e t e r  s p a c e  of the v e r s a l  d e f o r m a -  
t ion  such  tha t  P>. == P(~.. ~) - -  u . I f  },' does  not be long  to s o m e  p r o p e r  a n a l y t i c  s u b s e t  ~ of  C ~-1, then  F~ 
has  ~ n o n d e g e n e r a t e  c r i t i c a l  po in t s ,  and a l l  i t s  c r i t i c a l  v a l u e s  a r e  d i s t i n c t .  A funct ion P~ tha t  s a t i s f i e s  
th i s  cond i t ion  w i l l  be ca l l ed  a m o r s o v i z a t i o n  of P0 and denoted  s i m p l y  by  P .  

Def in i t i on  1. Let  P(x) (x E cP) be an a n a l y t i c  funct ion ,  x a n o n d e g e n e r a t e  c r i t i c a l  poin t  of  P(x) ,  u = 
P(x) the  c o r r e s p o n d i n g  c r i t i c a l  v a l u e ,  and u ° s o m e  n o n c r i t i c a l  va lue  of  P(x) .  A c y c l e  
Z) i s  c a l l ed  v a n i s h i n g  (a long the path  u(s)) i f  the fo l lowing cond i t i ons  a r e  s a t i s f i e d :  

1) in  the  p l ane  o f  v a l u e s  of F t h e r e  i s  def ined  a s m o o t h  pa th  u(s) (s E [0, 1]) tha t  is equa l  to  u ° for  
s -- 0, fi for  s = 1, and does  not  p a s s  t h rough  a c r i t i c a l  va lue  of  F for  s ~ 1; 

2) for  s < 1 s m o o t h  s p h e r e s  e(s) ¢ ~x: P(x) = u(s)} a r e  def ined  such  tha t  e(0) = e ,  the  ma pp ing  
U e(.,') .... [0, i )  i s  a smoo th  f i b r a t i o n ,  and ,  i f  1 - s is s u f f i c i e n t l y  s m a l l ,  t h e r e  e x i s t s  a change  of  c o o r d i -  

0~--~< l 

n a t e s  x ...... x '  in a ne ighborhood  of  the  point  x ('-x is  the o r i g i n  o f  x')  such  tha t  P (x') : ~ +~,x '~  and e(s) = 

q ~ - u ( s ) S P - l ~ w h e r e  5 "r-~ {x' ~ R p, ~ x 7  = I} is  the  s t a n d a r d  s p h e r e .  

Def in i t ion  2. Le t  P0(x) be a funct ion wi th  an i s o l a t e d  s i n g u l a r i t y  of  m u l t i p l i c i t y  ~,  P(x) a m o r s o v i z a -  
t ion  of  P0(x), u m ( m  = 1 . . . . .  u) the  c r i t i c a l  v a l u e s  of P(x) ,  and u ° a n o n c r i t i c a l  va lue  of  F (x ) .  

A b a s i s  (e m) in t~,~_~ ({p (x) - r~°}, Z) is  sa id  to  be  d i s t i n g u i s h e d  if: 

1) the e m a r e  v a n i s h i n g  c y c l e s  and the c o r r e s p o n d i n g  pa ths  urn(s) a r e  equa l  to  u m for  s = 1; 

2) the  u r n ( s ) a r e  n o n - s e l f - i n t e r s e c t i n g p a t h s , a n d  fo r  m '  # m the pa ths  Um(S) and Um,(S) i n t e r s e c t  only  
at u°; 

arg ~ (0) -/~ arg ~ (0). 

Remark 1. The existence of a distinguished basis was essentially proved in the addendum to Bries- 
korn's article [3], Moreover, it follows from Brieskorn's arguments that any system of cycles that satis- 
fies conditions l) and 2) of Definition 2 is a basis in /71_ ' ({P (x) = u°}, Z). 

Remark 2. By deforming u ° and the system of paths urn(s), we can always guarantee that, in addition 
to conditions 1)-3) of Definition 2,the following conditions will be satisfied: 

*Henceforth, by the homologies of a space Xwe mean (and denote by H(X, Z)) integral reduced homologies, 
i.e., the kernel of the natural mapping H,(X, Z) ~ H, (a point of Z). 

183 



4) R e u  °< R e u  m for  all m; 

5) Re Um(S) > Re u ° fo r  s > 0. 

2 .  I n t e r s e c t i o n  M a t r i c e s  

THEOREM 1. Let P0(x) (x E CP) and Q0(Y) (Y E cq)  be ana ly t ic  functions with isola ted s ingu la r i t i e s  of 
mul t ip l ic i t ies  # and v, r e s p e c t i v e l y ,  and let P(x) and Q(y) be m o r s o v i z a t i o n s  o f  t hem.  Let (e m) [ r e spec t -  
ively ,  (hn)] be a d is t inguished bas is  in Hp_~ ({P (x) = u°}, Z) ( r e spec t ive ly ,  in /t,~_~ ({Q (y) =vu}, z) ). 
Cons ide r  the function P0(x) + Q0(Y)- It has  an isolated s ingu la r i ty  of mul t ip l ic i ty  try.  We can  choose  P(x) 
and Q(y) so  that P(x) + Q(F) is a m o r s o v i z a t i o n  ofP0(x) + Q0(Y) and u ° + v ° is a noncr i t i ca l  value of P(x) + 
Q(y). 

T h e r e  ex i s t s  a bas i s  (~mn) in //,+,,_~ ({P (x) + Q (y) = u ° + v°}, Z) whose  i n t e r s ec t i on  ma t r i x  is 
defined by  the f o r m u l a s  

lo4-q-1 
/ 2 ( ~ - l )  -~ , if  p - ~ q - - t  i s e v e n  (1) - 

('finn, T,,,,,) = ~ ~, if  p-~-  q - -  ~ is odd 

g~1) (2) 
(~" ..... Tra~') = sg .  (n' - -  n)~(--  t ) ~  ~ (I t . .  I t , , . ) , i f  

(T,,,,, T,,',,) sgu (m' --  m)q(-- 1) ~+  acq-'* : "z (era, era'), if  m ~ m'; n ~.-~= n'; (3) 

(V~., Y,,,',,') = O, if sgn (m' - -  m) sgn (n' - -  it) = - - t ;  

(V .... Ym',t') = sgn (m'  - -  m) ( - - t )  vq (era, era') (hn, hn,), (5) 
if s g n ( m ' - m )  s g n ( n ' - n )  =1 .  

If  the  p a i r s  (m, n) a re  o rde r ed  l ex icograph ica l ly  (i .e. ,  (m ' ,  n') > (m, n) if  m '  > re ,  o r  m '  = m and 
n '  > n), then ('/ran) is a d is t inguished b a s i s .  

P roo f .  1) Cons t ruc t ion  of  the Cyc les  Tmn.  Let  Cu ( r e spec t ive ly  Cv) be the range  of  va lues  of  P(x) 
( r e spec t ive ly  Q(y)). Let  Um(m = 1 . . . .  , U) and vn(n = 1 . . . .  , v) be c r i t i c a l  va lues  of  P(x) and Q(y) r e -  
spec t ive ly ;  let urn(s) and Vn(S) (s E [0, 11) be paths in Cu and C v c o r r e s p o n d i n g  to the d is t inguished base s  
e m  and hn.  We shal l  a s s u m e  that the condi t ions  of  R e m a r k  2 a r e  sat isf ied for  u °, v °, urn(s) ,  and Vn(S). 

Define a mapping  p:  Cv --- Cu by the fo rmu la  p(v) = u ° + v ° - v .  The paths Pen(s) join u ° and pen and 
lie ( for  s > 0) in the ha l f -p lane  Re u < Re u °. The paths  urn(s) join u ° and Um and lie in the ha l f -p lane  
R e  u > R e  u ° ( F i g .  1 ) .  S e t  

/pvn (t - -  2 0 for 
~ n  (t) 

ura(2t - -  t )  for 
! 

-~-~< t ~ t ,  

and let ~mn(t) be smooth  paths obtained f r o m  r 'mn( t )  by  a homotopy  in a neighborhood of u ° and equal to u ° 
for  t = 1 /2 .  

L e t  e m (s) ~ {P (x) =- Um (s)} and h~ (s) ~ {Q (y) - v,~ (s)} be fami l ies  of  s p h e r e s  c o r r e s p o n d i n g  to 
the vanish ing  c y c l e s  e m  and hn.  Set era(l) = x(ra) and hn(1) = Y(n), w h e r e  X(m) and Y(n) a r e  points to which 
the sphe re s  era(s) and hn(s) sh r ink  as  s - -  1. 

For  each n w e  can define a smooth  de fo rma t ion  emn(t) of  e m along the path ~rmn(t), such that  era,, (t) 
{P (x) = ~,,,, (t)}, e,,,, (1/2) =~ era, er~n (t) = em (2t - -  i), if  1 - t  is suff ic ient ly  sma l l .  

M o r e o v e r ,  U e~, (t) is d i f feomorph ic  to e m  x [0, 1) and U era,, (t) is  a smooth  d{sk with 
• O~.t<l 0~1~1 

boundary  emn(0).  S imi l a r ly ,  for  each  m we define a smooth  de fo rma t ion  hmn(t) of  hn a long the path Irmn(t), 
such that  hmn (t) ~ {Q (y) = p - l ~ n  (t)}, h,~,, Q/2) = h~, h ,~ (t) = h~ ( 1 - - 2 0 ,  i f t  is suf f ic ient ly  sma l l .  

U h~,, (t) is d i f feomorph ic  to h n × (0, 1], and U hm,(0 is a smooth  disk with boundary  hmn(1) .  
O<t~l O-~t~l 
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fl~" ~ u, . 
=.(~,¢ ,, . . . .  <.  ~ ) - - - - , r '2 - ' - ,  

, . = .  t, rcAh,  , 
k ~ " '  ,' % ( ~ . ~ ) , ~ ' ,  . . 2 ¢ .  

Fig. 1 Fig. 2 

Set ~,~. :-  U em.( t )  x /t ..... (t) . The  s e t  Y m n i S  c o n t a i n e d  in {P(x)  + Q ( y )  = u ° +  v ~} and is  d i f -  
O~t~<t 

f e o m o r p h i c  to  a s p h e r e .  A n  o r i e n t a t i o n  on  ~ m n  is  i n t r o d u c e d  s o  t ha t  the  o r i e n t a t i o n  o f  the  d i r e c t  p r o d u c t  
i s  i nduced  on b era,, (t) x it,,,,, (t) ~ 'i ...... w h i c h  is  d i f f e o m o r p h i c  to e m  x h n  × (0, 1) (we a s s u m e  tha t  

0<t<.t 

the interval (0, 1) is positively oriented). 

2. (Ymn) is a Distinguished Basis. Suppose that the function Q(y), the point v °, and the paths Vn(S) 
are chosen so that IVn(S) - v°l < e, where e is sufficiently small. Then the function P(x) + Q(y) has ~p 
distinct critical values Um÷ vn, and so it is a morsovization of P0(x) + Q0(Y). 

Let Cw be the range of values of P(x) + Q(y). We shall construct smooth paths win, (£)(£ ~ I0,1], 
win,, (0) = u ~ H- v °, Win. (1)= Um + V.), in  Cw tha t  s a t i s f y  the c o n d i t i o n s  of D e f i n i t i o n  2 , a n d  a s m o o t h  h o m o t o p y  

7rmn(t, ;9 of  the  pa ths  Xmn(t) in  Cu s u c h  tha t :  

1") 7rmn('L, 0) = ~mn( t ) ;  

2*) ~, . , ,  (0,  £)  = Wm.  ( D  - -  V,,, r~ . . .  ( 1 , ) g  = Urn; 

3*) fo r  f ixed )` the  pa th  l rmn(t  , ;9 does  no t  c o n t a i n  p o i n t s  u r n '  and  Wmn(;9  - Vn' fo r  m '  ;~ n ,  n '  ~ n o r  

the  p o i n t s  Um and  Wren(X) - v n for  t ~ 0, 1; 

4*) nm,, (t,)~) --- (l  - -  t) U m +  t (Wm~ (3.) - -  Vn), if  (1 -- )`) i s  s u f f i c i e n t l y  s m a l l .  

By m e a n s  o f  the h o m o t o p y  l rmn( t ,  ;9 we c a n  c o n s t r u c t  a s m o o t h  d e f o r m a t i o n  e m n ( t ,  )`) of  the  f a m i l y  

o f  s p h e r e s  e m n ( t ) ,  s u c h  t h a t :  

1) ~ , ,  (t, ~) ~ { p  (~) = ~ .  (t, ~)); 

2) emn(t . ,  0) = e m n ( t ) ;  

3) i f  we  le t  1 -  ) , b e  s u f f i c i e n t l y  s m a l l  and  i f  we s e t  Wmn(D - U m - V  n -- r ( D  ( r (D  --- 0 a s  )` --* 1), 
t h e n  rrmn(t , ;9 = U m  + t r ( ; 9 ,  an d  t h e r e  e x i s t s  a c h a n g e  of  v a r i a b l e s  x ~ : '  in  a n e i g h b o r h o o d  of  x(m) s u c h  

tha t  P (x') = U m  + ~x i  ~ and  era,, (t, £) = I f t , ' (~ . )Sp- ' .  

S i m i l a r l y ,  we  c o n s t r u c t  a s m o o t h  d e f o r m a t i o n  h m n ( t ,  D o f  the  f a m i l y  of s p h e r e s  h m n ( t ) ,  s u c h  t ha t :  

1) J~m,, (t, ~.) ~ {Q (y) = w = .  (~.) - -  ~ .  (t, ~)}; 

2) h m n ( t ,  O) = h mn ( t ) ;  

3) i f  we  le t  1 - )` be  s u f f i c i e n t l y  s m a l l ,  t h e n  w,~ (~,) - -  n , . .  (t, ~) = v= + (I - -  t) r(),) , and t h e r e  e x i s t s  

a c h a n g e  of v a r i a b l e s  y ~ y '  in  a n e i g h b o r h o o d  of Y(n) s u c h  tha t  Q (y') = va + ~}/~ and  hmn (t ,)~) ----- 

If (t - -  t) ,. (Z) Sq-L 

Set  ~ ()~) = O era. (t, £) x hm,~ (t, ~) - O b v i o u s l y ,  Y.,~ ()0 ~ {P (x) -F Q (y) = Wry. (~-)}, Vm. (0) = 

~ m n  and ,  if  1 - )` i s  s u f f i c i e n t l y  s m a l l ,  t h e n  in  a n e i g h b o r h o o d  o f  (x(m),  Y(n)) 

P ( x ' ) +  Q(y') = u., + vn _u ~ x : '  + ~_j yi', 

T,,,~(X) = V r (X) U (~ fTSv - '  x V 1 - t s q  -~) =Yr--~))~ p+q-', 
0~t~l 
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w h e r e  S ~'+q-~ {(x', !/') ~ R ~+'~, ~x l  ~ x2 '" -- ÷~!/~" := 1} is  the  s t a n d a r d  s p h e r e .  T h e r e f o r e  the  c y c l e s  Ymn v a n -  

i sh  a long  the pa ths  Wmn(X) , and f r o m  R e m a r k  1 i t  follow.s that  (Ymn) is a d i s t i n g u i s h e d  b a s i s .  

Le t  us  t u r n  to  the  c o n s t r u c t i o n  of the pa ths  Wmn(X) and 7rmn(t, ~,). More  p r e c i s e l y ,  we s h a l l  c o n -  
s t r u c t  (nonsmooth)  p a t h s  W~an(h) and h o m o t o p i e s  7r~n(t,  ~), which  can  then  be r e p l a c e d  by homotop i c  
s m o o t h  pa ths  Wmn(D that  s a t i s f y  the  cond i t ions  of Def in i t ion  2 and smoo th  h o m o t o p i e s  rrmn(h) tha t  s a t i s f y  
cond i t ions  1 " ) - 4 " ) .  

The  c o n s t r u c t i o n  wi l l  be in t h r e e  s t a g e s .  

1) I f  c is  s u f f i c i e n t l y  s m a l l ,  t hen  the pa th  urn(s) s a t i s f i e s  the  fo l lowing  c o n d i t i o n s :  

the  d i s k  I u - -  u~ (s) I ~ 4e does  not con ta in  po in t s  Um,(m'  ;~ m);¢  

t h e r e  e x i s t s  an  s*  such  that  

J u . ~ - - u ~ ( s ) [ . < ~ 2 e  fo r  s * ~ s ~ l ,  and [ u ~ - - u ~ ( s ) [ ~  2s for  0 ~ s < s * ,  

fo r  0 ~ X <  s*/2 the  pa th  u.~ (s) (2;~S~<t) i n t e r s e c t s  t h e  c i r c l e  F~. = {t~ : [ u - -  ur. (2~)[ = 2e} a t  
p r e c i s e l y  one po in t  u m ( s h ) .  

Let?~* = s * / 2 .  F o r  0 < ) ~ Z *  s e t  w ' ~ n ( Z ) = v °  + u m ( 2 ~ ) .  S e t n ; . . ( t , ~ ) : u m ( ( 2 t - - l ) ( l - - 2 Z ) + 2 Z )  

~ - 2 ~  t ~ 1 ~ - - 2 ~  t h e p a t h ~ r , m n ( t , D i s  i f  s~ < ( 2 t  - -  t) (1--2£) + 2k ~ t ,  , i . e . ,  -~--~ [ ~ - - ~ ) ~ t ~  t .  I f - ~ - ~ t . ~ - z U +  ~2~- -~f  ) 

c o n s t r u c t e d S o t h a t  h ~  (t, O)=u,~ (2 t - - l ) ,  , t . t s~ -- 2~ a~.(~- ,  ),) = u~ (2~,), ~ ,~  (t, Z) = u~ (sD for  t = -~- + "2(t --2z) ' 
! 

and I n~ ,  (t, Z) - -urn (2~,)1 ~<2e ; fo r  t > 1 /2  the pa th  ~rmn(t , ~) does  not  i n t e r s e c t  the  h a l f - d i s k  DX = {Re u ~-- 

Re Um (2L), I u - -  am. (2Z) ! ~ e} ( see  F ig .  2, w h e r e  the  so l id  l ines  deno te  the  pa th  r rmn( t ,D for  + ~ t . < _  
I s x --  2~, 
2 -~- 2(1 --2k) for  s i x  d i f f e r e n t  v a l u e s  of  h f r o m  0 to h*; the  shad ing  deno te s  the h a l f ' d i s k  Dh; and the 

dot ted  l ine deno t e s  t he  c i r c l e  r h ) .  

F o r  0 --  t -< •1/2 s e t  . ~ .  (t, ~) = u m  (2D ÷ v ° - -  v.  (1--2t). 

2) Le t  £ * ~ X ~ t / 2  . Se t  

( see  F ig .  3, w h e r e  the  so l id  l ine  d e n o t e s  the  pa th  W~nn(h) for  
d i s k  {ilew .'_~ u~ -~ v °, 

\ 
1 - -  2 Z *  ' ~'*) 

£* ~ Z ~ 1/2 ; the  s h a d i n g  deno t e s  the  h a l f -  
[ u~ + v ° - -  w [ ~ 8} ; the  dot ted  line deno t e s  the  c i r c l e  {i u.~ + ~-') w l = 2e}). 

F o r  t _~ 7.--z* - - ~ t ~ t  s e t  
2 t --2~* 

and for  

, i ' - - ~ "  ~ :  + u . ,  " , 

0 : < t < + +  ;: - - -  .-r, s e t  
I - 2Z 

• ( , .) .%n. (t, ~,) := w',.,~ (~) - -  v,~ ! 2t (t -- 2i, ) 

( see  F ig .  4, w h e r e  the  so l id  l i ne s  1, 2, and 3 denote  the  pa th  7r~nn(t , X) fo r  h 1 = h i =  h*,k* < h2< 1 / 2 a n d  ~t 3 = 1 /2 ) .  

3) Le t  1 /2  -< h -< 1. Se t  

w'~n (~'~) = Ura "}- vn (2Z - -  1), 
~ , .  (t, Z) = w~. (~.) - -  v.  ( l - -2 t ( i  - -  ~.)). 

3 .  C o m p u t a t i o n  o f  the I n t e r s e c t i o n  I n d i c e s .  F o r m u l a  (1) fo l lows f r o m  the  fact  tha t  the  Ymn a r e  v a n -  
i sh ing  c y c l e s  ( see  [5]). 

¢ I f  t h i s  cond i t i on  i s  s a t i s f i e d ,  then  the p a t h s  W ~ n ( D  c o n s t r u c t e d  be low for  v a r i o u s  m i n t e r s e c t  on ly  a t  u ° + 
• v 

v °, and the  pa ths  f a r o ( t ,  D do not con ta in  po in t s  urn '  f o r  m '  ~ m.  
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Let  n '  < n.  Then ,  r e p l a c i n g  the  pa ths  rmn( t )  and 7rmn,(t) by  h o m o t o p i c  o n e s ,  we  can  a s s u m e  tha t :  

1) rrmn(t) and , rmn' ( t )  i n t e r s e c t  on ly  fo r  t = 1 a t  the  poin t  urn; 

2) in a ne ighborhood  of  u m 

.... (t) = um -~- (1 - -  t)e ~¢, z=~,. (t) = ura "k- (1 - -  t)e'( ~ ~.)), 
O < a o  < . %  

w h e r e  the path  r m n , ( t )  i s  ob ta ined  f r o m  7rmn(t) by  m e a n s  of  the d e f o r m a t i o n  

U ('-->Um "-}- ¢ ~a (U - -  //m), Ct ~ [D, r_Zo]. ( 6 )  

Let  X(m) be a c r i t i c a l  poin t  of  P(x) wi th  c r i t i c a l  va lue  urn.  Then  a s  t ~ 1 the  s p h e r e s  emn(t)  and 
emn,( t )  s h r i n k  to the  point  x(m) .  T h e r e f o r e  a l l  the i n t e r s e c t i o n  po in t s  of  the  c y c l e s  Ymn and Ymn'  l ie  in 
the  s e t  {z(,,)} x {Q (y) = p-mu~} • Le t  x ~ x'  be a change  of c o o r d i n a t e s  in a ne ighbo rhood  of  X(m) such  

that  P ( x ' )  = UmH- ~'x~ z , a n d  let  B ~ = { x ' ~ R v ,  ~ x (  "z~<i} b e a p - - d i m e n s i o n a l d i s k ,  SP-I  = a B P .  I f 6  > 0 

i s  s u f f i c i e n t l y  s m a l l ,  we can  a s s u m e  tha t  for  1 - 5 -< t ~ 1 

e . , n ( t ) = V ' t - t  e "-'S p-', D : U e,,,, (t) = 1/-5-e i "~-~ B v. 
I-8~</~71 

It  fo l lows f r o m  (6) t ha t  

e,,,,,.(t) = V ~ " ~ - ' ~ e  7 S , , - , ,  D' : LI e., , , .(t) -- :]fS-e t -  

w h e r e  0 < %) < r ,  and D '  i s  ob ta ined  f r o m  D by  the d e f o r m a t i o n  

Bp~ 

t ~..2_ 
x ' , - . e  -' x ' ,  ( z E [ 0 , % l .  (7) 

p (n - - I )  

T h e r e f o r e  D and D'  i n t e r s e c t  t r a n s v e r s a l l y  at  z e r o ,  and (D, D') = (--1) ~ . In a ne ighborhood  of the 
s e t  {x(m)} x {Q (!/) - 9-'u,,,} y m n  is  d i f f e o m o r p h i c  to D × hmn(1) (the o r i e n t a t i o n  in D is induced  by  th i s  
d i f f e o m o r p h i s m ) ;  Ymn'  i s  d i f f e o m o r p h i c  to  D '  x hmn,(1) [the o r i e n t a t i o n  in D'  is  d e t e r m i n e d  by  the o r i e n t a -  
t ion  in D f r o m  (7), and the  d i f f e o m o r p h i s m  p r e s e r v e s  the  o r i en t a t i on ] ;  and { P  (x) -4- Q (y) - u ° -i- v °} i s  
d i f f e o m o r p h i c  to  EP x {(2 ('/) = p- 'u~} (with p r e s e r v a t i o n  of  o r i e n t a t i o n ) .  T h e r e f o r e  the  i n t e r s e c t i o n  i n -  
dex  of  Tmn  and Ymn'  in [P(x) + Q(y) = u ° + v°~ is  equa l  to the  i n t e r s e c t i o n  index of  D x hmn(1) and D' x 

hmn,(1) in Cp x {Q (y) :- P-'"m} , which equals 

p (t~-l) 
( - -  t)p(q-')(D, D')(h.~. (i). h.~,~.(t)) = ( - -  t) p(~-t) (D, D ' ) ( h . ,  h,¢) ~ ( - -  1) p(q-t)+ 2 (h,,. ha. ). 

F o r m u l a  (2) now fo l lows  f r o m  the fact  tha t  

(r,,,,,,', %.,..,,) = ( - -  I)p+"t-J- (T . . . .  "r,,,,.), (h,~., h,,) .... ( - -  t) ', '- '  (h,,, h,v). 

F o r m u l a  (3) is  p roved  jus t  a s  f o r m u l a  (2). 

F o r m u l a  (4) fo l lows f r o m  the fac t  tha t  for  sgn (m'  - m) sgn  (n' - n) -- - 1 we can  c h o o s e  pa ths  tha t  
a r e  h o m o t o p i c  to 7rmn(t) and 7rm,n,(t) and do not i n t e r s e c t  a t  any  po in t .  

Let  m '  < m ,  n' < n.  Then  we can  a s s u m e  that  the  pa ths  :finn(t) and ,rm,n,(t)  i n t e r s e c t  on ly  at  u °, and 

( d:'t ,t d:Xm,n, ) ~ ( u O ) ,  <---777--- (u 0) i s  a p o s i t i v e l y  o r i e n t e d  b a s i s  in Cu. 

T h e r e f o r e  y m n  and Y m ' n '  i n t e r s e c t  only  a t  po in t s  of  the s e t  {P (x) = u °} x {Q (y) = v °} . In a n e i g h -  
bo rhood  of  th i s  s e t  { p ( x ) + Q ( y )  = u U ÷ v  °} is  d i f f e o m o r p h i c  to  {P(x) = , ° }  x { Q ( y ) -  v °} × E~ (with 

p r e s e r v a t i o n  of o r i e n t a t i o n ) ,  T m n  is  d i f f o e m o r p h i e  to e~ x h,, /. a,,,, (t), and y m ' n '  is  d i f f e o m o r p h i c  to  
e m. X h,, .  X ~r~',," ( t ) .  

T h e r e f o r e  

(¥m~, Ym',~') - (--t)(p-')+ (q-l)+ (x-0 (q-t)(era, e,n,) (h,,, Ih,, ) = (--t)pq+l (era, em.)(D,, ' / , , . ) .  

F o r m u l a  (5) fo l lows f r o m  the  fac t  tha t  

(Ym'n', Y.~,~)= (--t)p+q-~ (Ym.,Ym'.'), (e.~., e . . ) =  (_ t )p - t  (era, era.), (h~., D , , ) -  (--1) q-~ (h~, h. . ) .  
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T h i s  p r o v e s  the  t h e o r e m .  

C O R O L L A R Y  1. Le t  the  c o n d i t i o n s  o f  T h e o r e m  1 be  s a t i s f i e d ,  w h e r e  Qo (y) = y21+ -.. + y~ • 
v = 1, and  i f  we  s e t  e m = T m l ,  t h e n  the b a s i s  (e m) h a s  i n t e r s e c t i o n  m a t r i x  

, P+q- I  

(e,,~,e.O= 2 ( - - t )  2 , if  p + q - -  t is even 
[ O, if p + q - -  1 is odd 

q (q-t) 

(era, era.) = sgn (m' - -  m)¢ ( - -  t) p++ m (era, era.), 

T h e n  

i f  m ~ m ' .  In  p a r t i c u l a r ,  i f  q = 2k,  t h e n  (%,  era.) = (--1)~ (:m, era') fo r  a l l  m ,  m ' .  

C O R O L L A R Y  2. Le t  e m be  a d i s t i n g u i s h e d  b a s i s  i n  ~p_~ ({P (x) = u°}, Z), a n d  e m the  c o r r e s -  
p o n d i n g  b a s i s  ( s ee  C o r o l l a r y  1) i n  Hp+q_~({P (x) + y~ + . . .% y~ = u°}, Z ) .  Le t  h n be a d i s t i n g u i s h e d  b a s i s  
i n  Hq_~ ({Q (y) = v°}, z)  and  h a the  c o r r e s p o n d i n g  b a s i s  in  //~+q_~ ({x~ + ... + x~ + Q (D = v°}, z) . T h e n  
t h e r e  e x i s t s  a d i s t i n g u i s h e d  b a s i s  ~ ' m n  in  //p+q-t ({P (z) + Q (y) = u ° + v°}, z )  w i th  i n t e r s e c t i o n  m a t r i x  

(Vm., V~')= (h., h..), 
(W., V~'~)= (% e~.). 

(Ymn, Ym'n') == O, if  s g n  (m' - -  m) sgn (n'  - -  n) +- - - t ,  
( p4-q)(p4-q--| ) 

( T m . , T m ' , ~ ' ) = s g n ( m ' - - m ) ~ ' ¢ - l ( - - t )  ~ (em, em.)(h.,h.,), i f  s g n ( m ' - - m ) s g ~ ( n ' - - n )  - l .  

P R O P O S I T I O N  1. T h e  f u n c t i o n  ya - X y  fo r  3, + 0 is  a m o r s o v i z a t i o n  of  the  f u n c t i o n  ya ,  and i f  v ° i s  a 
n o n e r i t i c a l  v a l u e  o f y  a - Xy, t h e n  t h e r e  e x i s t s  a d i s t i n g u i s h e d  b a s i s  h n ( n  = 1 . . . . .  a - 1) in  if0 ({Y" - -  ~y = 
v°~, Z) wi th  i n t e r s e c t i o n  m a t r i x  

(h,,, kn) = 2, (ha, /in+l) = - - i ,  (h.,  h.) = O, ' i f  . I n '  - -  n I >  i .  (8) 

P r o o f .  W e  c a n  a s s u m e  tha t  X i s  a p o s i t i v e  r e a l  n u m b e r .  The  f u n c t i o n  ya  - ~y h a s  a - 1 n o n d e g e n e r a t e  
~ i  ( n - t )  

~ t i  ( n - l )  c r i t i c a l p o i n t s  y r . ) =  a-~/'~--]-a e ~-t (t < n < a  - -  1) w i th  c r i t i c a l  v a l u e s  v ~ = - -  t h a i )  X~]-~-~e ~-t 

I f  v ° i s  a n o n c r i t i c a l  v a l u e  of  y a  - ky,  t h e n  the  s e t  {y : y .  _ ~.y = vo} c o n s i s t s  of  a p o i n t s  z~, (0 ~< k -~ a - -  1). 

(If  v ° is  a n e g a t i v e  r e a l  n u m b e r  and I v° I :~-~ ~¢'(+~-~) , t h e n  z h. ~ ~:l v ° te " 

':':+(2l - t ) P.t (21 - l )  

On the r a y s  {y = te "- '  , t > 0 }  the  f u n c t i o n  ya  - Xy e q u a l s  e a=t (t"+~.t)  , and  so  i t  c a n n o t  a s -  
a - - t  a - t  ..~----- 

s u m e  a n e g a t i v e  r e a l  v a l u e .  T h e r e f o r e ,  wh i l e  m o v i n g  a l o n g  the pa th  v( ( s )  = (l - -  s) v ° - - s  F ~.,a the  a o 

r o o t s  zi(s)  o f  the  e q u a t i o n  y+ - -  ~y = v, (s) do no t  i n t e r s e c t  the  b o u n d a r i e s  of  the  s e c t o r  - - ~ < a r g y <  

~ S i n c e  p r e c i s e l y  two p o i n t s  tha t  s a t i s f y  the  e q u a t i o n  y~ - -  ~y = v ° ( n a m e l y ,  z0 and  z I) a r e  c o n -  a - - i  + 

t a i n e d  in  t h i s  s e c t o r  for  s = 0, and  Y0) is  a r e p e a t e d  roo t  of  the  e q u a t i o n  y" - -  £y = vt, fo r  s = 1, i t  f o l -  
lows tha t  the  p o i n t s  z0(s) and  zi(s)  m e r g e  a t  Y(I); i . e . ,  the  c y c l e  k, = ({z,} - -  {zo}) v a n i s h e s  a l o n g  v1(s) .  

S i m i l a r l y ,  we  c a n  show tha t  fo r  n = 2 . . . . .  a -  1 the  c y c l e s  h ,  = ({z+} - -  {z,_t}) v a n i s h  a l o n g  the  
p a t h s  

v , ( s ) =  e" ~ t - - s ) : - - s  ~ 
, a 

a t  the  po in t s  Y(n). O b v i o u s l y ,  (hn) i s  a b a s i s  i n  H o ({y" - -  ~.y = v°}, Z} wi th  i n t e r s e c t i o n  m a t r i x  (8), and 
the  s y s t e m  of  p a t h s  Vn(S) s a t i s f i e s  t h e  c o n d i t i o n s  of  D e f i n i t i o n  2. 

C O R O L L A R Y  3.  Le t  the c o n d i t i o n s  of T h e o r e m  1 be  s a t i s f i e d ,  w h e r e  q = 1 and  Q0(Y) = ya .  Le t  e m 
be  a d i s t i n g u i s h e d  b a s i s  i n  /7~_ t ({P (z) ---- u°}, Z) and e m  the  c o r r e s p o n d i n g  d i s t i n g u i s h e d  b a s i s  in  I~p([P(x) + 

yZ = u0}, Z). T h e n  fo r  s u f f i c i e n t l y  s m a l l  ), t h e r e  e x i s t s  a d i s t i n g u i s h e d  b a s i s  Y m , n ( m  = 1, . . . .  ~; n = 1, 
. . . .  a - 1) i n  Hp ({P (z) % y~ - -  ~y = u°}, Z) w i th  i n t e r s e c t i o n  m a t r i x  
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Fig .  3 

/ /  ",N i ~ f  \ ////'! 

F i g .  4 

( r ) - l ) (p -2 )  

(~" ....... ~ , . + , )  = ( -  t )  ~- , (~ . . . .  T~ ' . , , )  == (e , , , ,  e , , , . ) ,  

(Y . . . .  Ym', ~ ~l) : - -  (era, e,~.), if m'  =~= m, 

(¥ . . . . .  Ym',n') : O, if in '  - -  I~ I ~ t or sgn (rn' - -  fit) s g n ( n '  - -  n) = - - | .  

= ~, ÷ .. ÷ x~p P a m o r s o v i z a t i o n  of  P0, and u ° a n o n c r i t i c a l  v a l u e  of  P .  C O R O L L A R Y  4. Le t  P0 xl • , 

T h e n  t h e r e  e x i s t s  a d i s t i n g u i s h e d  b a s i s  e,, (m=(m~ . . . . .  rap), i ~ m~ ~ az - -  t , and  t he  o r d e r  i s  l e x i c o g r a -  
phic)  i n  H~_~({P (.v) = u0}, Z) w i th  i n t e r s e c t i o n  m a t r i x  

p - I  

/ 2 ( - - i ) : ' - ' ,  if p - -  i i s  even 
(era, era) = [ O, if p - - i  is odd 

1) " ( ' - ~  ~ ~ < ~ / - ~ , )  (era,'-%,):- ( - -  " F , if m'-~-m, O ~ r n [ - - r n ~ l ,  

( e m ,  e m ' )  = 0 i f  I m~ - m i l  > 1 for  s o m e  i o r  sgu(m{ - m i ) s g n ( m j  - mj)  = - 1 for  s o m e  i ,  j .  

3 .  D y n k i n  D i a g r a m s  

Le t  P0 be an  a n a l y t i c  f u n c t i o n  in  CP wi th  a n  i s o l a t e d  s i n g u l a r i t y  o f  m u l t i p l i c i t y  fl, P a m o r s o v i z a t i o n  
of  P0, and e m ( m  = 1 . . . . .  U) a b a s i s  of v a n i s h i n g  c y c l e s  i n  /?~,_1 ({P (x) -- u°}, Z) . If  p - 1 is e v e n ,  t h e n  

p . 1  

(e,,, era,) -- (e,,,, e,,) and (e,,,, era) = 2 ( - - i )  -~-'. 

F o r  t h e  i n t e r s e c t i o n  m a t r i x  of  the  c y c l e s  e m  we c a n  c o n s t r u c t  a g r a p h  a s  f o l l o w s :  

1) the  n u m b e r  of  v e r t i c e s  o f  t he  g r a p h  i s  e q u a l  to  ~; 
p + l  

2) the  v e r t i c e s  w i th  t he  n u m b e r s  m and m '  a r e  j o i n e d  by  k so l id  e d g e s  i f  (era, e~,) = k ( - - i )  "-T,  and 

P-1  
k do t t ed  e d g e s  i f  (era, e,~,) = k ( - - l )  -~ ' .  

C o n v e r s e l y ,  s u c h  a g r a p h  d e t e r m i n e s  a n  i n t e r s e c t i o n  m a t r i x  of  the  b a s i s  ( e m ) .  We  s h a l l  c a l l  t h i s  
g r a p h  the  D y n k i n  d i a g r a m  of  the  b a s i s  ( em) .  (In c a s e  a l l  the  i n t e r a c t i o n  i n d i c e s  ( e m ,  em, )  f o r  m ~ m '  equa l  

P - t  p - I  

0 o r  ( - - i )  T , the  c o r r e s p o n d i n g  g r a p h  i s  an  o r d i n a r y  D y n k i n  d i a g r a m  w i t h  t he  a s s o c i a t e d  f o r m  ( - - t )  T × 
( e m ,  em, )  / 2  ( see  [7]). 

C o r o l l a r y  4 c a n  now be  s t a t e d  as  fo l lows :  

I a p  . ~= To  the  s i n g u l a r i t y  x~' ~- ... + xp , w h e r e  a~ ~ a2 ~ ... ~ a~ ~ a~+l . . . . .  a~ 2 , t h e r e  c o r r e s -  
ponds  a d i s t i n g u i s h e d  b a s i s  w h o s e  D y n k i n  d i a g r a m  has  t he  f o r m  o f  a p a r a i l e l e p i p e d  c o n s i s t i n g  o f  (a! - 2) 

• • • (ak - 2) k - d i m e n s i o n a l  c u b e s ,  i n  e a c h  of  wh ich  a l l  the  p o s i t i v e  d i a g o n a l s  a r e  d r a w n .  M o r e o v e r ,  t he  d i a -  
gona l  i s  d r a w n  wi th  a do t ted  l ine  o r  a so l id  l i n e ,  d e p e n d i n g  on  w h e t h e r  a n  e v e n  o r  odd n u m b e r  of  c o o r d i n a t e s  
i n c r e a s e s  a s  we  m o v e  a l o n g  th i s  d i a g o n a l .  

E x a m p l e s .  To  the  s i n g u l a r i t y  x ~ + y4 + z 2 c o r r e s p o n d s  the  D y n k i n  d i a g r a m  
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To the s ingular i ty  x ~ + y3 + z s cor responds  the Dynkin d i ag ram 

See a l s o  § 6.  

4.  T h e  M o n o d r o m y  G r o u p  

As in .$1, let P0 be a function in CP with an isolated s ingular i ty  of mult ipl ici ty ~, a v e r -  
sal  deformat ion  of P0, Z its b i furcat ion d i ag ram,  ~ ~ (~', u), and P~ =P(~,.o) --  u. 

Since over  C ~ E  the mapping {x : P~(x) ~ 0} --~ k is a smooth f ibrat ion,  the group ~I(C~\Z) acts  in 
/~p_l({P~.(x)~= 0}, Z). This  r ep resen ta t ion  is called a monodromy,  and its image is the monodromy group of 
the s ingular i ty  of P0 .  

For  a descr ip t ion  of the genera to r s  of ~I(C\E),  we need the concept of  a "s imple  loop." 

Let ~.o= (;Jo, a°) be chosen so that i~ ° ~ Z ,  ~ ' o ~  A (see $1). Then Z °-~ E N ({;~'o} × C~) con-  
s i s t s  o f ~  points ul ,  . . . ,  u~. L e t u m  E Z0 and let urn(s) be a smooth path in Cu, urn(0) = u °, urn(l) = urn, 
Um(S ) ~ Z 0  for s < 1. By a s imple  loop cor responding  to the path urn(s),  we mean a closed path T m E 
~l(Cu\Z0, u°), which is obtained as follows: s ta r t ing  at the point u °, a r r i ve  at the point Um along the path 
urn(s), then go around Um in the posi t ive di rect ion and re tu rn  to u ° along urn(s) (Fig. 5). 

Definition 3. Let (era) be a basis  of vanishing cycles  in H~-I ({Po°',o) (x) ~ uu}, Z) and urn(s) c o r r e -  
sponding paths in Cu. The bas i s  (era) is said to be weakly distinguished if  the s imple  loops that c o r -  
respond to the paths urn(s) generate  the group ~rl(Cu\Z °, u°). 

Remark .  A distinguished bas i s  is obviously weakly dist inguished.  

PROP(~ITION 2. Let (eva) be a weakly distinguished bas i s .  Then the monodromy group of the s ingu-  
lar i ty  of P0 is generated by the ope ra to r s  T m  by the formula  

p (p+l) 

T , ~ ( e ) = e q - ( - - l )  2 (e,e,,~)e,,. (9) 

Proof .  It  can be shown (see [8]) tha~ '.he natural  mapping p : .~ (C~ \ y0, **0) __, ~ (Ct~ \ Z, i o) is an 
ep imorph i sm.  Since the s imple  loops T m  corresponding  to the paths urn(s) genera te  ~I(CuNE °, u°), the 
paths p r m  genera te  7rl(C~,Z , ~t °). The re fo re  the ope ra to r s  T m  corresponding  to these  paths generate  the 
monodromy group.  Formula  (9) is s imply  the P i ca rd -Le f sche t z  formula  (see [5]). 

R e m a r k  1. It follows f rom Proposi t ion  2 that the monodromy group of a s ingular i ty  is de termined by 
the  in tersec t ion  ma t r ix  of a weakly  distinguished bas is •  Thus T h e o r e m  i allows one to compute the mono-  
d romy  group of the s ingular i ty  of P0(x) + Q0(Y) if the monodromy groups of the s ingular i t ies  of P0(x) and 
Q0(Y) a re  known (more p r ec i s e ly ,  specia l  s y s t e m s  of genera to rs  of these  groups) .  

R e m a r k  2. For  each s ingular i ty  of  P0 Milnor defined a P i c a r d - L e f s c h e t z  local monodromy opera to r  
h p  0. In our notation this  is an e lement  of the monodromy group that cor responds  to the path {t.=(i), uOe2~t), 
0 ~ t ~ t} in ~ \ Z .  I f  (e m) is a distinguished bas i s ,  then hP0 = TI . . . .  o T~. 

Sebast iani  and Thorn [4] proved that the ope ra to r  hP0+Q0 of a s ingular i ty  of P0(x) + Q0(Y) can be c o m -  
puted by the formula  h~.+~, ----- h~, ~ hao. 

5 .  C h a n g e  o f  B a s i s  

Let (era) be a bas i s  of vanishing cyc les ,  urn(s) cor responding  paths ,  and T m s imple  loops c o r r e s p o n d -  
ing to the urn(s) .  For  any pa i r  (m ,  m t) we  can const ruct  a new bas i s  of vanishing cyc les  as  fo l lows:  

a) Replace Um,(S) by TT~um. (s) . Moreover ,  according to the P i c a r d - L e f s c h e t z  formula  era, is r e -  

P(P~L) 
p laced  by era, ÷ (--i)  ' (era., e~) era. We denote this operat ion by ~ m ( m ' ) .  
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Fig. 5 

PROPOSITION 4. 

b) Replace um,(S) by rmUm,(S) .  Moreover ,  e m, is replaced by 
p(•*I) 

e~. q- ( - - l )  "~ (era, era,) em (the inverse  P i c a r d - L e f s c h e t z  t r a n s f o r m a -  
tion). Wedenote  this operat ion by f lm(m') .  

PROPOSITION 3. The operat ions  qm(m ' )  and flm(m') send a 
weakly dist inguished bas is  to a weakly  dist inguished bas i s .  

The proof  is t r iv ia l .  

If (err0 is a dist inguished ba s i s ,  we denote by q m  the operat ion 
a m ( m  + 1) with success ive  t ranspos i t ion  of the numbers  m and m + 1, 
and by/3 m the operat ion B m ( m -  1) with succes s ive  t ranspos i t ion  of the 
numbers  m and m - 1. 

The opera t ions  a m  and tim send a distinguished bas i s  to a dist inguished bas i s .  

Remark .  It can be shown that any two distinguished bases  can be sent into each o ther  by a sequence 
of operat ions  a m ,  /~m, and a change of or ientat ion of the cyc les .  

6 .  E x a m p l e s  

Example  1. Let F ( x , y , z )  = x 3 + y 3 + z  2. 
a distinguished bas is  with Dynkin d iag ram 

According to Coro l l a ry  4, to this s ingular i ty  co r responds  

~3 

(the numbers  on the ve r t i c e s  indicate the o rde r  of the e lements  of  the dist inguished bas i s ) .  The sequence 
of opera t ions  a,, I~s, es !-+ - e 3  sends this basis  to a dist inguished bas i s  with Dynkin d i a g r a m  D4: 

2 # 

Example  2. Let F ( x , y , z )  = x 4 + y ~ + z  2, 
distinguished bas i s  with Dynkin d i a g r a m  

The sequence of  opera t ions  

According to Coro l l a ry  4, to this s ingular i ty  co r r e sponds  a 

Z 4 6 

! 3 5 

sends this bas i s  to a distinguished bas i s  with Dynkin d i ag ram Ee: 

t g J 5 6 

c : ~ 14 o o 

According to Coro l l a ry  4, to this s ingular i ty  co r responds  Example  3. Let F ( x , y , z )  = x 5 + y 3 + z  2. 
a dist inguished bas is  with Dynkin d iag ram 

2 4 8 8 

¢ 3 5 7 
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The sequence  o f  opera t ions  

sends this bas i s  to a d is t inguished bas i s  with Dynkin d i a g r a m  Ee: 

I 2 J 5 6 ? 6 

Example  4. Let  F(x, y,  z) = x 3 + y~ + z 3. Fo r  x 3 + y3 + z 2, taking the d is t inguished bas i s  of  D 4 f r o m  
Example  1 and applying C o r o l l a r y  3,  fo r  F(x, y,  z) we obtain a dis t inguished bas i s  with Dynkin d i a g r a m  

2 4 8 ~ 7 • 

The sequence  of  opera t ions  

a 3 (i), a8 (3), a ,  (3), a3 (4), ¢z 4 (1) 

sends this bas i s  to a weak ly  d is t inguished bas i s  with Dynkin d i a g r a m  

Example  5. Let  Fix,  y,  z) = x 4 + y4 + Z2o 
a dis t inguished bas i s  with Dynkin d i a g r a m  

(10) 

Accord ing  to C o r o l l a r y  4, to this s ingu la r i ty  c o r r e s p o n d s  

J 6 9 

P" 1 
f # 7 

The sequence  o f  ope ra t ions  

~ ((~), ~.~ (8), ~o (5), ~5 (t), ae (5), ~ (5), a5 (9) 

sends this bas i s  to a weakly  d is t inguished bas i s  with Dynkin d i a g r a m  

(11) 

Example  6. Let  F(x,  y,  z) = x 6 + )2 + z z. Acco rd ing  to  C o r o l l a r y  4, to  this  s ingu la r i ty  c o r r e s p o n d s  a 
d is t inguished bas i s  with Dynkin d i a g r a m  

2 ~ 6 8 !o 

t j 5 7 9 

The sequence  of  ope ra t ions  

~4 (t), ~e (4), a~ (6), ~t0 (7), as(5), azo(5), cc5 (9), a6(5),  a?(5), c~3(5 ), 
a,(5), ~ (6), e2 I--* - e3 
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sends this basis to a weakly distinguished basis with Dynkin diagram 

o ~ ~ . . . .  

(12) 

Remark.  Let (era) be a basis with Dynkin d iagram (10) (respect ively (11), (12)), where (el, e 2) = - 2. 
Then (e I - e 2 ,  e m) = 0 for all m, and if e 1 is replaced by e I - e2, then the intersect ion matr ix reduces to 
the form E6 • (0) (respect ively,  E7 ®(0), E8 G (0)) , where (0) is the zero form on Z. By using the well-  
known proper t ies  of Ek, it is not difficult to obtain the following asser t ion:  

PROPOSITION 5. The intersect ion matrix of the singulari ty x ~ + y3 + z 3 (respect ively,  x ~ + y4 + z 2, 
x G , y3 + z 2) is negative and singular.  The corresponding bilinear form has corank 2 and splits into the di-  
rect  sum E G $ 02 (respect ively,  E 7 $ 02, E 8 $ 02). (Here 02 denotes the zero form on Z2.) The monodromy 
group contains as a normal  subgroup a free abelian subgroup of rank 12 (respectively,  14, 16) the factor  
group of which is equal to E 6 (respectively,  Ez, Es). 

1. 

2. 

3. 

4. 

5. 
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