Lesson 14. Cauchy-Riemann equations

If f(z) = u(z) + iv(z) is analytic in a domain D, then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \quad \text{in } D.$$

Proof. In $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ we write z = x + iy, $\Delta z = \Delta x + i\Delta y$, and approach z in two different directions, through real and imaginary values $(\Delta z = \Delta x \text{ and } \Delta z = i\Delta y, \text{ respectively. We get } f'(z) =$

$$\lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x},$$

$$\lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y)}{i\Delta y} + i \frac{v(x, y + \Delta y) - v(x, y)}{i\Delta y} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}.$$

Thus $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$. The real and imaginary parts of this equation should be equal:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}.$$

These are exactly the Cauchy-Riemann equations.

Theorem. If u and v have continuous partial derivatives and satisfy the Cauchy-Riemann equations in a domain D, then f = u + iv is analytic in D.

Differentiating the Cauchy-Riemann equations with respect x and y, we get

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 u}{\partial y^2}. \text{ Thus } \nabla^2 u = 0.$$

Similarly, $\nabla^2 v = 0$, i.e., u and v are **harmonic**.

If u is harmonic and v is chosen so that u+iv is analytic, then v is called a **harmonic conjugate** of u.

Example. Let
$$u=e^x\cos y+xy$$
. Then $\nabla^2 u=0$. To find v , note that $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=e^x\cos y+y$. Thus $v=e^x\sin y+\frac{1}{2}y^2+h(x)$. Now $\frac{\partial v}{\partial x}=e^x\sin y+h'(x)=-\frac{\partial u}{\partial y}=e^x\sin y-x$. Thus $h'(x)=-x$, $h(x)=-\frac{1}{2}x^2+C$, and we get $v=e^x\sin y+\frac{1}{2}(y^2-x^2)+C$.

Example. Exponential function $e^z = e^x(\cos y + i \sin y)$ is analytic. (More about it next time.)

Cauchy-Riemann equations in polar coordinates.

 $x = r \cos \theta, \ y = r \sin \theta.$

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta.$$

$$\frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta} = -\frac{\partial v}{\partial x} r \sin \theta + \frac{\partial v}{\partial y} r \cos \theta$$
$$= r \left(\frac{\partial u}{\partial y} \sin \theta + \frac{\partial u}{\partial x} \cos \theta \right) = r \frac{\partial u}{\partial r}.$$

So
$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
. Similarly, $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.

This implies that the Cauchy-Riemann equations are invariant under rotation and dilation.

Consequences of the Cauchy-Riemann equations.

- 1. If f is analytic and pure real (or pure imaginary) then $f \equiv \text{const.}$ More generally, if $\arg f \equiv \text{const.}$ then $f \equiv \text{const.}$
- **2.** If f is analytic and $|f(z)| \equiv \text{const}$ then $f \equiv \text{const}$. **Proof.** If $f(z) \equiv 0$ there is nothing to prove. Suppose that $u^2 + v^2 \equiv \text{const} > 0$. Then $2uu_x + 2vv_x = 0$ and $2uu_y + 2vv_y = 0$, thus $uu_x vu_y = 0$ and $uu_y + vu_x = 0$. This implies $u^2u_x + v^2u_x = 0$, hence $u_x = 0$. Similarly, $u_y = 0$. Thus $u \equiv \text{const}$, hence $f \equiv \text{const}$.