Lesson 19. Cauchy's theorem

A **contour** is a path in \mathbb{C} (piecewise smooth, oriented).

A **closed** contour is a contour with its ending point equal its starting point.

A **simple** contour is a path that does not intersect itself.

A **simple closed** contour is a closed contour that does not intersect itself at any point other than its starting and ending points.

A **domain** is a connected open subset of \mathbb{C} .

A domain D is **simply connected** (has no holes) if its complement $\mathbb{C} \setminus D$ is connected. Equivalently, D is simply connected if, for any simple closed contour C in D, the domain bounded by C is contained in D.

Cauchy's theorem. If f(z) is analytic in a simply connected domain D then $\int f(z) \, \mathrm{d}z$ is independent of path in D, i.e., $\int_C f(z) \, \mathrm{d}z = 0$ for any closed contour C contained in D.

To see this for a simple closed contour C bounding a domain D_0 contained in D, recall that, if f = u + iv,

$$\int_C f(z) dz = \int_C (u dx - v dy) + i \int_C (u dy + v dx).$$

Applying Green's theorem (assuming that C is oriented as the boundary of D_0) we get

$$\int_C u \, \mathrm{d}x - v \, \mathrm{d}y = -\iint_{D_0} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y = 0,$$

$$\int_C u \, \mathrm{d}y + v \, \mathrm{d}x = \iint_{D_0} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y = 0.$$

Both integrals in the right-hand side are 0 by Cauchy-Riemann equations, thus $\int_C f(z) \, \mathrm{d}z = 0$.

If a closed contour contains finitely many self-intersection points, we can partition it into simple closed contours, thus Cauchy's theorem still holds.

Example. Although we cannot compute $\oint_C e^{z^4} dz$ by calculus methods, we know that it is 0 for any closed contour in $\mathbb C$.

If f has an antiderivative F in D then $\int f(z) \, \mathrm{d}z = F(z(b)) - F(z(a))$ is independent of path in D. Conversely, Cauchy's theorem implies that any function f(z) analytic in a simply connected domain D has an antiderivative $F(z) = \int_{z_0}^z f(s) \, \mathrm{d}s$, which is analytic in D.

Here $\int_{z_0}^z$ means an integral over any path in D from a fixed point $z_0 \in D$ to an arbitrary point $z \in D$.

Example. Let $f(z) = \frac{1}{z^2 + 1}$. Then f(z) is analytic everywhere except $z=\pm i$. Thus $\int f(z)\,\mathrm{d}z$ is independent of path in any domain D that does not contain a loop around one of these points. From calculus we know that $F(x) = \arctan x$ is antiderivative of f(x) for real x. In the complex domain, $\arctan z = \frac{i}{2} \ln \frac{i+z}{i-z}$. For the real z=x, this becomes $\frac{i}{2} \ln \frac{i+x}{i-x}$. One can check that this is equal to $\arctan x$ (in particular, this is a real number) if the principal value $\operatorname{Ln} z$ of $\operatorname{In} z$ is taken (note that $\frac{i+x}{i-x} = \frac{1-x^2-2ix}{x^2+1}$ does not cross the negative x-axis). Thus the antiderivative of f(z) in D is F(z) + c where F(z) is a single valued branch of the multi-valued function arctan z in D.

Suppose that f(z) is analytic in a domain D which is not simply connected. Let C_1 and C_2 be two non-intersecting simple closed contours in D, oriented counterclockwise, such that C_2 is inside C_1 and the region D_0 between C_1 and C_2 is contained in D. Then $C_1 - C_2$ is the boundary of D_0 . Applying Green's theorem,

$$\int_{C_1} f(z) \, \mathrm{d}z = \int_{C_2} f(z) \, \mathrm{d}z.$$

Example. Let C be a closed contour going once counterclockwise around each of the two points i and -i. Let C_1 and C_2 be small circles centered at i and -i, respectively, and oriented counterclockwise. Then,

$$\int_{C} \frac{dz}{z^{2} + 1} = \int_{C} \frac{dz}{(z + i)(z - i)} = \frac{i}{2} \int_{C} \frac{dz}{z + i} - \frac{i}{2} \int_{C} \frac{dz}{z - i}$$
$$= \frac{i}{2} \int_{C_{2}} \frac{dz}{z + i} - \frac{i}{2} \int_{C_{1}} \frac{dz}{z - i} = \pi - \pi = 0.$$

Example. Evaluate $\int_C \frac{(z+4)(z-5)}{z(z-1)(z+2)(z-3)} \, dz$ where C is the circle of radius 4 centered at 0. **Hint.** Do not use partial fractions!

This function is analytic **outside** C. Thus the integral is the same as over a circle of an arbitrary large radius R centered at 0. But for large R, the length of the circle grows as R, and the absolute value of the function decreases as $1/R^2$. Thus the integral is bounded by a constant divided by R. Hence the answer is 0.

Theorem. If P(z) and Q(z) are two polynomials such that all zeros of Q are inside the disk D of radius r, and $\deg Q \geq \deg P + 2$ then $\int_C \frac{P(z)}{Q(z)} \, \mathrm{d}z = 0$ for any closed contour C outside D.