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S U M M A R Y  
I n  order to understand the underlying physics of distributed seismicity better we have 
considered a 2-D array of slider blocks connected by springs and interacting via static 
friction with a surface. There is no driving plate in this model. The time evolution of the 
system is found from numerical simulations in a cellular automata formulation. Energy 
is conserved and  is the single control parameter. The distribution of energies in the 
springs is found to obey a modified Maxwell-Boltzmann statistics. It is found that the 
number-size statistics of clusters of unstable sliding blocks is identical to those in 
percolation clusters in the site-to-site percolation model. There is a well-defined critical 
point when unstable blocks become connected across the array. It has been previously 
suggested that distributed seismicity in a seismic zone is the percolation backbone of a 
3-D percolation cluster. The fact that low-level seismicity satisfies the Gutenberg- 
Richter frequency-magnitude relation and is nearly constant in time also suggests that 
this background seismicity is similar to thermally induced noise. 

Key words: earthquakes, geostatistics, seismic modelling, seismology, statistical 
methods. 

INTRODUCTION 

Bak, Tang & Wiesenfeld (1988) introduced the concept of self- 
organized criticality in terms of a cellular-automaton, sandpile 
model. A square grid of boxes was considered and at each time 
step a particle was randomly dropped into a box. When a box 
accumulated four particles they were redistributed to the four 
adjacent boxes, or in the case of edge boxes lost from the 
grid. Redistributions could lead to further instabilities with, at 
each time step, the possibility of avalanches of particles being 
lost from the grid. An avalanche is defined as the number of 
particles lost from the grid in a time step. Extensive numerical 
studies of this cellular-automata model were carried out by 
Kadanoff et al. (1989) and the non-cumulative frequency-size 
distribution of avalanches was found to have a fractal distri- 
bution with a slope near unity. The model behaviour was 
considered as an analogue to actual sandpiles and a variety of 
experiments were carried out on the avalanche statistics of 
granular piles. In some cases reasonably good fractal statistics 
were found and in other cases they were not (Nagel 1992). 

A system is said to be in a state of self-organized criticality 
if when perturbed it returns to a state of marginal stability. 
The input is steady, but the output is a series of 'avalanches' 
that obey fractal statistics. The system oscillates about the 
point of marginal stability. Distributed seismicity on the 

margin between two tectonic plates (e.g. California) is taken 
as an example of self-organized criticality (Bak & Tang 1989). 
The relative motion of the plates provides a continuous input 
of energy; this stored elastic energy is lost in earthquakes 
that have a universal power-law frequency-size distribution 
(Turcotte 1992). 

Burridge & Knopoff (1967) introduced the coupled slider- 
block model as an analogue for earthquakes. The slider blocks 
are pulled over a surface by springs attached to a constant- 
velocity driver plate and are also attached to each other by 
springs. If the static friction is greater than the slipping 
(dynamic) friction, stick-slip behaviour is found. Huang & 
Turcotte (1990) showed that two slider blocks exhibit classical 
low-dimensional chaotic behaviour as long as there is any 
asymmetry in the system. Carlson & Langer (1989) considered 
large numbers of slider blocks and found that the non- 
cumulative frequency-size statistics of smaller slip events are 
fractal with a slope near unity. Thus multiple slider-block 
models are also considered to be an example of self-organized 
criticality. A wider variety of slider-block models have been 
proposed and studied; these have been reviewed by Carlson, 
Langer & Shaw (1994). 

In the standard model, blocks of mass m are pulled over a 
surface with a driver plate moving at a constant velocity V .  The 
blocks are connected to the driver plate by driver springs, 
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spring constant kd, and to each other by connector springs, 
spring constant k,. The blocks have a frictional interaction 
with the surface, and the simplest friction model introduces 
a static (n=O) friction force F,,,,,, and a dynamic (lvl > 0) 
friction force Fdynamlc. One can see that these friction 
coefficients introduce a strong non-linearity into the model. If 
Fstatlc > Fdyndmlc, stick-slip behaviour is observed. 

Large slip events in multiple slider-block models require the 
simultaneous solution of coupled equations of motion for all 
the moving blocks. Solutions are greatly simplified if only one 
block is allowed to slip at a time, that is the system is treated 
as a cellular automaton. Results obtained using the cellular- 
automaton approach differ little from those that consider the 
simultaneous slip of multiple blocks. Huang, Narkounskaia & 
Turcotte (1992) showed that the applicable equations could be 
rescaled to eliminate the dynamic friction and that generalized 
results could be obtained that included conservation of energy, 
that is zero dynamic friction. Rundle et al. (1995) found that the 
block energy distribution is a generalized Maxwell-Boltzmann 
(exponential) distribution in the limit where the model 
approaches the mean field with small but non-zero fluctuations. 
This exponential distribution of energy is still associated with 
power-law frequency-size statistics for slip events. 

There are many similarities between the behaviour of slider- 
block models and distributed seismicity (Main 1996). One of 
the most interesting is the universal applicability of the 
Gutenberg-Richter frequency-magnitude relation 

log N =a- b M ,  (1) 

where N is the number of earthquakes in a specified time 
interval and region with magnitude greater than M and the b 
value is nearly constant (typically in the range b = 0.9 f 0.2). It 
is easily shown that the b value is simply related to the fractal 
dimension D, N - r P D ,  with r the earthquake rupture length, 
taking D=2b (Turcotte 1992). The a value is a measure of the 
intensity of regional seismicity and has considerable variability. 

The objective of this paper is to develop a better under- 
standing of the statistical mechanics of stick-slip systems using 
a modified slider-block model. In order to do this we consider a 
2-D array of slider blocks which are connected to each other by 
springs and which interact frictionally with a surface; no driver 
plate is included. We assume that the dynamic friction is zero 
so that energy is conserved. The initial distribution of energies 
in the springs is prescribed and the ratio of the mean energy per 

spring to the prescribed static friction is the only parameter in 
the problem. For sufficiently high energies most of the blocks 
are slipping; for low energies most of the blocks are ‘stuck’. Our 
objective is to study the statistical distribution of energies in 
the springs and the statistical distribution of moving patches. 
Although our approach is highly idealized, we believe that it 
contributes to a basic understanding of distributed seismicity. 

It is appropriate to note that the statistical mechanics of 
thermodynamic systems such as an ideal gas are also highly 
idealized and energy conserving. The Maxwell-Boltzmann 
distribution of velocities is a universal output. This statistical 
mechanics approach has been extended to a wide variety of 
irreversible processes with energy dissipation. An example 
would be the laminar viscous flow of an ideal gas through 
a pipe. The energy input is the pressure gradient and the 
energy loss is the frictional heating of the gas. Nevertheless, 
despite the energy dissipation, the molecular velocities have 
a Maxwell-Boltzmann distribution to a good approximation 
(Chapman & Cowling 1960). We suggest that our simple model 
(as well as related simple models such as site percolation) 
is related to distributed seismicity in much the same way 
that viscous flows are related to ideal thermodynamic 
behaviour. 

MODEL 

In this paper we consider a 2-D square array of slider blocks. 
Each block of mass rn is connected to its four neighbours 
with springs (spring constant k,) and is confined to move in the 
x-direction. The model is illustrated in Fig. 1. We assume zero 
dynamic friction and prescribe the static friction FStstattc between 
a block and the surface over which it is sliding. The initial total 
energy in the system is also prescribed. Because the dynamic 
friction is zero, the total energy in the system is preserved. 
Some blocks are unstable at a given time and are free to 
slip; these are considered to be equivalent to active faults. 
At this time other faults are stable and do not slip; these are 
considered to be equivalent to inactive faults. 

We consider square arrays of slider blocks and a particular 
slider block is designated by the subscript i (position in the 
x-direction) a n d j  (position in the y-direction). The net force on 
block ( i , j ) ,  is given by 

F,J=kc(xfJ-l+xlJ+l +x,-1,+x,,1,,--4x IJ ) 3 (2) 

Figure 1. Illustration of the slider-block model. A square array of blocks of mass m are connected to adjacent blocks with either leaf or coil springs 
with spring constants k. The blocks are free to slip only in the x-direction and the displacement of block ( i , j )  is xij.  
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where xiJ is the displacement of block ( i , j )  in the x-direction 
from the initial undisturbed position. A block is unstable if 
FiJ > Fstatic and is stable if F,j < F,,,,,,. 

In order to  simulate earthquakes we assume only one block 
is slipping at a given time step. Sequential sweeps through the 
lattice are carried out. The results given in this paper utilize a 
‘checker-board’ algorithm: during one half of a sweep we check 
the ‘black sites’ on the checker-board and then during the 
second half we check the ‘white sites’. At a given time step 
the net force on the chosen block ( i , j ) ,  FiJ is determined 
from (2). If the block is stable (F,J < Fstatic) it does not 
move; if the block is unstable (Fij > F,,,,,,) it is allowed to slip. 
The motion of the single slipping block during an update is 
given by 

(3) 

Noting that the four adjacent blocks remain fixed, the slipping 
block executes half of a harmonic cycle and sticks when the 
velocity is again zero. The change in the position of the block 
( i , j ) ,  AxiJ,  during a time step is related to  the initial net force 
on the block F,jo by 

F, j o  AX --, 
I J -  2kc (4) 

and the block considered is given this displacement. 
At t = O  the blocks are given a random distribution of 

displacements; the resulting energy in spring s is E,. The 
mean energy in the springs at t=O is (Es) .  Since no energy 
is dissipated by dynamic friction (the dynamic friction is 
taken to be zero), energy is conserved and (E,) is a constant, 
independent of time. When a block slips the total energy in 
the four attached springs is the same after the slip event as  
it was before the slip event. It is convenient to introduce the 
non-dimensional energy parameter p :  

(5 )  

This is the only parameter in the problem. If p is large very few 
of the blocks will stick; if p is small a large fraction of the 
blocks will stick. We further introduce the non-dimensional 
variables 

The force balance (2) becomes 
- 

(7) F..-x I J -  i j - I  $ .x i j+l fx j - l j fx i+1j-44xi j ,  

and the stability condition for a block is Fij  < 1. The 
displacement of a block during a slip event from (4) becomes 

In  order to determine how this system behaves it is necessary to 
carry out a series of numerical simulations. 

SIMULATIONS 

We have carried out a series of simulations on square arrays 
of up to  3000x3000 blocks using a Pentium 120 machine 
running Linux 0s. Springs on the boundaries of the array are 
attached to  fixed walls. Various values of the energy parameter 

p have been considered. In each simulation the fraction of 
blocks slipping is determined as a function of time. The distri- 
bution of energies in the springs was also determined at various 
times. Various initial distributions of block displacements were 
considered. The governing equations (7) and (8), along with 
the stability criteria, were then used with the checker-board 
algorithm to study the evolution of the system. The system 
was allowed to evolve until the statistical distribution of 
energies reached a steady state. The required time was less 
than 20 sweeps except for initial energies p smaller than 
0.09. Below that value the system evolved very slowly. For 
all initial energies above p=O.O9 excellent agreement of the 
final distribution of energies in the springs with a modified 
Maxwell-Boltzmann distribution was found. 

The modified Maxwell-Boltzmann probability distribution 
function for spring energies in one dimension is given by 

(9) 

where p(Es)  is the probability density. A typical distribution 
of non-dimensional spring energies for a simulation with p = 1 
is given in Fig. 2. The results are seen to be in in agreement 
with the predicted value from (9). The system evolved to this 
equilibrium distribution independent of the initial distribution 
of energies chosen. 

In the equilibrium state the fraction of blocks sliding is only 
a function of the non-dimensional energy parameter p .  This 
dependence is shown in Fig. 3. We will now relate the fraction 
of blocks sliding to the distribution of spring energies given 
in (9). The corresponding probability distribution function for 
the forces on the springs p(FJ is 

This is a Gaussian distribution and is equivalent to the 
Maxwell-Boltzmann distribution of molecular velocities in 
one dimension. However, the slip condition for a block is 
determined by the statistical distribution of forces on the 
blocks. From (7) it is seen that the random force on a block 
is the sum of four random forces on the neighbouring 
springs, and the Gaussian distribution of forces on the blocks 
p(Fij)  is 

A block can slip if lE,l > 1. Using (11) the probability that a 
block will be slipping, P,, is 

rw \ 3 2 1 ~  
- dFij = erfc (&) , (12) 

where erfc is the tabulated complementary error function. This 
result is compared with the numerical experiments in Fig. 3 for 
various values of the non-dimensional energy p. Excellent 
agreement is found; it should be noted once again that the 
solid line is a theoretical prediction rather than a n  empirical 
correlation. 
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Figure 2. The probability distribution p(E,) of the non-dimensional energies E, in the springs of a multiple slider-block model. The 
crosses are the result for a 2000 x 2000 array of slider blocks with p =  1. The solid line is the modified Maxwell-Boltzmann distribution of 
energies given in (9). 

As the fraction of slipping blocks increases with increasing 
values of p, a continuous path of slipping blocks across the 2-D 
array is eventually established. In terms of fracture mechanics 
this path is analogous to a throughgoing fracture. As the stress 
on a brittle material is increased the number of microcracks 
increases, and eventually the microcracks coalesce to form a 
throughgoing rupture. In terms of regional seismicity we con- 
sider a continuous path of slipping blocks to be analogous to 
the tectonic disruption of the Earth’s crust at a plate boundary. 
The creation of a continuous path of slipping blocks also 
suggests a close analogy between our slider-block problem and 
the site-percolation problem. 

SITE-PERCOLATION MODEL 

The site-percolation model has been studied extensively in 
the physics literature as a simple example of a phase change 
(Stauffer & Aharony 1992). In the 2-D site-percolation 
problem a square matrix of boxes is considered, where each 
box is either permeable or impermeable. The probability that 
a box is permeable, p ,  is specified and is used to determine 
whether a specific box is permeable. The question is whether 
the square array of boxes is permeable or impermeable (the 
array is considered to be permeable if there is a continuous 
path of permeable boxes from one side of the array to the 
other). This is clearly a statistical problem because the actual 
distribution of permeable and impermeable boxes is random. 
For a specified value of the microscopic probability, p ,  there is 
a macroscopic probability, P, that the n x n array of boxes 
is permeable. For large arrays it is found that P is very small 

if 0 < p < P O ,  where po is the critical probability for the 
percolation threshold and P i s  near unity forpo < p < 1. There 
is thus a critical value of p ,  po, for the onset of flow through the 
array of boxes. For a 2-D n x n array with large n, numerical 
simulations find that the critical permeability is po = 0.59275 
(Stauffer & Aharony 1992). Those boxes that are part of 
the permeable cluster that crosses the array are known as the 
percolation backbone. 

The percolation threshold in the site-percolation model is 
known to be a classic example of a critical point (Stauffer & 
Aharony 1992). Power-law scalings are found to be valid in the 
vicinity of this critical point. One example is the number-size 
distribution of clusters at the critical point. The number of 
clusters N, with area M, is given in Fig. 4 for a 3000 x 3000 
box array. Good agreement with the fractal relation 

is obtained taking D =  1.0. 
We now make a direct comparison between our slider-block 

model and the site-percolation model. Just as the critical 
probability po in the site-percolation model corresponds to a 
permeable path across the array, we can obtain a critical value 
of the non-dimensional energy p, po,  for which there is a 
continuous path of slipping blocks across the slider-block array. 
We further suggest that this is also a critical point. We find that a 
path of slipping blocks across the slider-block array is obtained 
when the non-dimensional energy parameter po = 0.213. We 
take this to be a critical value of the energy parameter. The 
corresponding fraction of slipping blocks (from Fig. 3) is 
P, =0.583. This value can be compared with the critical point of 
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Figure 3. The fraction of the blocks that are slipping Ps(p)  is given as a function of the mean energy p. The crosses are results for a 1000 x 1000 array 
of slider blocks and the solid line is the prediction from (12) based on the Gaussian distribution of forces given in (11). 

the site-percolation model, where the critical probability is 
po =0.59275. The close agreement between critical probability 
for the site-percolation model and the critical fraction of slip- 
ping blocks suggests a close analogy between the two problems. 

A typical slider-block configuration with a continuous path of 
slipping blocks across the array is shown in Fig. 5. This is 
essentially identical to the distribution of permeable boxes in 
the site-percolation model at the critical point. 
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Figure 4. Number of clusters N, of size M,, as a function of M,?. The solid line is the distribution of clusters for the site percolation model for a 
3000 x 3000 array with the critical site-percolation probability p=0.5927. The dashed line is the distribution of sliding clusters of blocks on our 
3000 x 3000 array of slider blocks at the critical point p=O.213. 
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We have also determined the number-size distribution of 
slipping clusters of blocks at the critical non-dimensional 
energy po=0.213. The result is given in Fig. 4 and is seen to 
be virtually indistinguishable from the cluster distribution 
for the site-percolation problem at the critical probability 
po = 0.59275. Our results strongly suggest that the occurrence 
of a continuous path of slipping blocks is a critical point for 
this type of slider-block model. 

DISCUSSION 

We have obtained several interesting results. The first is 
the remarkable similarity between the slider-block model and 
the site percolation model. This suggests that both are part of 
a universality class (Bruce & Wallace 1989) that may underlie a 
variety of practical applications. The second interesting result is 
the evolution of the model to a modified Maxwell-Boltzmann 
distribution of energies. The results become independent of 
initial conditions and the single control parameter is the non- 
dimensional energy of the system p. This control parameter 
can be adjusted so that critical-point behaviour is obtained. 
The critical point corresponds to a continuous path of slipping 
blocks across the array. This can be considered to be analogous 
to the nucleation and propagation of a rupture in a brittle 
material. Hirata, Satoh & Ito (1987) studied the fracture of a 
pristine granite block under an applied stress. The stress on the 
block is analogous to the energy in our slider-block problem. 
Hirata et al. (1987) found that the initial microfractures in 
the granite were uncorrelated but as the number increased and 
a throughgoing rupture ensued, the cracks obeyed fractal 
statistics. The initiation of a throughgoing rupture in granite 
appears to be quite analogous to the throughgoing path of 
slipping blocks in our slider-block model. 

Figure 5. Illustration of a typical configuration of sliding blocks at 
the critical point p=0.213 for a 6 4 x  64 array. White blocks are stuck 
and black blocks are sliding. A continuous path of sliding blocks across 
the array is present. 
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Figure 6. The cumulative number of earthquakes N with magnitude 
greater than ML for each year between 1980 and 1994 is given as a 
function of M,; the region considered is southern California. The 
straight-line correlation is the Gutenberg-Richter relation (1) with 
a=4.3 and b= 1.06. 
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There are also indications of strong similarities between our 
slider-block model and distributed seismicity. The tectonic 
disruption at a plate boundary is similar to the path of slipping 
blocks in our model at the critical point. Observational con- 
firmation of this comes from the studies of earthquake epi- 
centres by Robertson eta[ .  (1995). These authors showed for a 
series of aftershock sequences (and for the distribution of 
earthquakes in the Parkfield section of the San Andreas fault) 
that the spatial distribution is fractal. The fractal dimensions 
were near D=2 even though the array of earthquakes is not 
planar. The fractal dimension of the percolation backbone of a 
3-D site-percolation model is also near two. This led Robertson 
et al. (1995) to suggest that distributed seismicity took the form 
of a percolation backbone of a 3-D percolating cluster, in 
accord with our results. 

Further support for this statistical physics approach to 
seismicity comes from the frequency-magnitude distribution 
of earthquakes in southern California. The cumulative number 
of earthquakes N with magnitude greater than M L  for each 
year between 1980 and 1994 is given as a function of M /  in 
Fig. 6 (Newman, Turcotte & Gabrielov 1995). An excellent 
correlation with the Guttenberg-Richter relation (1) is 
obtained taking a=4.3 and b= 1.06. It is seen that the intensity 
of seismicity, the a value, changes little from year to year. This 
suggests stationarity (Main 1996). The major deviations in 
1987, 1993 and 1994 can be attributed to the aftershocks of the 
Whittier Narrows, Landers and Northridge earthquakes, 
respectively. The constancy of the low-level seismicity in time is 
remarkable considering the extent of the spatial variability. 
Again this is suggestive of a system which is residing at or near 
a critical point or a point of marginal stability (Carlson & 
Langer 1989). 

The applicability of the model to distributed seismicity can 
certainly be questioned. The model conserves energy whereas 
earthquakes are dissipative. During an earthquake energy is 
lost both to frictional heating and in radiated seismic energy. 
The source of energy is the movement of the tectonic plates. 
Nevertheless, the similarities of the statistical behaviour of 
seismicity and the model behaviour, and the similarities 
between our model and the site-percolation model provide 
evidence for a universality to both the model and the natural 
phenomena. 
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