

Polar Curves and Intersection Matrices of Singularities

A.M. Gabrielov

Institute of Physics of the Earth, 10 Bolshaya Gruzinskaya, Moscow D 242-USSR

This paper presents formulas connecting an intersection matrix of an isolated singularity $f: \mathbb{C}^n \rightarrow \mathbb{C}$ with an intersection matrix of $f + z^2$ or $f|_{z=0}$ and the simplest invariants of a polar curve of f related to z , z being a linear function.

1. Polar curves

Here we give some basic notations and well-known statements concerning polar curves (see [1]).

Let f be a germ of an analytic function with an isolated singularity at $0 \in \mathbb{C}^n$, $df(0) = 0$. Let $z: \mathbb{C}^n \rightarrow \mathbb{C}$ be a linear function.

Definition. A polar curve of f related to z is the set $\Gamma_z(f)$ of critical points of mapping $(z, f): \mathbb{C}^n \rightarrow \mathbb{C}^2$.

One can easily verify that $\Gamma_z(f)$ is really a curve, i.e. $\dim_{\mathbb{C}} \Gamma_z(f) = 1$.

Let $\Gamma_z(f) = \bigcup_i \Gamma_i$ be a decomposition of $\Gamma_z(f)$ into irreducible components.

Let μ_i be the number of critical points (with multiplicities) of $f - \varepsilon z$, $\varepsilon \neq 0$, belonging to Γ_i . The Milnor number $\mu(f)$ of f is obviously equal to $\sum_i \mu_i$.

If $\Gamma_i \not\subset \{z = 0\}$ then $f|_{\Gamma_i} \not\equiv 0$. Let $a_i z^{\alpha_i}$ be the first term of the Puiseux expansion of $f|_{\Gamma_i}$ (more precisely that of a curve Σ_i , which is the image of Γ_i under the mapping $(z, f): \mathbb{C}^n \rightarrow \mathbb{C}^2$). One can easily show that $\alpha_i > 1$.

If $\Gamma_i \subset \{z = 0\}$ ($f|_{z=0}$ having a non-isolated singularity) then $f|_{\Gamma_i} \equiv 0$. Set $\alpha_i = 1$ in this case. Let v_i be the number of critical points (with multiplicities) of $f|_{z=\varepsilon}$, $\varepsilon \neq 0$, belonging to Γ_i . If $f|_{z=0}$ has an isolated singularity then its Milnor number $\mu(f|_{z=0})$ is equal to $\sum_i v_i$.

We have a following simple assertion.

Proposition 1. *If $\alpha_i > 1$ then $\mu_i = v_i(\alpha_i - 1)$.*

Corollary. If $a_i \neq -1$ for $\alpha_i = 2$ then the Milnor number of $f + z^2$ is equal to $\sum_{i: \alpha_i < 2} \mu_i + \sum_{i: \alpha_i \geq 2} v_i$.

In particular, $\mu(f + z^2) \leq \mu(f|_{z=0})$ and equality is achieved iff $\alpha_i \geq 2$ for all i .

Proposition 2. If z is generic and $f \in \mathfrak{m}^k$ then $\alpha_i \geq k$ for all i .

2. Results

Proposition 3. Let $F_\varepsilon = f + (z - \varepsilon)^2$ be a small deformation of $f + z^2$. Critical values of F_ε at its critical points belonging to Γ_i and tending to 0 as $\varepsilon \rightarrow 0$ are as follows:

$$F_\varepsilon = a_i \varepsilon^{\alpha_i} + o(\varepsilon^{\alpha_i}) \quad \text{if } \alpha_i > 2,$$

$$F_\varepsilon = \varepsilon^2 a_i / (a_i + 1) + o(\varepsilon^2) \quad \text{if } \alpha_i = 2$$

(we suppose that $a_i \neq -1$ for $\alpha_i = 2$),

$$F_\varepsilon = \varepsilon^2 + o(\varepsilon^2) \quad \text{if } \alpha_i < 2.$$

The proof consists in a direct calculation of the asymptotics of solutions of the equation

$$(F_\varepsilon)_z|_{\Gamma_i} = a_i \alpha_i z^{\alpha_i - 1} + 2(z - \varepsilon) + O(z^{\alpha_i - 1}) = 0$$

as $\varepsilon \rightarrow 0$ and substitution of these asymptotics into $F_\varepsilon|_{\Gamma_i}$.

Let A be the set of all the values α_i . According to Proposition 3 we can choose for a small $\varepsilon \neq 0$ positive numbers r'_α and r''_α ($\alpha \in A$, $\alpha \geq 2$) so that for each $\alpha \in A$, $\alpha > 2$ (resp. $\alpha \leq 2$) all the critical values of F_ε at its critical points belonging to Γ_i with $\alpha_i = \alpha$ contain in a ring $\{u: r'_\alpha < |u| < r''_\alpha\}$ (resp. $\{u: r'_2 < |u| < r''_2\}$) and $r''_\alpha < r'_\beta$ for $\alpha > \beta$.

Let $\sigma(r)$ be a continuous monotonous non-increasing function defined for $r \geq 0$, $\sigma(r) = \alpha - 1$ for $r'_\alpha \leq r \leq r''_\alpha$.

Set $V_m = \{u: \arg u + 2\pi\sigma(|u|) \geq \pi(2m-1)\}$ where $-\pi \leq \arg u \leq \pi$, $m = 0, 1, 2, \dots$.

Proposition 4. Let the following condition hold:

$$(*) \quad (-a_i)^{q_i} \notin \mathbb{R}_+ \quad \text{for } \alpha_i = p_i/q_i, (p_i, q_i) = 1.$$

Then for a small $\varepsilon \in \mathbb{R}_+$ critical values of F_ε don't contain neither in \mathbb{R}_- nor in boundaries of all V_m .

The proof is deduced easily from Proposition 3.

Let us choose a system of paths between critical values of F_ε and its non-critical value 0, defining a distinguished basis of vanishing cycles for $f + z^2$ (i.e. the paths are not self-intersecting and different paths intersect only at 0, see [2]). If F_ε is not a Morse function, we replace it by a close Morse function. Suppose that our system of paths satisfies the following condition:

(V) all the paths intersect \mathbb{R}_- only at 0; all the paths drawn from critical values belonging to V_m , contain in V_m .

The order of such a system of paths is defined by decreasing of $\arg u$, u being a point of intersection of path with a small circle centered at 0.

Proposition 5. *Let a system of paths consist of straight segments between critical values of F_ε and 0. Then it satisfies the condition (V).*

Theorem 1. *Let $\{e_j\}$ be a distinguished basis of vanishing cycles for $f + z^2$ defined by a system of paths satisfying the condition (V).*

a) *There exists a distinguished basis $\{e_j^m\}$ ($m = 1, 2, \dots$) for f with the lexicographic order of (m, j) and with a following intersection matrix:*

$$(e_j^m, e_{j'}^m) = (e_j, e_{j'}),$$

$$(e_j^m, e_{j'}^{m'}) = (m' - m)^{n-1} \quad \text{for } |m' - m| = 1,$$

$$(e_j^m, e_{j'}^{m'}) = (-1)^n (e_j, e_{j'}) \quad \text{for } |m' - m| = 1, (m' - m)(j' - j) < 0,$$

$$(e_j^m, e_{j'}^{m'}) = 0 \quad \text{for } |m' - m| > 1 \text{ or } (m' - m)(j' - j) > 0.$$

Here a pair (m, j) is admissible iff a cycle e_j vanishes along a path containing in V_m .

b) $e_j^m = h_* e_j^{m-1}$ for $m > 0$ where h_* is a monodromy operator of f .

c) For a system of paths from the proposition 5 the condition on the admissible pairs (m, j) can be reformulated as follows: the first μ_i pairs from each set of pairs (m, j) with a cycle e_j vanishing in a point belonging to Γ_i are admissible.

The proof of the theorem will be given in n° 4.

Let now $f|_{z=0}$ have an isolated singularity. Let $G_\varepsilon = f|_{z=\varepsilon}$ be a small deformation of $f|_{z=0}$. Critical values of G_ε at its critical points belonging to Γ_i are $a_i \varepsilon^{\alpha_i} + O(\varepsilon^{\alpha_i})$ as $\varepsilon \rightarrow 0$. Consequently we can choose positive numbers r'_α and r''_α for all $\alpha \in A$ so that all the critical values of G_ε at its critical points belonging to Γ_i with $\alpha_i = \alpha$ contain in a ring $\{u: r'_\alpha < |u| < r''_\alpha\}$ and $r''_\alpha < r'_\beta$ for $\alpha > \beta$. Let us define a function $\sigma(r)$, sets V_m and a condition (V) on a system of paths between critical values of G_ε and its non-critical value 0 as it was defined for F_ε with the only difference that all $\alpha \in A$ are considered, not only $\alpha \geq 2$.

Let $\{h'_j\}$ be a distinguished basis for $f|_{z=0}$ defined by a system of paths satisfying the condition (V). Critical values of $G_\varepsilon + z^2$ being the same as those of G_ε , such a system defines also a distinguished basis $\{h_j\}$ for $f|_{z=0} + z^2$.

Proposition 6 (see [2]). *Intersection matrices of the bases $\{h'_j\}$ and $\{h_j\}$ are connected by the following relation:*

$$(h_j, h_{j'}) = (-1)^{n-1} (h'_j, h'_{j'}) \quad \text{for } j' > j.$$

Theorem 2. *Let $f|_{z=0}$ have an isolated singularity. Then $f + z^2$ and e_j in Theorem 1 can be replaced by $f|_{z=0} + z^2$ and h_j respectively.*

Proof. We'll deduce this theorem from Theorem 1 in the case of $\min(\alpha \in A) \geq 2$ (if this is not so then $\mu(f|_{z=0}) > \mu(f + z^2)$ and the proof is some more complicated as we have to look after extra cycles in a basis for $f|_{z=0}$, see also Proposition 2).

Let f' be a function obtained from f by replacing z by $tz + (1-t)\varepsilon$, $t \in [0, 1]$. Set $F'_\varepsilon = f' + (z - \varepsilon)^2$. One can easily show that critical values of F'_ε at its critical points belonging to Γ_i with $\alpha_i > 2$ have the same asymptotics as those in Proposition 3,

independently of t . Critical values of F_ε^t at its critical points belonging to Γ_i with $\alpha_i = 2$ have the asymptotics $F_\varepsilon^t = \varepsilon^2 a_i/(a_i t^2 + 1) + O(\varepsilon^2)$. Consequently we can choose numbers r'_α and r''_α so that critical values of F_ε^t at its critical points belonging to Γ_i contain in a ring $\{u: r'_\alpha < |u| < r''_\alpha\}$ for all t . It easily follows from the definition of sets V_m that a system of paths for $F_\varepsilon^0 = G_\varepsilon + (z - \varepsilon)^2$ satisfying the condition (V) can be deformed into a system of paths for $F_\varepsilon^1 = F_\varepsilon$ satisfying the same condition as t changes from 0 to 1. Corresponding bases $\{h_j\}$ and $\{e_j\}$ have then equal intersection matrices, q.e.d.

Theorem 3. *Let $f|_{z=0}$ have an isolated singularity. Let \hat{f} be a singularity obtained from f by replacing z by z^2 . Let $\{h_j\}$ be a distinguished basis of vanishing cycles for $f|_{z=0} + z^2$ defined by a system of paths satisfying the condition (V).*

a) *There exists a distinguished basis of vanishing cycles $\{\hat{e}_j^m\}$ ($m = 0, \pm 1, \pm 2, \dots$) for \hat{f} with an intersection matrix*

$$\begin{aligned} (\hat{e}_j^m, \hat{e}_j^{m'}) &= (h_j, h_{j'}), \\ (\hat{e}_j^m, \hat{e}_j^{m'}) &= (|m'| - |m|)^{n-1} \quad \text{for } |m' - m| = 1, \\ (\hat{e}_j^m, \hat{e}_j^{m'}) &= (-1)^n (h_j, h_{j'}) \quad \text{for } |m' - m| = 1, (|m'| - |m|)(j' - j) < 0, \\ (\hat{e}_j^m, \hat{e}_j^{m'}) &= 0 \quad \text{for } |m' - m| > 1 \text{ or } (|m'| - |m|)(j' - j) > 0. \end{aligned}$$

The order of pairs (m, j) is defined as follows: $(m, j) < (m', j)$ if $|m| < |m'|$ or $|m| = |m'|$, $j < j'$ or $m' = -m > 0$, $j = j'$.

A pair (m, j) is admissible iff h_j vanishes along a path containing in $V_{|m|}$.

b) The involution $z \mapsto -z$ action in the homology of a nonsingular level of \hat{f} is defined by $\hat{e}_{m,j} \mapsto -\hat{e}_{-m,j}$ i.e. the basis $\{\hat{e}_j^m\}$ defines a distinguished basis for a pair $(f, f|_{z=0})$ where \hat{e}_j^0 are short cycles and $\hat{e}_j^m + \hat{e}_{-j}^{-m}$ for $m > 0$ – long cycles (see [5]).

The proof of this theorem is based on the same ideas as that of Theorem 1 and omitted here.

3. Distinguished bases for f

Proposition 7. *Critical values of $f_\varepsilon = f - 2\varepsilon z$ at its critical points belonging to Γ_i and tending to 0 as $\varepsilon \rightarrow 0$ are as follows:*

$$f_\varepsilon = -a_i(\alpha_i - 1) \left(\frac{2\varepsilon}{a_i \alpha_i} \right)^{\alpha_i/(\alpha_i - 1)} + o(\varepsilon^{\alpha_i/(\alpha_i - 1)}) \quad \text{for } \alpha_i > 1,$$

$$f_\varepsilon = 0 \quad \text{for } \alpha_i = 1.$$

The proof is trivial.

According to Proposition 7 we can choose for a small ε positive numbers R'_α and R''_α for $\alpha \in A$, $\alpha > 2$ and a number R'_2 so that for $\alpha \in A$, $\alpha > 2$ (resp. $\alpha \leq 2$) all the critical values of f_ε at its critical points belonging to Γ_i with $\alpha_i = \alpha$ contain in a ring $\{u: R''_\alpha < |u| < R'_\alpha\}$ (resp. in a circle $\{u: |u| < R'_2\}$) and $R''_\alpha > R'_\beta$ for $\alpha > \beta$. Let us choose a non-critical value $u^* \in \mathbb{R}_-$ of f_ε , $u^* < -\max_\alpha R'_\alpha$.

Let $\xi(r)$ be a continuous monotonous non-increasing function defined for $0 \leq r \leq -u^*$ satisfying the following conditions:

$$\begin{aligned}\xi(r) &= 1 & \text{for } r < R'_2, \\ \xi(r) &= 1/(\alpha - 1) & \text{for } R''_\alpha \leq r \leq R'_\alpha, \alpha > 2, \\ \xi(r) &> 0 & \text{for } r < -u^*, \quad \xi(-u^*) = 0.\end{aligned}$$

Set $D = \{u: |u| \leq -u^*, |\arg(-u)| \leq \pi \xi(|u|)\}$ where $-\pi \leq \arg(-u) < \pi$.

Set $W_m = \{u \in D, \arg(-u) + \pi(2m-1) \xi(|u|) \leq 2\pi\}$ for $m = 1, 2, \dots$. In particular, $W_1 = D$.

Let us define a homeomorphism $\tau_\varphi: \mathbb{C} \rightarrow \mathbb{C}$ by

$$\tau_\varphi(u) = ue^{2\pi i \varphi(\xi(|u|) + 1)}.$$

From now on let f satisfy the condition (*) from Proposition 4 and ε be a small positive number.

Proposition 8. *No critical values of $f_{e^{2\pi i \varphi \varepsilon}}$ contain in boundaries of all W_m .*

The proof is easily obtained from Proposition 7 and the condition (*).

Proposition 9. *The sets $\tau_{m-1}(W_m)$ haven't common inner points for different m . Each critical value of f_ε contains in $\tau_{m-1}(W_m)$ for some m .*

Proof. One can easily show that the interior of $\tau_{m-1}(W_m)$ coincides with the interior of $\tau_{m-1}(D) \setminus \bigcup_{0 \leq l \leq m-1} \tau_l(D)$. As each critical value of f_ε contains in $\tau_{m-1}(D)$ for some m but not in boundaries of $\tau_l(D)$, the proposition follows.

Let us choose a system of paths between critical values of f_ε containing in D and its non-critical value u^* so that all the paths are not self-intersecting, different paths intersect only at u^* and the following condition holds:

(W) *all the paths drawn from points belonging to W_m contain in W_m .*

The order for the system of paths is defined by decreasing of $\arg(u - u^*)$, u being a point of intersection of a path with a small circle centered at u^* , $-\pi < \arg(u - u^*) < \pi$.

Let $\{e_j^1\}$ be a system of vanishing cycles in the homology of a nonsingular level $f_\varepsilon = u^*$ of f_ε defined by the chosen system of paths.

Let $\Theta_\varphi: D \rightarrow \mathbb{C}$ be a continuous family of homeomorphic inclusions satisfying the following conditions:

$\Theta_0: D \rightarrow D$ is an identity,

$\Theta_\varphi = \tau_\varphi$ at boundaries of W_m ,

Θ_φ maps critical values of f_ε into critical values of $f_{e^{2\pi i \varphi \varepsilon}}$.

For critical values of f_ε containing in $\tau_{m-1}(W_m) = \Theta_{m-1}(W_m)$ we define a system of paths between these values and u^* as a result of applying Θ_{m-1} to the paths between critical values of f_ε containing in W_m and u^* .

Let e_j^m be a cycle defined by a path obtained by applying of Θ_{m-1} to a path defining e_j^1 .

Proposition 10. *The system $\{e_j^m\}$ of vanishing cycles with the lexicographic order forms a distinguished basis for f .*

Proof. It's easily deduced from Proposition 9 that the paths defining the system $\{e_j^m\}$ are not self-intersecting, different paths intersect only at u^* and all the critical values of f_ε are connected with u^* by the paths. One can easily show also that the lexicographic order of pairs (m, j) agrees with the definition of the order of paths defining a distinguished basis (see [2]).

4. Proof of Theorem 1

Suppose $n \equiv 3 \pmod{4}$. The assertion for any n is deduced then by adding a sum of squares of new variables to all functions and recalculating intersection matrices by the formulas from [2].

Lemma 1. *Let $\{e_j^m\}$ be a distinguished basis for f defined by system of paths satisfying the condition (W).*

Then

a) $e_j^m = h_* e_j^{m-1}$ for $m > 0$ where h_* is a monodromy operator of f ;

b) $(e_j^m, e_{j'}^m) = (e_j^1, e_{j'}^1)$,

$$(e_j^m, e_{j'}^{m'}) = 1 \quad \text{for } |m' - m| = 1,$$

$$(e_j^m, e_{j'}^{m'}) = -(e_j^1, e_{j'}^1) \quad \text{for } |m' - m| = 1, (m' - m)(j' - j) < 0,$$

$$(e_j^m, e_{j'}^{m'}) = 0 \quad \text{for } |m' - m| > 1 \text{ or } (m' - m)(j' - j) > 0.$$

Proof. The assertion a) follows from the construction of cycles e_j^m as $\Theta_\varphi(u^*) = \tau_\varphi(u^*) = e^{2\pi i \varphi} u^*$. The assertion b) is deduced from the assertion a) as follows. Since the monodromy preserves intersections then $(e_j^m, e_{j'}^m) = (e_j^1, e_{j'}^1)$. Let now decompose h_* into product of operators $T_j^m = (e \mapsto e + (e, e_j^m)e_j^m)$ (reflections in the vanishing cycles e_j^m). Since $h_* e_j^m = e_j^{m+1}$ then the result of action on e_j^m of all $T_{j'}^{m'}$ for $(m', j') > (m+1, j)$ is equal to e_j^m , the result of action of T_j^{m+1} on e_j^m is equal to $e_j^m + e_j^{m+1}$, the result of action of $T_{j'}^{m+1}$ for $j' < j$ on $e_j^m + e_j^{m+1}$ is equal to $e_j^m + e_{j'}^{m+1}$. This means that $(e_j^m, e_{j'}^{m'}) = 0$ for $m' > m+1$ and for $m' = m+1, j' > j$, $(e_j^m, e_j^{m+1}) = 1$ and $(e_j^m, e_{j'}^{m+1}) = -(e_j^{m+1}, e_{j'}^{m+1}) = -(e_j^1, e_{j'}^1)$ for $j' < j$, q.e.d.

Let us consider a deformation $f_{\delta, \varepsilon} = f + \delta z^2 - 2\varepsilon z$ of f . Evidently $f_{0, \varepsilon} = f_\varepsilon, f_{1, \varepsilon} = F_\varepsilon - \varepsilon^2$.

Lemma 2. *As δ changes from 0 to 1, the critical values of $f_{0, \varepsilon} = f_\varepsilon$ contained in D and only they pass to the critical values of $f_{1, \varepsilon} = F_\varepsilon - \varepsilon^2$ tending to 0 as $\varepsilon \rightarrow 0$. The critical values contained in W_m and only they pass to the critical values contained in $V_m - \varepsilon^2$. A system of paths between critical values of $f_{0, \varepsilon} = f_\varepsilon$ contained in D and its non-critical value u^* satisfying the condition (W) can be deformed into a system of paths between critical values of $f_{1, \varepsilon} = F_\varepsilon - \varepsilon^2$ and its non-critical value obtained by $(-\varepsilon^2)$ – shift from a system of paths satisfying the condition (V). Systems of vanishing cycles $\{e_j^m\}$ and $\{e_j\}$ defined by the corresponding systems of paths have equal intersection matrices.*

The proof of this lemma is elementary and based on the study of critical values of the function $az^\alpha + \delta z^2 - 2\varepsilon z$ ($a \in \mathbb{C}$, $\delta \in \mathbb{R}_+$, $\varepsilon \in \mathbb{R}_+$, $\alpha \in \mathbb{Q}$). However it's rather complicated and omitted here.

The assertion of Theorem 1 is obtained by combining the assertions of Lemmas 1 and 2.

Table 1

Notation	Formula	Numbers M_j
$J_{k,i}$	$x^3 + x^2 z^k + z^{3k+1}$	$3k+i-1, 3k-1$
E_{6k}	$x^3 + z^{3k+1}$	$3k, 3k$
E_{6k+1}	$x^3 + xz^{2k+1}$	$3k+1, 3k$
E_{6k+2}	$x^3 + z^{3k+2}$	$3k+1, 3k+1$
$X_{k,p}$	$x^4 - x^2 z^{2k} + z^{4k+p}$	$4k-1, 4k-1, 4k+p-1$
$Y_{r,s}^k$	$x^2(x-z^k)^2 + x^2 z^{2k+s} + (x-z^k)^2 z^{2k+r}$	$4k+r-1, 4k+s-1, 4k-1$
$Z_{i,p}^k$	$x^4 - x^3 z^k + x^2 z^{2k+i} - z^{4k+3i+p}$	$4k-1, 4k+3i+p-1, 4k+3i-1$
$Z_{12k+6i-1}^k$	$x^4 - x^3 z^k + z^{4k+3i+1}$	$4k+3i, 4k-1, 4k+3i$
Z_{12k+6i}^k	$x^4 - x^3 z^k + xz^{3k+2i+1}$	$4k+3i+1, 4k-1, 4k+3i$
$Z_{12k+6i+1}^k$	$x^4 - x^3 z^k + z^{4k+3i+2}$	$4k+3i+1, 4k-1, 4k+3i+1$
W_{12k}	$x^4 + z^{4k+1}$	$4k, 4k, 4k$
W_{12k+1}	$x^4 - xz^{3k+1}$	$4k+1, 4k, 4k$
$W_{k,i}$	$x^4 - x^2 z^{2k+1} + z^{4k+2+i}$	$4k+1, 4k+1, 4k+i$
$W_{k,2q-1}^*$	$(x^2 - z^{2k+1})^2 + xz^{3k+q+1}$	$4k+q+1, 4k+q, 4k+1$
$W_{k,2q}^*$	$(x^2 - z^{2k+1})^2 + x^2 z^{2k+q+1}$	$4k+q+1, 4k+q+1, 4k+1$
W_{12k+5}	$x^4 - xz^{3k+2}$	$4k+2, 4k+1, 4k+2$
W_{12k+6}	$x^4 + z^{4k+3}$	$4k+2, 4k+2, 4k+2$
$Q_{k,i}$	$x^3 + (z-x)y^2 + x^2 z^k + z^{3k+1}$	$2, 2, 3k-1, 3k+i-1$
Q_{6k+4}	$x^3 + (z-x)y^2 + z^{3k+1}$	$2, 2, 3k, 3k$
Q_{6k+5}	$x^3 + (z-x)y^2 - xz^{2k+1}$	$2, 2, 3k+1, 3k$
Q_{6k+6}	$x^3 + (z-x)y^2 + z^{3k+2}$	$2, 2, 3k+1, 3k+1$
S_{12k-1}	$x^2 y + (z-y)y^2 + z^{4k}$	$2, 4k-1, 4k-1, 4k-1$
S_{12k}	$x^2 y + (z-y)y^2 + xz^{3k}$	$2, 4k, 4k-1, 4k-1$
$S_{k,i}$	$x^2 y + (z-y)y^2 + x^2 z^{2k} + z^{4k+i+1}$	$2, 4k, 4k, 4k+i$
$S_{k,2q-1}$	$x^2 y + (z-y)y^2 - yz^{2k+1} + xz^{3k+q}$	$2, 4k+q, 4k+q-1, 4k$
$S_{k,2q}$	$x^2 y + (z-y)y^2 - yz^{2k+1} + x^2 z^{2k+q}$	$2, 4k+q, 4k+q, 4k$
S_{12k+4}	$x^2 y + (z-y)y^2 + xz^{3k}$	$2, 4k+1, 4k, 4k+1$
S_{12k+5}	$x^2 y + (z-y)y^2 + z^{4k+2}$	$2, 4k+1, 4k+1, 4k+1$
$T_{p,q,r}$	$xy(z-x-y) + x^p + y^q + (z-x-y)^r$	$p-1, q-1, r-1, 2$
U_{12k}	$x^3 + xy^2 + z^{3k+1}$	$3k, 3k, 3k, 3k$
$U_{k,2q-1}$	$x^3 + xy^2 - xz^{2k+1} + y^2 z^{k+q}$	$3k+q, 3k+q, 3k, 3k+1$
$U_{k,2q}$	$x^3 + xy^2 - xz^{2k+1} + yz^{2k+q+1}$	$3k+q+1, 3k+q, 3k, 3k+1$
U_{12k+4}	$x^3 + xy^2 + z^{3k+2}$	$3k+1, 3k+1, 3k+1, 3k+1$

5. Examples

The problem of calculation of intersection matrix for a singularity f is reduced by the Theorem 2 to the problem of calculation of intersection matrix for $f|_{z=0}$ and of the exponents α_j for $I_z(f)$. Corresponding calculations were carried out for all the singularities from the Arnol'd list [3] excluding the series \mathbb{V} , in particular for all the bimodular singularities. The results of these calculations are presented in Table 1.

In this table after the notation of a singularity in terms of [3] a formula of a representative of this singularity used for the calculations and numbers M_1, \dots, M_μ ($\mu' = \mu(f|_{z=0})$) are presented.

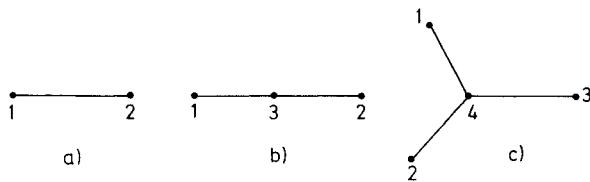


Fig. 1. Dynkin diagram of a distinguished basis for $f|_{z=0}$ satisfying the condition (V) for f belonging to the series: a) \mathbb{J} , \mathbb{IE} ; b) \mathbb{X} , \mathbb{Y} , \mathbb{Z} , \mathbb{W} ; c) \mathbb{Q} , \mathbb{S} , \mathbb{T} , \mathbb{U}

An intersection matrix of a distinguished basis for f can be obtained from an intersection matrix of a distinguished basis for $f|_{z=0}$ satisfying the condition (V) (corresponding Dynkin diagrams are presented in Fig. 1) by the formulas from Theorem 1, and the basis for f is formed by cycles e_j^n , $1 \leq m \leq M_j$.

Remark. Some of the singularities are presented in a form not satisfying the condition (*) but convenient for calculations of intersection matrices of $f|_{z=\varepsilon}$ (all the critical points of $f|_{z=\varepsilon}$, $\varepsilon > 0$, are real and we can use the Gusein-Zade method [4]). The condition (*) holds then after multiplication of f by a non-real number.

Bibliography

1. Teissier, B.: Varietes polaires I. Inv. Math. **40**, No. 3, 267–292 (1977)
2. Gabrielov, A.M.: Intersection matrices for some singularities. Funktional. Anal. i Prilozhen. **7**, No. 3, 18–32 (1973)
3. Arnol'd, V.I.: Critical points of smooth functions and their normal forms. Russian Math. Surveys (Uspekhi) **30**, No. 5, 3–65 (1975)
4. Gusein-Zade, S.M.: Monodromy groups of isolated singularities of hypersurfaces. Russian Math. Surveys (Uspekhi) **32**, No. 2, 23–65 (1977)
5. Arnol'd, V.I.: Critical points of functions at a manifold with a border. Russian Math. Surveys (Uspekhi) **33**, No. 5, 91–105 (1978)

Received March 10, 1979