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Polar Curves and Intersection Matrices of Singularities 

A.M. Gabrielov 

Institute of Physics of the Earth, 10 Bolshaya Gruzinskaya, Moscow D 242-USSR 

This paper presents formulas connecting an intersection matrix of an isolated 
singularity f :  ~" --* ~E with an intersection matrix o f f +  z 2 or f]z= o and the simplest 
invariants of a polar curve of f related to z, z being a linear function. 

1. Polar curves 

Here we give some basic notations and well-known statements concerning polar 
curves (see [-1]). 

L e t f b e  a germ of an analytic function with an isolated singularity at 0 ~ " ,  df(O) 
=0. Let z: ~ " ~  ~ be a linear function. 

Definition. A polar curve of f related to z is the set F~(f) of critical points of mapping 
(z,f): (~n_.__~(~2. 

One can easily verify that F~(f) is really a curve, i.e. d i m ~ , F ~ ( f ) =  1. 

Let F~(f)= U F/be a decomposition of F~(f) into irreductible components. 
Let Pi be the number of critical points (with multiplicities) of f - e , z ,  ~,4:0, 

belonging to F/. The Milnor number/~(f)  o f f  is obviously equal to ~ Pi. 
i 

IfF~ r {z = 0} then f i r ,  ~ 0. Let a~z ~' be the first term of the Puiseux expansion of 
.fir, (more precisely that of a curve X i, which is the image of F i under the mapping 
(z,f): C"-~C2). One can easily show that ~i> 1. 

If F/c {z = 0} (f[~ = o having a non-isolated singularity) then f i r ,  = O. Set ~i = 1 in 
this case. Let vi be the number of critical points (with multiplicities) o f f ]  . . . .  ~ 4= 0, 
belonging to F~. Iffl~ = 0 has an isolated singularity then its Milnor number/ t ( f [  z = o) 
is equal to ~ v~. 

We have a following simple assertion. 

Proposition 1. J f  o~ i > 1 then pg = vi(~ i - 1). 
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Corollary. I f  a i 4 : - 1  for ~i=2 then the Milnor number of f +z  2 is equal to ~ [1 i 
-I- ~ V i.  i: ~ < 2 

i:~z>2 

In particular, #( f+z2)<#( f l~=o)  and equality is achieved iff c~i=>2 for all i. 

Proposition 2. I f  z is generic and f ~ m  k then ~i>=k for all i. 

2. Results 

Proposition 3. Let F~ = f +  (z - ~)2 be a small deformation o f f +  z 2. Critical values of ~ 
at its critical points belonging to ~ and tending to 0 as ~ 0  are as follows: 

F~=aic~'+o(c ~') /f cq>2, 

F~=c2a](ai+ l)+o(r, 2) /f c~=2 

(we suppose that a i ~ - 1  for ~i = 2), 

F~=~2+o(c 2) /f c~<2. 

The proof consists in a direct calculation of the asymptotics of solutions of the 
equation 

(F~)zlr. =ai~iz,,- 1 + 2 ( z _ c ) + O ( z  ~, 1)= 0 

as e--* 0 and substitution of these asymptotics into F~[r. 
Let A be the set of all the values cq. According to Proposition 3 we can choose 

for a small c4:0 positive numbers r', and r~' ( ~ A ,  c~>2) so that for each c~A, ~>2  
(resp. c~ < 2) all the critical values of F~ at its critical points belonging to F~ with cq = c~ 
contain in a ring {u: r'~<lu[<r~'} (resp. {u: r~<lu[<r~) and r~'<r~ for c~>[t. 

Let a(r) be a continuous monotonous non-increasing function defined for r > 0, 
o-(r) =c~- 1 for r'~<=r<r'. 

Set Vm={u: argu+2rca([ul)>rc(2m-1)} where - n < a r g u < z t ,  m=0,  1, 2 . . . . .  

Proposition 4. Let the following condition hold: 

(.) (-al)q'r for ~i=p~/q,,(p,,q,)=1. 

7hen for a small ~ IR+ critical values of F~ don't contain neither in IR nor in 
boundaries of all V m. 

The proof is deduced easily from Proposition 3. 
Let us choose a system of paths between critical values of F~ and its non-critical 

value 0, defining a distinguished basis of vanishing cycles f o r f  + z 2 (i.e. the paths are 
not self-intersecting and different paths intersect only at 0, see [2]). If F~ is not a 
Morse function, we replace it by a close Morse function. Suppose that our system of 
paths satisfies the following condition: 

(V) all the paths intersect ]R only at O; all the paths drawn from critical values 
belonging to V m, contain in V m. 
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The order of such a system of paths is defined by decreasing of arg u, u being a 
point of intersection of path with a small circle centered at 0. 

Proposition 5. Let a system of paths consist of straight segments between critical 
values of F~ and O. Then it satisfies the condition (V). 

Theorem 1. Let {e~} be a distinguished basis of vanishing cycles for f +  z 2 defined by a 
system of paths satisfying the condition (V). 

a) There exists a distinguished basis {e~} (m = 1, 2 , . . . ) f o r f w i t h  the lexicographic 
order of (re,j) and with a following intersection matrix: 

(e 7, e~) =(e  j, el), 

(eT, eT')=(m,_m), 1 for I m ' - m l = l ,  

(eT, eT! ' )= ( -  1)'(ej, ej,) for I m ' - m I = l ,  (m' -m)(] ' - j )<O,  

(e~.',ei~)=O for [ m ' - m [ > l  or (m'-m)( l"- j )>O.  

Here a pair (re, j) is admissible iff a cycle ej vanishes along a path containing in V m. 
b) ~'~ - h ~"- 1 for m > 0 where h, is a monodromy operator of f. •j - -  , e j  

c) For a system of paths Jrom the proposition 5 the condition on the admissible 
pairs (re, j) can be reformulated as follows: the first #i pairs from each set of pairs (m, j) 
with a cycle ej vanishing in a point belonging to ~ are admissible. 

The proof  of the theorem will be given in n ~ 4. 
Let  now f lz=o have an isolated singularity. Let G~=f[z= ~ be a small 

deformation off[~ = o. Critical values of G~ at its critical points belonging to ~ are 
a~c ~' + O(c ~') as ~; ~ 0. Consequently we can choose positive numbers  r'~ and r~' for all 
a~A so that all the critical values of G~ at its critical points belonging to F~ with c(~ = c( 
contain in a ring {u: r', < L ul < r~'} and r~' < r~ for c( > ft. Let us define a function o (r), 
sets V,, and a condit ion (V) on a system of paths between critical values of G~ and its 
non-critical value 0 as it was defined for F~ with the only difference that all c~A are 
considered, not only a > 2 .  

Let  {h)} be a distinguished basis for f[~ = o defined by a system of paths satisfying 
the condit ion (V). Critical values of G~ + z 2 being the same as those of G~, such a 
system defines also a distinguished basis {hi} for f]~ = o + z2. 

Proposition 6 (see [2]). Intersection matrices of the bases {h)} and {h j} are connected 
by the following relation: 

(hj, h f )=(-1) ' -~(h) ,h) , )  for j '> j .  

Theorem 2. Let J'[~ = o have an isolated singularity. Then f +  z 2 and ej in Theorem 1 can 
be replaced by f[~_ o + z2 and hj respectively. 

Proof We'll deduce this theorem from Theorem 1 in the case ofmin  (eeA) > 2 (if this 
is not so then p(f[~= o) > # ( f  + z2) and the proof  is some more  complicated as we 
have to look after extra cycles in a basis for f t , - o ,  see also Proposi t ion 2). 

L e t f '  be a function obtained from f b y  replacing z by tz +(1 - t)c, t e l0 ,  lJ. Set 
~t = f t +  (z -c)2 .  One can easily show that critical values of ~t at its critical points 
belonging to F~ with c(~ > 2 have the same asymptotics as those in Proposi t ion 3, 



18 A.M. Gabrielov 

independently of t. Critical values of F~' at its critical points belonging to F~ with cq 
=2 have the asymptotics F,' =e2aj(ait2+ 1)+ O(e2). Consequently we can choose 
numbers r', and r;' so that critical values of F~' at its critical points belonging to F~ 
contain in a ring {u: r'~, <1u l< r'~' } for all t. It easily follows from the definition of sets 
IS,, that a system of paths for F~~ G~ + ( z -  e)2 satisfying the condition (V) can be 
deformated into a system of paths for F~ 1 =F~ satisfying the same condition as t 
changes form 0 to 1. Corresponding bases {hi} and {e j} have then equal intersection 
matrices, q.e.d. 

Theorem 3. Let flz= o have an isolated singularity. Let f be a singularity obtained 
from f by replacing z by z 2. Let {h~} be a distinguished basis of vanishing cycles .for 
flz= 0 + z2 defined by a system of paths satisfying the condition (V). 

a) There exists a distinguished basis of vanishing cycles {~} (m = 0, _+ 1, ___ 2 ... .  ) 
for f with an intersection matrix 

(~ '  eT) = (hi, h f), 

(~,  ~ ' )  =([m'[-  [m[) ~-1 for I ra ' -m[= 1, 

(~ ,~ f ' )=( -1 )" (h j ,  h;) for I m ' - m ] = l ,  (Im'l-[mD(]'-j)<O, 

(~'/,6~')=0 for [ m ' - m [ > l  or ([m'[-[m[)(]'-j)>O. 

The order of pairs (re, j) is defined as follows: (re, j) < (m',j)/f ]ml < Ira'[ or lm] = Ire'I, 
j< j '  or m'= - m > O , j = j ' .  

A pair (re, j) is admissible iff hj vanishes along a path containing in Vim I. 
b) The involution z ~-+ - z action in the homology of a nonsingular level of f is 

defined by ~,,j~--+ -~_, , , j  i.e. the basis {~} defines a distinguished basis for a pair (f, 
*0 ej +ej for m > 0  long cycles (see [5]). f[==o) where ej are short cycles and ~ ~-" 

The proof of this theorem is based on the same ideas as that of Theorem 1 and 
omitted here. 

3. Distinguished bases for f 

Proposition 7. Critical values of f~ = f  -2e, z at its critical points belonging to F i and 
tending to 0 as ~--+0 are as follows: 

f~=--ai(ai--1 ) - -  +o(~: ='/(~'-1)) for a i > l ,  
\ a  i 0~ i I 

f ~ = 0  for  g i = l .  

The proof is trivial. 
According to Proposition 7 we can choose for a small g positive numbers R; and 

R•' for ~ea, ~ > 2 and a number R~ so that for ~eA, c~ > 2 (resp. ~ < 2) all the critical 
values off~ at its critical points belonging to F~ with a i = a  contain in a ring {u: 
R"<lul  <R;} (resp. in a circle {u" ]u[ <R~}) and R'~'>R'p for ~>fl. Let us choose a 
non-critical value u* e~,_ of s  u* < - max R;. 

a 
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Let ~(r) be a continuous monotonous non-increasing function defined for 
0 < r < - u* satisfying the following conditions: 

~(r)= 1 for r<R'a, 

~ ( r ) = l / ( ~ - l )  for R'~'<r<R'~, ~>2,  

~(r)>0 for r < - u * ,  ~ ( - u * ) = 0 .  

Set D={u:  lul< - u * ,  larg(-u)l<rc~(lu])} where -~__<arg ( -u )<m 
Set Wm={UED, arg(-u)+~(2m-1)~(lu])<2rc} for r e= l ,  2 . . . . .  In particular, 

W1=D. 
Let us define a homeomorphism %: ~ ~ C by 

"C ~ (U)  = u e  2~i~~ 1) 

From now on let f satisfy the condition (*) from Proposition 4 and e be a small 
positive number. 

Proposition8. No critical values of f~ . . . . .  contain in boundaries of all W m. 

The proof is easily obtained from Proposition 7 and the condition (*). 

Proposition9. The sets z,, ~(W") haven't common inner points for different m. Each 
critical value of f~ contains in %,_ I(W,,) Jot some m. 

Proof One can easily show that the interior of z"_ I(W,,) coincides with the interior 
ofz"_ 1(D)\( ~) zt(D) ). As each critical value off~ contains in zm_ riD) for some 

O < l < m -  1 

m but not in boundaries of zt(D ), the proposition follows. 
Let us choose a system of paths between critical values off~ containing in D and 

its non-critical value u* so that all the paths are not self-intersecting, different paths 
intersect only at u* and the following condition holds: 

(W) all the paths drawn from points belonging to W,, contain in W". 

The order for the system of paths is defined by decreasing ofarg (u - u*), u being 
a point of intersection of a path with a small circle centered at u*, - ~ <  
a rg (u -  u*) < m 

Let {e~ } be a system of vanishing cycles in the homology ofa  nonsingular levelf~ 
= u* of f~, defined by the chosen system of paths. 

Let O,p: D--, ~ be a continuous family of homeomorphic inclusions satisfying 
the following conditions: 

Oo: D ~ D  is an identity, 

0 ~ = %  at boundaries of W", 
O~ maps critical values off~ into critical values o f s  . . . . .  . 
For critical values off~ containing in z,,._ t(W") =Om I(W,,) we define a system 

of paths between these values and u* as a result of applying 6),,_ ~ to the paths 
between critical values of f~, containing in W" and u*. 

Let ~ be a cycle defined by a path obtained by applying of 0"_  ~ to a path 
defining e}. 

Proposition 10. 7he system {eT} of vanishing cycles with the lexicographic order 
forms a distinguished basis for f 
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Proof It's easily deduced from Proposition 9 that the paths defining the system {4} 
are not self-intersecting, different paths intersect only at u* and all the critical 
values off~ are connected with u* by the paths. One can easily show also that the 
lexicographic order of pairs (re,j) agrees with the definition of the order of paths 
defining a distinguished basis (see [2]). 

4. Proof of  Theorem 1 

Suppose n = 3 (mod 4). The assertion for any n is deduced then by adding a sum of 
squares of new variables to all functions and recalculating intersection matrices by 
the formulas from [2]. 

Lemma 1. Let {4} be a distinguished basis for f defined by system of paths satisfying 
the condition (W). 

7hen 
a) 4 = h, 4 -  1 for m > 0 where h, is a monodromy operator of ]% 

b) (4 ,  4,) = (el, e],), 

(4j, 4 ' )  = 1 for [m'-m[ = 1, 

(4 ,4 , ' )= - ( e ) , e ) , )  for ] m ' - m ] = l ,  (m' -m)( j ' - j )<O,  
tn ra' ( e j , e f ) = 0  for ]m'--m]>l or (m'--m)(]'--j)>O. 

Proof. The assertion a) follows from the construction of cycles 4 as O~(u*) =%(u*) 
= e2~i~'u *. The assertion b) is deduced from the assertion a) as follows. Since the 
monodromy preserves intersections then m ,, 1 (e~, e l )=  (e j, el,), Let now decompose h, 
into product of operators T 7 = (e ~-~ e + (e, 4 )  4 )  (reflections in the vanishing cycles 
4)" Since h.  -s ~~ = -se~+ 1 then the result of action on ~ of all Tj, m' for (m',j') > (m + 1,j) is 
equal to e~', the result of action of T] "+ 1 on 4 is equal to 4 + 4 + 1, the result of 
action of Ti~+ 1 forj '  < j  on 4 + 4 +' is equal to 4 + 4 + 1. This means that (4 ,  e~') 
=0  for m ' > m + l  and for m ' = m + l ,  j '>j ,  (4,4+1)=1 and (4,  e~+1)= 
- ( 4 + ' , e 7 + 1 ) =  -(el,el,)  f o r j '< j ,  q.e.d. 

Let us consider a deformation f~,~ = f + 6 z2 _ 2 ~ z o f f  Evidently fo,~ = f~, fl,~ = F~ 
_ _ ~ 2 .  

Lemma 2. As 6 changes from 0 to 1, the critical values of fo, ~ = f~ contained in D and 
only they pass to the critical values off1, ~ = F~- e 2 tending to 0 as a ~ O. The critical 
values contained in W,, and only they pass to the critical values contained in V,, - ~2. A 
system of paths between critical values of fo, ~ =f~ contained in D and its non-critical 
value u* satisfying the condition ( W) can be deformated into a system of paths between 
critical values off1, ~ = F~ --e 2 and its non-critical value obtained by (--~2) _ shift from 
a system of paths satisfying the condition (V). Systems of vanishing cycles {e)} and {e j} 
defined by the corresponding systems of paths have equal intersection matrices. 

The proof of this lemma is elementary and based on the study of critical values 
of the function a z ' + b z Z - 2 e z  ( a ~ ,  6~IR+, ~IR+, c~Ol~). However it's rather 
complicated and omitted here. 

The assertion of Theoreml is obtained by combining the assertions of 
Lemmas 1 and 2. 
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Table 1 

2l 

Notation Formula Numbers M s 

Jk,i X3 • x2zk 4- z3k+' 3 k + i - 1 ,  3 k - 1  

E6 k X3_~_ z3k+ I 3k, 3k 

E(,k+ 1 x3 + x z  2k+1 3 k + l ,  3k 

E6k+2 x 3 + z  3k+z 3 k + l ,  3 k + l  
X~,.v X g--X2 z2k + z 4k+ p 4 k -  1, 4 k -  1, 4k + p -  1 

Y f , ~  X2(x--zk)2+X2z2k+S+(x--zk)2Z 2k+r 4 k + r - -  1, 4 k + s -  1, 4 k - 1  

Zk, p X4--x3 zk + x2 z 2k+'-  z 4k+3'+p 4 k -  1, 4k + 3i + p - 1 ,  4 k + 3 i -  1 

Z~zk+61 ~ X4--x3zk+z  4k+3'+1 4k+3i ,  4 k - l ,  4 k + 3 i  

Zk2k+ 6i X4-- x3 zk + x z  3k+2'+1 4 k + 3 i + 1 . 4 k - l ,  4 k + 3 i  

Zk2k+6,+ i X4--x3zk-~-Z 4k+3'+2 4 k + 3 i +  1, 4 k - l ,  4 k + 3 i +  1 

I4/12 k x 4 + z  4k+1 4k, 4k, 4k 

Wlzk+l X4_xz3k+ l 4 k +  1, 4k, 4k 

Wk., x 4_x2zzk+l  +z4k+2+, 4 k + l ,  4 k + l ,  4 k + i  

W. # (X2--z2k+ I)2 + XZ 3k+q+ l 4 k + q +  1, 4k +q, 4 k + l  k,2q 1 
W~ (x 2 _  z2k+ l)z + x2z2k+q+ l 4k + q +  l, 4k +q + l, 4 k +  1 k,2q 
W12k+ 5 X'*-- XZ 3~:+ 2 4k+2 ,  4 k + l ,  4 k + 2  

W~2k+ 6 X'*+Z '*k+3 4k+2 ,  4k+2 ,  4 k + 2  
Qk,i X3d-(Z--X)Y 24-X2zk+Z3k+t 2, 2, 3 k - l ,  3 k + i - 1  

Q6k+,* x 3 + ( z - - x ) Y  2+zak+l 2, 2, 3k, 3k 

Q6k+5 x3 + ( z _ x ) y 2  _xz2k+ 1 2, 2, 3k+  l, 3k 
Q6k+6 X3-~-(Z--X)Y 24-23k+2 2, 2, 3 k + l ,  3 k + l  

SI2k 1 xZY+(Z--Y)Y 2+z4k 2 , 4 k - l ,  4 k - l ,  4 k - 1  
S12 k x2y+(z--y)y2q-XZ 3k 2, 4k, 4 k - l ,  4 k - 1  
Sk,, x2 y + ( z _  y)y2 + XZz2k + z4k+,+ 1 2, 4k, 4k, 4k + i 
Sk, zq 1 x2y+(z- -Y)YZ--Y  z2k+l +xz3k+q 2, 4k+q ,  4 k + q - l ,  4k 

Sk,2 q x 2 y + ( z _ y ) y 2 _ y z 2 k + l + x Z z l k + q  2, 4k+q,  4k+q ,  4k 

Sl2kq 4. x2 y+(z - -Y)Y  2 + xz3k 2, 4 k + l ,  4k, 4 k + l  
$12k+ 5 x 2 y + ( z - y ) y 2 + z  4~'+2 2, 4 k + l ,  4 k + l ,  4 k + 1  

T p , q . , .  x y ( z - x - y ) + x P + y q + ( z - x - y )  ~ p - l ,  q - l ,  r - l ,  2 

U12 k x3 + xyZ + z 3k+1 3k, 3k, 3k, 3k 

Uk,2q t X3-}-Xy2--xzZk~' I-~Y 22k+q 3k+q,  3k+q,  3k, 3 k + l  

Uk.2 q X3 ~_Xy2 __xz2k+ I +yz2k+q+ 1 3 k + q +  1, 3k+q ,  3k, 3 k +  1 

Uj2k+~ .  x 3 + x y 2 + z  3k+z 3 k + l ,  3 k + l ,  3 k + l ,  3 k + l  

5. Examples 

The problem of calculation of intersection matrix for a singularity f is reduced by 
the Theorem 2 to the problem of calculation of intersection matrix for flz = o and of 
the exponents es for F~(f). Corresponding calculations were carried out for all the 
singularities from the Arnol'd list [3] excluding the series V, in particular for all the 
bimodular singularities. The results of these calculations are presented in Table 1. 

In this table after the notation of a singularity in terms of [3] a formula of a 
representative of this singularity used for the calculations and numbers M 1 . . . . .  M,, 
(#' =/~(f l~-  0)) are presented. 
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' \  
~3 

a) b) c) 
2 

Fig. 1. Dynkin diagram of a distinguished basis for f]~ = o satisfying the condition (V) for f belonging to 
the series: a) $, IE; b) X ,  Y, 7I, ~W; c) Q, ~, "if, ILI 

An intersection matrix of a distinguished basis for f can be obtained form an 
intersection matrix of a distinguished basis for f l z -0  satisfying the condition (V) 
(corresponding Dynkin diagrams are presented in Fig. 1) by the formulas from 
Theorem 1, and the basis for f is formed by cycles 4 ,  1 < m < Mj. 

Remark. Some of the singularities are presented in a form not satisfying the 
condition (,) but convenient for calculations of intersection matrices offlz= o (all 
the critical points of f ]  . . . .  c > 0, are real and we can use the Gusein-Zade method 
[4]). The condition (,) holds then after multiplication o f f  by a non-real number. 
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