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Polar Curves and Intersection Matrices of Singularities

A M. Gabrielov
Institute of Physics of the Earth, 10 Bolshaya Gruzinskaya. Moscow D 242-USSR

This paper presents formulas connecting an intersection matrix of an isolated
singularity f: €" — € with an intersection matrix of f + z% or f,_, and the simplest
invariants of a polar curve of f related to z, z being a linear function.

1. Polar curves

Here we give some basic notations and well-known statements concerning polar
curves (see [1]).

Let f bea germ of an analytic function with an isolated singularity at 0e €*, df (0)
=0. Let z: C"—> € be a linear function.

Definition. A polar curve of f related to z is the set I( /) of critical points of mapping
(z,f): € > C2

One can easily verify that I(f) is really a curve, i.e. dimg L(f)=1.

Let I( /)= I; be a decomposition of I (f) into irreductible components.

Let u; be the number of critical points (with multiplicities) of f—¢z, %0,
belonging to I;. The Milnor number u(f) of f is obviously equal to Y .

If I; & {z =0} then f1; £0. Let a,z* be the first term of the Puiseux expansion of
f1r, (more precisely that of a curve £, which is the image of I; under the mapping
(z,f}: €' > C?). One can easily show that o, > 1.

If ;< {z=0} (f|,_, having a non-isolated singularity) then f|. =0. Set ;=1 in
this case. Let v, be the number of critical points (with multiplicities) of 1|, _,, e+0,
belonging to I;. If f|, _ o has an isolated singularity then its Milnor number u(f,_,)
is equal to Y v,.

We have a following simple assertion.

Proposition 1. Jf o, > 1 then p,=v,(o;—1).
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Corollary. If a;% —1 for «,=2 then the Milnor number of f+z* is equal to Y
4+ Z V,‘- oy <2
iro =2

In particular, u(f+z*) S u(fl,_,) and equality is achieved iff ;=2 for all i.

Proposition 2. If z is generic and fem* then o2k for all i.

2. Results

Proposition 3. Let F, = f +(z — ¢)? be a small deformation of f + z2. Critical values of F,
at its critical points belonging to I and tending to 0 as e — 0 are as follows:

E=a;e"+o0(c™) if o,>2,
F=ca/a;+1)+o(®) if o=2

(we suppose that a,+ —1 for o;=2),
F=e*+o(s?) if o,<2.

The proof consists in a direct calculation of the asymptotics of solutions of the
equation

(F).Ir,=a;,2% "' +2(z—8)+0(z~ 1) =0

as ¢ — 0 and substitution of these asymptotics into .

Let A be the set of all the values o;. According to Proposition 3 we can choose
for a small ¢+ 0 positive numbers r, and r; (x€4, «=2) so that for each aeA, a>2
(resp. « = 2) all the critical values of F, at its critical points belonging to I'; with o, =«
contain in a ring {u: v, <|u| <7y} (resp. {u: ry <|u|<r}) and r; <r; for a> f.

Let o (r) be a continuous monotonous non-increasing function defined for r 20,
g(r)=a—1forr,sr=r,.

Set V,,={u: argu+2no(ul)=n(2m—1)} where —n<Sargusn, m=0,1,2, ...

Proposition 4. Let the following condition hold:
(*) (—a)"¢R,  for o;=p;/q; (p;»q)=1.

Then for a small eeR , critical values of F, dow't contain neither in R _ nor in
boundaries of all V,,.

The proof is deduced easily from Proposition 3.

Let us choose a system of paths between critical values of F, and its non-critical
value 0, defining a distinguished basis of vanishing cycles for f +z% (i.e. the paths are
not self-intersecting and different paths intersect only at 0, see [2]). If F, is not a
Morse function, we replace it by a close Morse function. Suppose that our system of
paths satisfies the following condition:

(V) all the paths intersect R _ only at 0; all the paths drawn from critical values
belonging to V,, contain in V,,.
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The order of such a system of paths is defined by decreasing of argu, u being a
point of intersection of path with a small circle centered at 0.

Proposition 5. Let a system of paths consist of straight segments between critical
values of F, and 0. Then it satisfies the condition (V).

Theorem 1. Let {e} be a distinguished basis of vanishing cycles for f+ z* defined by a
system of paths satisfying the condition (V).

a) There exists a distinguished basis {€]'} (m=1,2, ...) for f with the lexicographic
order of (m,)) and with a following intersection matrix:

(e}, e}) =(ej.e;)
(ef,ef)=(m —my"=!  for |m'—m|=1,
(€. er)=(=1)(e,ep) for |m' —mj=1, (m —m)(j —j)<0,

(e;f',e;.'f'):() for [m'—m|>1 or (m'—m)(j'—j)>0.

Here a pair (m, j} is admissible iff a cycle e; vanishes along a path containing in V,,.

b) & =h e~ ' for m>0 where h,_ is a monodromy operator of f.

c) For a system of paths from the proposition 5 the condition on the admissible
pairs (m, j) can be reformulated as follows: the first p; pairs from each set of pairs (m, j)
with a cycle e; vanishing in a point belonging to I} are admissible.

The proof of the theorem will be given in n°4.

Let now f|,_, have an isolated singularity. Let G,=f|,_, be a small
deformation of f|,_. Critical values of G, at its critical points belonging to I; are
a;c" + O(e™) as ¢ — 0. Consequently we can choose positive numbers , and »; for all
u€4 so that all the critical values of G, at its critical points belonging to I; with o; =«
contain in a ring {u: r, <|u| <r;} and r; <r} for o> f. Let us define a function o (r),
sets V,, and a condition (V) on a system of paths between critical values of G, and its
non-critical value 0 as it was defined for F, with the only difference that all ae 4 are
considered, not only a=2.

Let {h} be a distinguished basis for |, _ , defined by a system of paths satisfying
the condition (V). Critical values of G_+ z* being the same as those of G_, such a
system defines also a distinguished basis {h;} for Sl_o+2%

Proposition 6 (see [2]). Intersection matrices of the bases {h’} and {h;} are connected
by the following relation:
(h hy=(—1y"'(h, k) for j>j.

FERA 1 P

Theorem 2. Let f|, _, have an isolated singularity. Then f + z* and e;in Theorem 1 can
be replaced by f|,_,+z* and h; respectively.

Proof. We’ll deduce this theorem from Theorem 1 in the case of min (xe 4) = 2 (if this
1s not so then u(f|,_o)> u(f +2*) and the proof is some more complicated as we
have to look after extra cycles in a basis for f],_,, see also Proposition 2).

Let f* be a function obtained from f by replacing z by tz +(1 —t)¢, te[0,1]. Set
F!'=f'+4(z~¢)% One can easily show that critical values of F' at its critical points
belonging to I with a,>2 have the same asymptotics as those in Proposition 3,
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independently of t. Critical values of F} at its critical points belonging to I} with «;
=2 have the asymptotics F! =¢%a;/(a;t* + 1)+ O(c?). Consequently we can choose
numbers 7, and r, so that critical values of F at its critical points belonging to I;
contain in a ring {u r, <iul<ry}foralle 1t easﬂy follows from the definition of sets
V,, that a system of paths for F, 0= G . +(z—¢)* satisfying the condition (V) can be
deformated into a system of paths for F! =F, satisfying the same condition as ¢
changes form Oto 1. Corresponding bases {/;} and {¢;} have then equal intersection
matrices, q.e.d.

Theorem 3. Let f|,_ have an isolated singularity. Let f be a singularity obtained
fromfby replacing z by z°. Let {h;} be a distinguished basis of vanishing cycles for
Sl,_o+2? defined by a system of paths satisfying the condition (V).

a) There exists a distinguished basis of vanishing cycles {&}'} (m=0, £1, +2,...)
for f with an intersection matrix

€7y =(h;, hy),

G

@ &) =(m|—lm)y= " for |m'—m|=1,
(€,ep)=(=1y(h;,h;)  for |m' —m|=1, (Im'| =|m|)( ) <O,
(€7, ;") 0 for |m'—m|>1 or (Im'|—|mh({’ —j)>0.

The order of pairs (m, ) is defined as follows: (m,j)<{(m',j) if jm| <|m'| or im|=|m'|,
j<jorm=—m>0,j=j.

A pair (m,j) is admissible iff h; vanishes along a path containing in V.

b) The mvolutzon 2+ —z action in the homology of a nonsingular level of f is
defined by ¢, —é_,, ;le. the basis {é’"} defines a distinguished basis for a pair ( f,

fl.—o) where e are short cycles and €} +&;™ for m>0 — long cycles (see [5]).

The proof of this theorem is based on the same ideas as that of Theorem 1 and
omitted here.

3. Distinguished bases for f

Proposition 7. Critical values of f,=f—2¢z at its critical points belonging to I; and
tending to 0 as ¢ — 0 are as follows:

2g /- 1)
fi=— 1)( ) +o (=1 for a;>1,
a!

f.=0 for o;=1.

The proof is trivial.

According to Proposition 7 we can choose for a small ¢ positive numbers R, and
R for ae A, x> 2 and a number R/, so that for a4, o> 2 (resp. 2 £2) all the critical
values of f, at its critical points belonging to I; with a;=a contain in a ring {u:
RY <|u| <R} (resp. in a circle {u: |u[ <R}})and R >R} for o> B. Let us choose a
non-critical value u*eR _ of f,, u* < —max R;.



Polar Curves and Intersection Matrices of Singularities 19

Let &(r) be a continuous monotonous non-increasing function defined for
0=r =< —u* satisfying the following conditions:

(=1 for r<R,
EM=1/{a—1) for RJSr=<R,, a>2,
E(r>0 for r<—u*, ¢&(—u*)=0.

Set D={u: |u|< —u*, Jarg(—uw)| Sné(ul)} where —nZLarg(—u)<m.

Set W, ={ueD, arg(—u)+n(2m—1)&(ju|) <2xn} for m=1, 2, .... In particular,
W, =D.

Let us define a homeomorphism t,,: € —»C by

oy p2mi +1)
‘cw(u)—ue rigE(u)+ 1)

From now on let f satisfy the condition () from Proposition 4 and ¢ be a small
positive number.

Proposition8. No critical values of f,24.., contain in boundaries of all W,,.
The proof is easily obtained from Proposition 7 and the condition (x).

Proposition 9. The sets 7,, (W,) haven’t common inner points for different m. Each
critical value of f, contains in 1,, (W) for some m.

Proof. One can easily show that the interior of 7,, ,{W,) coincides with the interior
oft,,_(D)\( |J 7,(D)). Aseach critical value of f, contains in 7,,_ (D) for some

0<Ism-1
m but not in boundaries of 7,(D), the proposition follows.

Let us choose a system of paths between critical values of f, containing in D and
its non-critical value u* so that all the paths are not self-intersecting, different paths
intersect only at u* and the following condition holds:

(W) all the paths drawn from points belonging to W, contain in W,,.

The order for the system of paths is defined by decreasing of arg (u — u*), u being
a point of intersection of a path with a small circle centered at u*, —n<
arg(u—u*)<m.

Let {e}} be a system of vanishing cycles in the homology of a nonsingular level f,
=u* of f, defined by the chosen system of paths.

Let ©,: D —C be a continuous family of homeomorphic inclusions satisfying
the following conditions:

©,:D->D is an identity,

e,=1, at boundaries of W,

e, maps critical values of f; into critical values of f,2ni0,.

For critical values of f, containing in 7,,_ (W,)=0,,_(W,) we define a system
of paths between these values and u* as a result of applying @,,_, to the paths
between critical values of f, containing in W,, and u*.

Let €7 be a cycle defined by a path obtained by applying of ©,,_, to a path
defining e}.

Proposition 10. The system {e]'} of vanishing cycles with the lexicographic order
Jorms a distinguished basis for f.
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Proof. 1t’s easily deduced from Proposition 9 that the paths defining the system {e7'}
are not self-intersecting, different paths intersect only at u* and all the critical
values of f, are connected with u* by the paths. One can easily show also that the
lexicographic order of pairs (m,j) agrees with the definition of the order of paths
defining a distinguished basis (see [2]).

4. Proof of Theorem 1

Suppose n=3 (mod 4). The assertion for any n is deduced then by adding a sum of
squares of new variables to all functions and recalculating intersection matrices by
the formulas from [2].

Lemma 1. Let {€7'} be a distinguished basis for f defined by system of paths satisfying
the condition (W).

Then

a) €'=h, e"“1 for m>0 where h, is a monodromy operator of f:

b) (e"‘ ey —(eJ, J)
(@.e)=1  for |m'—m|=1,
(. er)==(ej,¢;)  for Im—m|=1, (m —m)( —)<0,
(ej,j) 0 for |m'—m|>1 or (m —m)(j'—j)>0.

Proof. The assertion a) follows from the construction of cycles €} as @, (u*) =1, (u*)
=e?™?y*, The assertion b) is deduced from the assertlon a) as follows Smce the
monodromy preserves intersections then (e, €] (e €; L). Let now decompose h,
into product of operators T =(er—e+ (e, e'") e”‘) (reﬂectlons in the vanishing cycles
e}). Since h, e =e'* ! then the result ofactlon on ¢ ofall T'" for(m',j)y>(m+1,j)is
equal to e;", the result of action of Tr+! on el is equal to ertertl { the result of
action of T** ' for j/ <j on €7 -f-e"“r1 is equal to r+ertt This means that (¢” (e].er)
=0 for m'>m+1 and for m’ =m+1, j>j, (¢f e"‘“)—l and (ej,e;"“)
—(ef* et )= —(ej,€j) for j'<j, qed.

Let us consider a deformation f; ,=f + 6z* —~2¢zof f. Evidently f,, ,=f,, f, ,=F,
—&2
Lemma 2. 45 6 changes from 0 to 1, the critical values of f, ,= f, contained in D and
only they pass to the critical values of f, ,=F,—¢* tending to 0 as £— 0. The critical
values contained in W, and only they pass to the critical values contained in V, —*. A
system of paths between critical values of f, ,=f, contained in D and its non-critical
value u* satisfying the condition (W) can be deformated into a system of paths between
critical values of f, ,=F,—¢* and its non-critical value obtained by (—&*) — shift from
a system of paths satisfying the condition (V). Systems of vanishing cycles {e}} and {e }
defined by the corresponding systems of paths have equal intersection matrices.

The proof of this lemma is elementary and based on the study of critical values
of the function az*+6z%—2¢z (aeC, J0eR ., eeR ,, aeQ). However it’s rather
complicated and omitted here.

The assertion of Theorem1 is obtained by combining the assertions of
Lemmas 1 and 2.
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Table 1

Notation Formula Numbers M;

Jni ESR SR S 3k+i-1,3k—1

Egy X34z 3k, 3k

Eerit x4 xz? ! 3k+1, 3k

Egirz x3 2%+ 2 3k+1,3k+1

Xin x*—x2zk g g 4k—1,4k—1,4k+p—1
Y, x2(x ~ 2K 4 x2 23R H5 4 (x —2F)2 22k dk+r—1,dk+s—1,4k—1
VA x*—x3 M g gtk e 4k—1, 4k+3i+p—1, 4k+3i—1
VA PN x*—xP kgt 4k+3i, 4k—1, 4k+3i
VAT x*—x3 gk x gl 4k+3i+1. 4k—1, 4k +3i
AP x* P g2 4k+3i+1,4k—1, 4k+3i+1
Wi x4z 4k, 4k, 4k

Wiakan x*—xz?r! 4k+1, 4k, 4k

Wi x* —x2 gLy gtk 2 Bk+1,4k+1, dk+i
Wehaot (x? —z2H )2 xzkran! Ak+q+1, dk+q, 4k+1
Wl (x2— 22K+ )2 g 2 p2kra dk+q+1, dk+q+1, 4k+1
Wiziss x*—xz¥? 4k+2, 4k+1, 4k +2
Wiskise x4 4 A3 4k+2,4k+2, 4k+2

Qi X3+ (z—x)y? +x2zh 4 3k 2,2, 3k—1,3k+i—1
Qerss >c3+(z-x)yz+z“+1 2,2, 3k, 3k

Qeies x34(z—x)y? —xz7*! 2,2, 3k+1, 3k

Qoirs x*+(z=x)y +z3“+2 2,2, 3k+1, 3k+1

Stz 1 x2y+(z— )y +z% 2,4k—1,4k—1,4k—1
Sk X2y +(z—y)p?+xz* 2, 4k, 4k—1,4k—1

Sis x2y+(z—y)y 4+ x2 g3k gt 2, 4k, 4k, 4k+i

Si20-1 X2y +(z—y)y? —yz?kt fxg3kre 2, 4k+q, dk+qg—1, 4k
Se.24 xX2y+(z~y)y? —yzz"“—}—xzz“” 2, 4k+q, 4k +gq, 4k

Sizksa X2y +(z—y)y*+xz3* 2, 4k+1, 4k, 4k+1

Siakss x2y+(z—y)y2+z+2 2, 4k+1,4k+1, 4k+1
Tr xy(z—x =y +xP Y +(z—x—p) p—Lg—1,r—12

Ui 2 x3 4 xy? 423! 3k, 3k, 3k, 3k

U 2g-1 X3 xy?—xz2h 1y e 3k+q, 3k+q, 3k 3k+1

Ui 2g x4 xy? —xz2t gy 2hrart 3k+q+1,3k+gq, 3k 3k+1
Uizkes x>+ xy? 4232 3k+1, 3k+1,3k+1, 3k+1

S. Examples

The problem of calculation of intersection matrix for a singularity f is reduced by

the Theorem 2 to the problem of calculation of intersection matrix for f

._oand of

the exponents o; for I;(f). Corresponding calculations were carried out for all the
singularities from the Arnol’d list [ 3] excluding the series V, in particular for all the
bimodular singularities. The results of these calculations are presented in Table 1.

In this table after the notation of a singularity in terms of [3] a formula of a

representative of this singularity used for the calculations and numbers M |, ..

(&' =p(f,_o)) are presented.

LMy,

u
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1 2 1 3 2 4

) b) o)
“ 7

Fig. 1. Dynkin diagram of a distinguished basis for f|,_, satisfying the condition (V) for f belonging to
the series: a) J,IEE; b) X, Y, Z, W; ) Q, §, T, U

An intersection matrix of a distinguished basis for f can be obtained form an
intersection matrix of a distinguished basis for f|,_, satisfying the condition (V)
{corresponding Dynkin diagrams are presented in Fig. 1) by the formulas from
Theorem 1, and the basis for f is formed by cycles ¢, 1<m<M,.

Remark. Some of the singularities are presented in a form not satisfying the
condition (%) but convenient for calculations of intersection matrices of f|,_ (all
the critical points of f|,_,, ¢>0, are real and we can use the Gusein-Zade method
[4]). The condition (%) holds then after multiplication of f by a non-real number.
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