PROJECTIONS OF SEMI-ANALYTIC SETS

A. M. Gabriélov

INTRODUCTION

In this paper we shall study sets which are the images of real semi~analytic sets under analytic
mappings. ‘
It is known that the image of a complex analytic set under a proper mapping is an analytic set.

On the other hand, according to the Tarski-Seidenberg principle, the image of a real semi-alge-
braic set under any algebraic mapping is a semi-algebraic set.

An analogous assertion is not true for the images of real semi-analytic sets, even relative to com-
pacta.* However, for some problems in analysis, it is necessary to have information about such sets
(called, in this paper, 7 sets).

The fundamental result of this paper is, essentially, that the class of % - sets is closed with respect
to set-theoretical operations (specifically, with respect to taking the complement; the others are trivial).
On the other hand, it is known that each 7 set on the plane is a semi-analytic set (see [1]). This makes
it possible to study the metric properties of % sets by using the Pyuize expansion. In particular, it is
possible to establish regular expandability, the Whitney property (near points of a closed .s’ set can be
joined by short curves), ete.

Another use of the basic theorem is the proof of the finitude of the number of connected components
of a J set, depending on a parameter.

In this paper, we also give a local description of a . set, similar to the local descriptions of analy-
tic sets.

For our proof, we make essential use of the results of Lojasiewicz [1] as they apply to semi-analytic
sets.

1. Definitions, Notation, Results

Set L in n-dimensional real space R®,is said to be semi-analytic if, in the neighborhood of each point
Xo € RR it is the finite union of sets of the form {f(x) =0, gjx) >0,i=1,...,ipj=1,..., jo} where f;
and gj are analytic functions.in the neighborhood of point xy. We give the name % set to a set in n-dimen-

sional space of the form [x¢R"|[dye¢R": (x,y)¢ L), where L is a relatively compact semi-analytic set in
ROYM,

Note. It is obvious that the image of a relatively compact semi-analytic set under any analytic map-
ping is a sa & set.

The dimension of a P set in n-dimensional space is the number k such that the image of this set upon
projection onto some k-dimensional subspace is dense somewhere, whereas the image upon prOJectxon
upon any (k + 1)-dimensional subspace is a nowhere dense set.

In the sequel, we shall consider only semi-analytic sets of the form {x €I? [ fi(x) =0, gj(x) > 0},
where In = {x€R"||x;— x!|<{e} is some cube in R” This limitation is unessential, since any rela-
tively compact semi-analytic set can be represented in the form of a finite union of sets of the specified
form. In this case, the corresponding % sets have the form (x €/* [T yeF™: fi(x, y) =0, g;(x, 1) > 0}.

*It is simple to obtain counterexamples from the remarks to Theorem 10 of Chapter 4 of [2].
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If Misa 9 set in cube IN, we then denote by CM (the complement to M) the set M\ M. If In = K x
In"k, where x' =Xy, . . ., Xk is the coordinate in Ik and X" =Xk+4¢, . . ., Xp is the coordinate in In"k, we then
denote by (x")x,, x; € IK, the subset o} x M-k in I}, If M is some set in I, we then denote by Mg, (x")
the set M 1 (x")x;.

In the sequel we shall frequently not specify explicitly the cube, I", in which some set or another is
contained. In such cases, when we say, for example, that set M is dense in R", we understand that M is
dense in the corresponding cube IN,

The image of a set under the projection R"*"—R" will usually be called simply the projection of
this set.

We shall need the following properties of semi-analytic sets [1]:
(1) Unions and intersections of semi-analytic sets are semi-analytic sets.
(2) The closure of a semi-analytic set is a semi-analytic set.

(3) Each semi-analytic set is the locally finite union of connected semi-analytic sets (its connected
components). '

(4) Any two points, a; and a,, of a connected semi-analytic set L. CR" can be joined by a semi-~analy-
tic curve. This means that there exists some embedding f: [0, 1] — L whose image is a semi~analytic set
in R", withf(0) =a; and f(1) = a,. We note that a semi-analytic curve is analytic everywhere with the ex-
ception of a finite number of points.

(5) The image of a relative compact one-dimensional semi-analytic set under an analytic mapping is
a semi-analytic set.

(6) The image of a relatively compact semi-analytic set under projection onto a two-dimensional
plane is a semi-analytic set. '

T
(7) A closed semi-analytic set in the neighborhood of each point has the form L == kU L., where Lk =
=0

&lf i) =0, gjkx) =0}

From these enumerated properties there immediately flow the following properties of & sets, which
we shall henceforth utilize without explicit citation:

(1) Unions and intersections of P sets are & sets.
(2) The closure of a ¥ setisa J° set.
(3) Each & set is the union of a finite number of connected 7 sets (its connected components).

(4) Any two points of a connected 7 set can be joined by a semi-analytic curve. (This follows from
properties (4) and (5) of semi-analytic sets.)

(5) Each 7 setin R®is a semi-analytic set.

(6) A closed & set is the projection of a compact analytic set (since a semi-analytic set of the form
{fi=o, gj = 0} is the projection of the set {fi(x) =0, gjx) = §J?}).

In this paper, we shall prove the following assertions:
THEOREM 1. The complement of a P set is a F set.

COROLLARY 1. Let M(x, £) bea 9 setin R*™,x=(xy,...,xn), § = (§g, . . ., §). Let N(§) be the
number of connected components of set Mg(x). ‘Then, N(£) < N, where N is some constant which does not
depend on &.

THEOREM 2. In cube I? of space R" let there be chosen a basis {x' = (Xy, . « ., Xi)» X" = (XKkt15 « -
xn)}, and let M be a k-dimensional & set in IN, There then exist open P sets Qp (p=0,...,N) in space
(x") such that:

(1) U Qp is everywhere dense in IK;
P
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(2) set M N {Q; xX xM} is vacuous;

3) set M N {Q x xM} (p =1, ..., N) coincides with the set {x' € Qp, Xk+j =fpj(x'),j =1,...,
n—k} where f; is a p-valued analytic function in Q.

COROLLARY 2. Each 2 set is the union of a finite number of locally analytic % sets (i.e., of sets
which are analytic in the neighborhood of each of their points).

To prove these assertions, we require the following auxiliary assertions.

LEMMA 1. Inan (n+1)-dimensional space, let there be chosen a basis {x = (xy, . . ., Xp), t}, and let
Mbe a & set in the semi~space t > 0, nowhere dense in the neighborhood of the space t =0. (This means
that, in each neighborhood of each point of (x, 0), we can find a point (xi, t), t >0, some neighborhood of
which does not contain a point of set M.) Then, set M N {t = 0} is nowhere dense in the spacet = 0.

LEMMA 2. A ;- set whose complement is 'everywhere dense is itself a set which is nowhere dense.

LEMMA 3. LetL =, zlf(x,2) =0} (x =x4,...,%Xp} Z =24, ..., Zy) be an analytic set, and let the
projection of set L onto space (x) be a set which is dense somewhere. Then, one of the two following state-
ments holds:

(a) there exists a proper analytic subset, L', of set L such that the projection of L\ L' on (x) is a
nowhere dense set. '

(b) 1t is possible so to specify set L by analytic functions fj,i =1, . . ., k, that the analytic set

" d i . . .
L :{(x,z)eL[rk(gra_.f)<k rz} i=1,...,k5 j=1,...,n) will be a proper subset of set L.

1

ASSERTION Wp. Let M be a closed, nowhere dense, P set in n-~dimensional space. In this space
we single out variable xq, denoting the remaining variables by (x"). Then, there exists a constant N, as
well as a # set &, everywhere dense in space (x'), such that each set Mx, (xp), x' € £, contains not more
than N points.

ASSERTION Py. The complement to a closed and nowhere dense 2 set in n-dimensional space con-
tains a 5° set which is everywhere dense in this space.

ASSERTION Ty, The complement to a closed 7 set in n-dimensional space is a 7 set.

2. Proofs

LEMMA 1. We pursue the proof by induction on n. For n =0, the assertion is obvious (since a
set consists of a finite number of connected components). We assume the assertion to be true for n-1.
Let Mbe a % setin the (n+1)-dimensional space (x, t) which satisfies the conditions of the Lemma, its
closure being everywhere dense in the space t =0. (In case M N {t =0} is everywhere dense only in
some open set 2' C (x), we replace I by some cube which is contained in ') We denote by x' the vari-
ables Xy, .. . , Xp-1. We produce all the possible subspaces (x', t)xy,, and close each of them from the sets
Mxp{x', t). We denote by M' the intersection of the set thus obtained with the space t =0. In space t =0,
we produce all the possible lines (xp)x'. Assume that, on some line (xn x(;- there is a countable number of
points not lying in M'. Consider then the set N = {xp, el A x', t: (x", xp, t) € M, [(x', ) —(x{, t)[<e}. SetN
is a P set on the plane and, consequently, is a semi-analytic set. By assumption, the set °N N {e> 0}
(which will also be semi-analytic) contains a countable number of points with different coordinates xp.
Consequently, there exist two points, (x%l, el and (x%l, €9, (x%.1 #x%), lying in one connected component of
this set. We join these points by a curve in ®N (1 {£>0}, Then, the space under this curve does not con-
tain points of set N and, consequently, segment [x%l, x%,] on the line x' = x§, t = 0 does not contain points of
set M, contradicting the assumption that M (1 {t =0} is everywhere dense. ‘

We may thus assume that, on each line (xp)y', there exists only a finite number of points which are
‘not in set M'. Let us number the rational points of space (x") in the sequence {ax}. Let P = {xnl(ajxp)

€ CMay(xp)}, Pk = U P;. Each set Pk consists of a finite number of points. Consider some space (x')xy,
f==1

where «x,¢ (G P,z) . A1l the rational points of this space lie in M', so that set Mxpy(x', t) does not satisfy
k=1

the conditions of Lemma 1, and we can find, in space (x")x,, an everywhere dense set, C, of points in some
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neighborhood of each of which in the semi-space {x', tlt> O} set Mxy(x', t) is dense. (If set C is not dense
somewhere, Lemma 1 can be applied to a neighborhood not containing points of set C.) Since set C is open,

»

€f oo
its complement in nowehere dense. We now can find point ., € (U Pk) such that, in space (x")x}, set

\I€=1
Cer"{(x ") will be everywhere dense, which leads us to a contradiction.

In space t = 0, consider the set Cx of points (x", x}) for which ngl(x') is dense in the neighborhoods
&', tlt>0, |x', t)—(x§, 0)| < 1/k}. Each of sets C is nowhere dense in space t = 0. Indeed, if Ck were
dense in some open set, then M would be dense over each point of this set, contradicting the assumption
that M satisfies the conditions of Lemma 1. '

We now choose point xX in the following way. Initially, we find a point x,ll € CPy such that, ina 1~
neighborhood of point a4 in space (x ')x%l, there exists a point by in some close neighborhood of which in
space t =0 no points of set Cy are contained. By moving point Xlil about a bit, we obtain a closed segment
on the xp axis whose points satisfy the same conditions as x}.

On the k-th step, let the closed segment of set CPi we have found be such that the following condi-
tions hold for each ;l)(oint, x%‘l, of this segment; in space (x ')xlé, there exist points bli(-(i =1,...,k j=1,

. .., k) such that lbu"aj|< 1/i, and, in some closed neighborhood of each of the points bl{j in space (x) no
points of set Cyi are contained. It is obvious that one can find, within an already found segment on the xp
axis, a segment contained in ¢Pk+, on which the same conditions will hold with k replaced by k + 1, whereby,
fori,j=1,...,k, the neighborhoods of points bli“j*1 will be contained in the previously found neighborhoods
of points blﬁ.

The point xtt, common to all the segments constructed, will also be the point we are seeking.

LEMMA 2. Let Mbe a .? set such that M is an everywhere dense set, We can assume that M =
(x [ y: filx, y) =0, gj(x, y) > 0}. Consider the set M' = {, £ |dy: fix,y) =0, gj(x,y) = &, & >0}, Itis
clear that, if x € M, € > 0, then some neighborhood of point (x, &) is contained in ®M'. Consequently, M’
satisfies the conditions of Lemma 1, and M' (| {& = 0} is a nowhere dense set. But M' N {e =0} = M, and
the assertion is proven.

LEMMA 3. We define set L by the functions fi(i =1, . . ., k) such that the vectors grad fi will be
linearly dependent only on some proper subset Ly (C L. We can assume that the projection of set L\.L, on
(x) is a set which is dense somewhere, otherwise we could choose L' = L.

Let 4= (gr")'(d' f‘) (i=1,...,k j=1,...,p) be an (m+n) X (k+p) matrix, Lp = {x, z| rk Ap<k +
; .

p}. If L" =L, is a proper subset, the assertion is proven.

Let Ln = L. We then select p such that the projection of set L\ Lp on (x) is a set which is somewhere
dense, while the projection of L\Lp+1 on (x) is a nowhere dense set. We now show then that Lp+yisa
proper subset, so that we can choose L' = Lp+i. Indeed, let Lp+4 = L. Then, since the projection of set
L\ Lp on space (x) is dense somewhere, we can find, by virtue of Lemma 2, on some line (Xp-{»l)xg" . _,x%
a segment parallel to the xp+4 axis, lying in the projection of I\ Lp on the space (xq, . . ., Xp+¢). Con-
sequently, we can find two different points, a; and a,, on this segment lying in the projection of singly con-
nected component, #, of the set (L\Lp) o o(tpsi..., % 2. We select one point each in the preimages of
points a4 and a, in 4, and join them by a 1sen’l’i-analytic curve, A, in i Let I be the unit tangent vector to
this curve. Since the vectors grad fi, x4, . . ., xp are linearly dependent at all points of our curve, the
vector Xp+1 can be expressed in terms of the vectors grad fi, xq, . . . Xp and, since vector Z, lying in the
tangent space to L~"?-"---"?; (Xp+1, ---» Xn, 2), 1is orthogonal to all these vectors, then (I, xpﬂ) = 0 at each point

of the curve, But S([, Xpq) dk‘ = |a, —a,}5~ 0, which leads to a contradiction.
A

Assertions Wp, Py, and T,,. The proofs are by induction on n in the following manner: Tp-q, Wp-y =
‘Whs Tn-4, Wn = Pp, Pp = Tp (for n = 1, all three Assertions are obvious).

Tn-1» Wn~y = Wp. Since M is closed, we can consider it to be the projection of some analytic set, L,
from the (n+m)-dimensional space (x, y).
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We first single out the 3" set @y in space (x'} in the following way: CQ;=N{1{e>0 1 {e-=0
where '
N o= {x, e|d an xm (¢, X)) €M, s — x5 | = e).

The set of points x' for which set Mx'(xp) contains only a finite number of points is everywhere dense in

space (x'} (it is not hard to prove that , otherwise, M would not be nowhere dense). Consequently, set

CN is everywhere dense, while N, by virtue of Lemma 2, is nowhere dense, and set N [\ {& >0} satisfies
the conditions of Lemma 1, from which it follows that ®Q, is nowhere dense, while £; is a 7 set which is
everywhere dense in (x7).

Each set Mx'(xp), x € Q¢, contains no more than a finite number of points. Assume that Assertion Wy
does not hold for set M, i.e., that for each K the set

K { i i
= A €A XN, ., Xnt Xa== xh, (&, Xp) EM)
is non-vacuous and is dense somewhere in space (x').

In space (x"), we single out variable x;—y, we denote the variables x4, . . ., Xp~y by x", and the variables
Xn-1» Xn by Xx™. In space (x"), we choose the everywhere dense & set @, such that, for all x" € Q,, the set
(CQqxm(xpn-y) contains only a finite number of points (the construction is analogous to that of set 2y).

Each set Mgn(x™) = (M N {Q X (xp})x"(x™ consists of a finite number of connected components
which can be either isolated points or semi-analytic curves, subject to a one-to-one single valued projec-
tion into (xp-y)x". Consider the ends of these curves. They may lie, either in set M' (closed ends), or in
set €Q; X (xp)(unclosed ends). Let Qxn(x™ be the set of isolated points and closed ends in M n(x™). If, for
some Ky, the set QK = {x"f more than K, points are contained in an(x"‘)} is nowhere dense then, for each
K, there exists a set, Qf, somewhere dense in (x"), such that, for x" € Qj, there exist in set Myn(x ™ more
than K semi-analytic curves projected onto some interval (Xn—i’ Xh-)x ™

Xrln-—x , -\':—x € (tgl).\'” (*n—1)-
Let '

L L2
M- ,\,,\ EQy, G Xnyt (X7, Nuor, X)EM, H\n—l, Yp, € ‘o f.”:_‘_jT_x"_‘l_ - x"_l}_

Set M" is nowhere dense in (x", xp) (since CM" is everywhere dense) and, for each K, there exists a set

2k, somewhere dense in (x"), such that 1\7[,'('-’ (xp) (x" € QI'{) contains more than K points, which leads to a

contradiction to Assertion Wp-4.

Hence, we assume that, for all K, the set Qx is dense somewhere in (x"). Now, we construct a proper
analytic subset, L*, in L for which each set QK (defined analogously to Q) will be dense somewhere in
(x™ (or we arrive at a contradiction with Wn-4). The Assertion will be thereby proven, since we cannot
continue to decrease set L indefinitely.

We now make use of Lemma 3 for x =x", z = (x™, y). If (a) holds, we can set L*=L". Let (b) hold.
It can be assumed that the projection, S, of the set L\ L' on space (x') is dense somewhere. Indeed, let
set S be dense nowhere. Then, we can either set L* = L" or, for each K, the set {x"|((S X xn) [ M")x"(x™)
contains more than K points} will be dense somewhere in (x"}, after which one can easily proceed to a con-
tradiction to Wp-~y. Consequently, it can be assumed that 8 is dense somewhere in (x"), and that there exists
a point x{ such that curve A, is contained in the projection of set (L\L")xg’ (x™, y) onto space (x™).

grad f; rgrad f;
L7 = (.\’,_!})ELlrk ){; )<k+ll—l, I‘k( _\/; )<k—‘—ll—-l
Xp— Xn

(=1, ..., & j=1, ..., n—2).

Consider the set

In the projection, S', of this set onto space (x), set Q is contained. Indeed, set L\ L™ contains only
those points of set L at which the tangent space, T, to L exists and for which Ty¢»(x™, y) does not traverse
the point upon projection onto (x™y". Consequently, the projection of set (L\ L™)xn(x™, y) onto space
(x™xn does not intersect Qxm{(x™) and, even more so, Qx"(x™) is contained in the projection of set L (XM
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We now show that L™ is a proper subset of L. Let L™ =1. On curve A, we choose two different
points, a; and a,, lying in the projection of one singly connected component, # , of set (L\L“)xg(x"', y). We
choose one point in each of the preimages of points a; and a, in ., and we join these selected points by the
semi-analytic curve A in .# Let ! be the unit tangent vector to A. Then, on the one hand, I~y =I5 =0 at

each point of curve A and, on the other hand, S(ln_l, ln)d)»| = |a;—a,|#0. We have arrived ata contradiction.
A

Tn-1, Wn = Pp. Let M be a closed, nowhere dense, # set in n-dimensional space. In the basis of
this space we single out coordinate xn, denoting the remaining coordinates by (x"). Let £ be an open,
everywhere dense, 7 set in (x') such that when x' € , the set Myx' (xp) contains no more than K points,
where K does not depend on x'. Let Az =1, .» K) be the subset in 9 defined by the formula

Al = v eQld g, ..., xh: (« ,.\',.)Ei’”, .v,.> >xn}.
We set Ag =C(A) N 2, A7 =47 [ C(Al+y). Let

By = {Ag X Xn}, Bij = {&', x| X' € A, Axr oo, vk ', xf.)GM,
A K ATy =, K =0, o D)

Then, the 5 set IU Byj is contained in M and is everywhere dense in space (x).

Pp =Tn. Let M be a closed & set in n~dimensional space. We may suppose that M ={x[qy€/™:
(x,y) €L}, where L = {x, y | f(x, y) =0} is some analytic set. Then, M = {x| min f2(x, y) >0}and it
yem
suffices to show that the set N = {x, t| min f2(x, y) =t} isa » set.
yeim

W& g g, .

o7 ’”} be the set of "singular y points" of the func-

Let Ly = {x.4.¢|/(x ) =4,

tion f2 (more precisely, the set of corresponding points of the diagram of function f%). It is possible to
construct the analogous set, L, G =2,..., 3mM) for each face of the cube M. Let N! be the projection of
set Lj onto space (x), and N' = { | N{. Then, set N' contains N and, for each x;, the set N;(O(t) contains only
a finite number of points. Indeed, on each connected component of each of the sets (Lj)x,(y, t}, function f 2
maintains a constant value, so that, consequently, each set (Nj)x,(t) contains only a finite number of points.
Since, for each xg, set Nx,(t) contains a finite number of points, set Nf (), where

N e[ £ (v, YN, |4 —t ] < e},

also contains only a finite number of points, so that CN" is everywhere dense, while N' is nowhere dense in
space (x, €. But then, N" (1 {& >0} satisfies the conditions of Lemma 1, and the set P =N" {1 {¢>0} N
{e =0} is nowhere dense in space (x). Consequently, CP contains the ;' set P' which is everywhere dense
in space (x). Each connected component of set N™ = {P' x ()} {) N' may be either completely contained in
N, or have a null intersection with N (this readily follows from the continuity of the function min f %), But,
since set P' is everywhere dense in space (x), and the diagram of function min f? is closed, the closure of
the union of the connected components of set N™, which is contained in N, is equal to N. Consequently, N
is a % set,q.e.d.

THEOREM 1. The proof of this Theorem is by induction on the dimensionality of the % set M. Let
M be a k-dimensional ., set in n~dimensional space. We represent ¢M in the form

M= MY FINM) = T (AINM) 1) (GBI M) 1) M),
It follows from Ty that CMisa & set. Therefore, it suffices to prove that M\M isa & set, and that
dim M\ M)< dim M.

Set MM isa P set since, if M = {x]EIy: filx. ) =0, g;(x, ) >0}, then

MNM - (Cfx, eldy: filx, y) =0, &i(x, yy=e}) ) {Mx(e)} N {£>08) N {e=0}.

For the proof that dim M\M <dim M, it suffices to show that the projection of set M\ M on any k-
dimensional subspace is a2 nowhere dense set. Letx'=x;,...,Xk; X" =Xk+qs » - -» Xp. We assume that
the projection of set M\ M on space (x") is dense somewhere in this space. We show that we can then find
a vector, z € (x™, such that the projection of set S;\.S; on space (x") is dense somewhere (Sz is the pro-
jection of set M on the space (x', z)).
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Since, for each j, the projection, SJ, of set M on space (x', xj ) is a nowhere dense set, it follows from
Wk+4 that there exists an open set, QJ, everywhere dense in (x'), such that, for each x' € j, the set
(S}) ,(x ) corrtams not more than Kj points, where Kj does not depend on x'. But then, for each x' ¢ Q= ﬂ 2,

the set Mx'(x ") contains not more than K ‘[TKi points. We choose a countable set of points (x}, x) E
)

M\M, x{ €8, whose projection on space (x' is dense somewhere.

For each i, the set Qj of vectors in (x ")x’ which are such that the hyperplane in (x") passed through
xJ is orthogonal to x" € Qi, has a nowhere dense intersection with Mx!(x n\{x{'}. Consequently, we can
fmd a vector z € ¢( U Qj). Obviously, this is the vector we have been seekmg

Let A,— {x eQ[EIz, vy 25 (X, 2)ES,, 2>,
We set Ag = CA—i; Ag = A('I\A('l-j-l. Let
Buy={(+,26S:1veQ, Az, ..., 21 (,2h €S, > ... > >z>z’> L >

be a "slice" of set Sz over Aq Then, for some I, q, the projection of set Big \ (Byq N S;) onto (x') will be
dense somewhere. Since Blq and Sz are & sets, it follows from Lemma 2 that there exist an open set,

Uy C Aq, such that each point (x', z) € Biq, x' €Uy lies in set Biqg\ (Blg 1 8z). But each such point lies
in set U | B, Therefore, we can assume that the projection of set Byg N (I'L;[ BT,} is dense somewhere

in (xY) (when 1' < 1, the proof is carried through analogously). Consequently, there exists an open set
U, C Uy such that each point (x', z) €Bjq, x' € U, lies in the set B, ( U E‘q)
(V2

Consider the set
' Nz (&, e[ €U,y T2t 22 (¢, 2 € By, (£, )€ U Byeyy 2 —2* - €).

This set satisfies the conditions of Lemma 1, so that v ) {e = 0} is nowhere dense in (x'). This means
that we can find an open set Us(C U, such that it will follow from (x', &) € N, x' € U; that € > &), where &) is
some positive number. Let (x', z) €Blq, x' € Us. This point is the limit of a sequence of points of LJ Bl q-

Consequently, there exists a point (x'%, z‘) € l'L>Jl Birg, x' € Us, PRTAIRS g0/ 2. But then, there exists the

point (x'l, z9 € Blg» z2i—z > £/2. Since this reasoning applies to each point of Biq, we arrive at a contra-
diction with the boundedness of set Byq.

COROLLARY 1. Initially, we reduce the problem to the case when, for each £, the set M¢(x) is
closed. For this, we con81der, for fixed £, the function on Mg(x) pg(x) =d(x, (Mg(x)\ Mg(x))) after which
we consider the set ME(X) of local maxima of this function (if Mg(x)\ Mgx) is vacuous, we then set Mg =
Mg(x)). The set M* = U M; (,\) is a 9 set, as demonstrated by the following calculations.

Let

My = {x,§ eldx (XL E)eM, [r—rt| e},

My = {x,5[de>0: (v, & e)e My,
M = cM, (the closure of M with respect to variable x);
My = {x. L o|(x,B)eM, Txh (x4 E)eM\M, |x—x*|<p),
M= {x, 8 0, 8](x, E 0) € My, Hp: (5, p) €My, |p—p! | e},
M= {x, & o](x, E, p) 6 My, Te>0: (1, E p, £)€ ‘M),
M" =M, |J M,) (the diagram of the function p g (x) cited in the previous paragraphy);
={x, 5 e[dp, o', 5 (x, &, 0) €M", (¢, &, p) EM", | x—21 <6, p*>>p),
M = {x, E{(x,B)eM, Be>0: (x, & 8) € Mg}
Then, M* is the set we seek. Consider the set N = {J (ﬂ.g (:C)) It is not difficult to prove that N is
alsoa & set. We show that, for all £, the number of connected components of set N¢(x) is not less than

the corresponding number for set Mg(x). For this, it suffices to prove that a point of set N¢(x) is con-
tained in each component of set Mz(x), and that each connected component of set N¢(x) is contained in set
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Mg(x). If .# is some connected component of set Mg (x) then, obviously, the point (x, £} €.#,at which function
p£(x) has a maximum on .#,lies in N¢(x). Now, let.i"be a connected component of set Ni(x). It is obvious
that function p¢(x) has a constant positive value on.i" [|Mgx). Therefore, any given point of set .1” CM¢g(x)
cannot lie in Mg(x)\ M;(x), so that it must lie in Mg(x).

‘Now, let Mg(x) be closed for each £. We define the sets Mj(i =0, . . ., n) as follows:
M, =M,

M,-’ ==, By e |d s (L B EMiny, | —x|<le, xiD>x) (i=1, ..., n),
‘Mt' = {-\" g,("’v E)EM('—U El xlv & ('\-l! E)EMI"—D (xl: Ey E)E CM:'7 S>0, X; = X,‘}.

Contained in set (Mj)¢(x) are (x, §) € Mj-y for which there exists x! such that x{ =xi, (x!, £) € Mj—4
while, at the point x!, £, function xi has a local maximum on (Mj-p)¢(x). It is obvious that Mj+1 CC M;j and
that, for fixed £, the coordinates, x4, . . ., Xj, of point x ¢ (Mi)g(x) assume only a finite number of values,
that each set (Mj)¢(x) is closed and, finally, that each connected component of set (Mj-y)¢(x) contains a
point of set (Mi)g(x). It follows from all this that, for each £, the set (Mn)g(x) contains only a finite num-
ber of points, the number of these points being no less than the number of connected components of set
Mg (x).

Our problem then comes to the following: if, for each £, the number, N(§}, of points of set M£(x) is
finite, it is then bounded by some constant, N, which does not depend on £.

Let M be a P set such that, for each £, set Mg(x) is no more than finite and, for each K, the set
MK = (1l ..., ©F xige o, (B, 0 e M)

is nonvacuous. It can be assumed that x is a single variable since if, for j =1, . . ., n, the number of points
of set (Mj)g(x) » Where Mj denotes the projection of set M on (£, xj), is bounded by constant Kj, not depend-
ing on £, then the number of points in set Mg(x) is bounded by the constant K = HK,u

i

Let dim' MK denote the greatest k such that, for some p =y, . . ., pk, the projection, MK , of set MK
on space (£-§) = (gpl‘, . ey Epk) is dense somewhere in ({5). There exists K; such that dim'MK = dim "MK
for all K >Kj. Consequently, we can assume that dim'MK =k for each K =1 (replacing M by {MKo x (x)}

1 M). Obviously, there exists p = (py, - . ., Dg) such that the projection, ME, of set MK on (¢p is dense
somewhere for each K. But, it is not difficult to deduce, from the projection of set M! on each of the
spaces (gp—, Ej) (j # pys - - +» PK) being nowhere dense, that the projection, Mp, of set M on (£p; x) is no-
where dense, and that, for each K, the set MpK is dense somewhere in ( —p) , which contradicts Wi+1.

THEOREM 2. Since the projection, Sj, of set M on each of the spaces (x', Xj) G=k+1,...,n)is
nowhere dense, it then follows from Wi+ that there exists an open & set, Q{, everywhere dense in (x"),
such that, for x' € Qj, the set (Sj)x'(xj) contains no more than Kj points, where Kj does not depend on x'.
Forp=1,.. ., Kj, we set

Ay = €Q A, ., B (2, 5DES), o> ),

Ay ="(A0), Apy = int (4o \Ap=r,).
Let D= (Pk+1: - - - Pr). Let Ay =T1Ap,, j. Obviously, set A is open, and U Agis everywhere dense in (x).
- 14
Let
Bupi {(x', x;)€ ;| ¢’ GA;,,‘y ﬂ‘x}, seey x?—l: (', ‘\;)E Si
K> ST S>> L >
For I5 =(lk+1, - + «» Ins Pk+15 - « «» Pn) We set Big = ', X445 « ., xn | %' € Af(x', xj) Blp'j}- Each non-

vacuous set By has the form {x' € Apixj =fjx) G=k+1,..., n)}. If we can show that, on each open J°
set Q75 which is everywhere dense in Aﬁ, functions f j are analytic, the theorem will then be proven.

In the proof of Theorem 1, it was shown that dim (M \M) < dim M for each 7 set M. Therefore,
there exists a 7 set, Ap, everywhere dense in Aﬁ, such that function f j is continuous on AT)' For simplicity,
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we shall write A instead of Ap, and B instead of Byp. It can be assumed that B={x|qy: (v,y)eL}, where
L is an analytic set.

We first show that we can find analytic subsets, L, in L, and open 7 sets A;j C A, such t}_lat A\L‘J Aj
is nowhere dense and, for each x' € Aj, the set (Lj)x'(x", y) is nonvacuous and finite. »

For this, we apply Lemma 3 to L. If (a) holds (case 1), we set L* = L', A*=int 8' (S'is the projec-
tion of set L' onto space (x"). Suppose (b) holds. Then,

L=ty 9) =0 0 =1 oo 1)
and the set

L {(x,y)ez,|r1<(gr:f‘f’)<,i0—z~ k} Gty oo g i1y ooy B)

is a proper subset of set L. Let S" be the projection of set L" onto space (x"); we set S™ = AN\NS". I int
S™ = (case 2), we set L*=L", A*= int 8". If int S™ = (J and, for each x' €int 8™, set Ly'(x", y) is finite
(case 3), we set Ly =L, Ay = int 8™, L*=1L", and A* =int 8". If int 8™ =", and there exists a point x§ €

int 8™ such that Lgj(x", y) contains an analytic curve A (case 4), we choose a vector yq in the basis of space
(y) such that, on curve A, there exist two points, (xl, yl) and (x?, yz) , such that ya #ygl‘. Consider the set

. ,"gradf,-
L= ('x,u)eLlrk( X )<io+k-~i- 1’ (=1 . jpi=1 ...,k

Yq

It is a proper subset of set L since, were it not, the tangent vector to curve A at any point would be ortho-

gonal to vector yq. Consequently, there cannot be two points with different coordinates ¥q» contrary to our
assumption. Moreover, the projection of set L™ onto (x') coincides with the projection of set L, since

L™ 2 L", while in each set Lxj(x", y), X' € AN S", the point (x", y) having the maximal coordinate yq lies
in L™, We set L*=L™and A*=A, '

By applying the same reasoning to set L* (to which one of the cases considered will apply), we find
sets L**and A*and (in case 3) sets L,, A,.

Repeating these constructions, we wind up with the sets Lj and Aj which we have been seeking.
Now, let Bj =B 1 {Aj x(x™}. It is obvious that
Bi={x",x"|x" €A (x',x"}¢B, y: (', x", y)€Ly}.

We now apply Lemma 3 to set Li. If (a) holds (case 1), we set Li"=L{, Ai* =Aj Nint 8{, where S{
is the projection of set Li' onto (x). If (b) holds, then Lj ={x, y ffij(x, y)=0G=1,...,j)}, where

L= {(x,y)eulrk(g’ajf"f)<ff+k} (=11 coer fi U=, e B
{

is a proper subset of Lj.

If the projection SJ', of set L] onto (x') is everywhere dense in Aj(case 2), we set Li=1], Af =43 N
int S{'. '

If 5" = int (Aj\ Si) = & (case 3), we set L{f =L{', A{'= int S{, Liy = Lj, Ajy =S{". Arriving at the
pair (Af, L'D {arising in one of the cases considered), just as with (A{, Li), and iterating, we obtain the
sets Ajh and Lih such that | Ajp is everywhere dense in Aj, and each set Lip is so given by the functions

' h

finjj =1, . .., jin) that rk (gfailffhi) = jjh +k for x' € Ajp. Moreover, since for x' € Ajy, the set (Lip)x'(x",y)

is zero~dimensional, it follows from the implicit function theorem that, in the neighborhood of point
(x',x",y) €Ljh, X' € Ajh, set Ljp has the form {(x", y) = F(x"}, where F = (fy, . . .,/ m+n-Kk is an analytic
vector function in Ajh. Consequently,

BN {Aux (")} = {&" € Am: xg == fo (¥},

and, for the proof of the Theorem, it remains only to set Qfp = th Ajh.
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COROLLARY 2. Let Mbe a .»* set in the space (x) = (x4, . . ., Xp). We use induction on dim' M, this
being the greatest k such that the projection of set M on some k-dimensional subspace (xpi, v e e ka) is
dense somewhere.

Letp=(pgy . - «» PK> (x?} =(Xpys - - o xpk), (xﬁ) be the orthogonal complement to (xb). We order the
vectors p in the sequence {B;

It follows from Theorem 2 that, in space (sz) , there exists an open, everywhere dense, set, 951,
such that My =M ) {9'51 X (xr'; )} is a locally analytic set. If dim'(M\ My is less than k, then all is proven.
If, however, dim'(M\ My) =k, i)y applying Theorem 2 to M\ M, instead of to M, and to B, instead of to Py,
and iterating, we obtain a collection of locally analytic sets, Mj, such that the projection of set M* =
M \.U Mj on any space (xp) is nowhere dense. It immediately follows that dim'M* <k, and our assertion
is proven.

In conclusion, the author wishes to thank V. P. Palamodov for having posed the problem, and for his
attention to the work.
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