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Abstract

Short-term earthquake prediction, months in advance, is an elusive goal of earth sciences, of great importance for fundamental

science and for disaster preparedness. Here, we describe a methodology for short-term prediction named RTP (Reverse Tracing of

Precursors). Using this methodology the San Simeon earthquake in Central California (magnitude 6.5, Dec. 22, 2003) and the

Tokachi-Oki earthquake in Northern Japan (magnitude 8.1, Sept. 25, 2003) were predicted 6 and 7 months in advance, respectively.

The physical basis of RTP can be summed up as follows: An earthquake is generated by two interacting processes in a fault

network: an accumulation of energy that the earthquake will release and a rise of instability triggering this release. Energy is carried

by the stress field, instability is carried by the difference between the stress and strength fields. Both processes can be detected and

characterized by bpremonitoryQ patterns of seismicity or other relevant fields. Here, we consider an ensemble of premonitory

seismicity patterns. RTP methodology is able to reconstruct these patterns by tracing their sequence backwards in time. The

principles of RTP are not specific to earthquakes and may be applicable to critical transitions in a wide class of hierarchical non-

linear systems.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There is increasing evidence that variations in re-

gional seismicity occur prior to intermediate and large

earthquakes (Keilis-Borok et al., 1980; Mogi, 1981;
0040-1951/$ - see front matter D 2005 Elsevier B.V. All rights reserved.
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Caputo et al., 1983; Sykes, 1983; Keilis-Borok, 1990;

Ma et al., 1990; Molchan et al., 1990; Knopoff et al.,

1996; Bowman et al., 1998). Using pattern recognition

techniques a series of algorithms have been developed

which provide intermediate-term and long-term predic-

tions with lead times of years to decades respectively

(Keilis-Borok and Shebalin, 1999; Keilis-Borok, 2002;

Keilis-Borok and Soloviev, 2003; Rundle et al., 2003). In

this paper an algorithm is introduced that has success-

fully made short-term earthquake predictions, i.e.
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months in advance (Shebalin et al., 2004; Keilis-Borok

et al., 2004). This algorithm is currently tested by ad-

vance prediction in several seismically active regions

and its performance is yet to be validated. However,

the first successes along with the novelty of the method-

ology used in this algorithm and a multitude of its

possible applications motivate us to describe here its

underlying ideas and techniques.

It should be emphasized that there are two quite

different approaches to earthquake prediction. The first

is to make continuous predictions; in terms of earth-

quakes, this requires the specification of earthquake

risk at all spatial points at each time instant. This ap-

proach is very useful when predicting a large number of

small to intermediate earthquake since one can directly

compare the observed and predicted seismic rates (prob-

abilities, intensities, etc.) using the log-likelihood para-

digm (Daley and Vere-Jones, 2004) or the least-square

discrepancy (Whittle, 1963). The second approach that is

used here is binary: an earthquake is forecast (predicted)

for a specified area and time window, called alarm

region or alarm. This approach is better justified when

predicting extremely rare large events, so the direct com-

parison of the predicted continuous rate with a couple of

observed earthquakes is rather problematic (Molchan,

1990, 2003). Our goal is to narrow down the area and

time duration of alarms, within which a target earthquake

is expected. Prediction is targeted at the large and there-

fore rare earthquakes; in a typical alarm area they occur

on average once in 10–20 years. Our prediction should

capture the target within an interval 20–30 times smaller,

since a short-term alarm lasts months. Thus our alarms
Fig. 1. Possible outcomes of prediction. For simplicity the territory

where the prediction is made is represented by a 1D dSpaceT axis.
Rectangles—space–time areas covered by correct (gray) and false

(white) alarms respectively.
should be equally rare and each correct alarm would

typically capture only one target.

An early theoretical discussion of the necessity of a

binary approach instead of a continuous one in pre-

dicting rare point events is given in (Lindgren, 1975,

1985; De Mare, 1980). The difference between con-

tinuous and binary predictions has been widely recog-

nized in weather forecasting (Jolliffe and Stephenson,

2003). An example of binary forecast is a tornado

warning issued for a specified area and time window.

Tornado warnings are analogous to the earthquake

alarms considered in this paper. Possible outcomes

of such predictions are illustrated in Fig. 1. In this

scheme, we have two types of errors: failures to

predict (target earthquake outside alarm region) and

false alarms (no target earthquakes within an alarm); a

prediction algorithm is also characterized by the total

time–space covered by the alarms. Probability of

errors of different types is estimated using a sequence

of predictions and is visually represented in the error

diagrams (Sect. 3 below; Molchan, 1990, 2003). An

analogous approach in weather forecasting is the rel-

ative operating characteristic diagram (Jolliffe and

Stephenson, 2003).

2. Reverse Tracing of Precursors (RTP)

We will now outline the RTP (Reverse Tracing of

Precursors) approach to short-term earthquake forecast-

ing. Technical details are given in the Appendix. Three

aspects of RTP are important:

(i) Precursory chains that reflect the premonitory

increase of the earthquakes’ correlation range;

qualitatively, these chains are the dense, long,

and rapidly formed sequences of small and medi-

um sized earthquakes. Their definition gener-

alizes premonitory seismicity patterns ROC and

ACCORD. Heuristically, the pattern ROC ensures

the ongoing increase of earthquake correlation-

range, expressed via the pair-wise correlation

function; while ACCORD reflects simultaneous

activation of several major parts of the regional

fault network. They represent complimentary

approaches to detecting the earthquake correlation.

Formal definitions of these patterns as well as their

performance in synthetic and observed seismicity

can be found in (Gabrielov et al., 2000; Shebalin et

al., 2000; Zaliapin et al., 2002, 2003; Keilis-Borok

et al., 2002). An alternative approach to measuring

the earthquake correlation was introduced in (Zöl-

ler and Hainzl, 2001; Zöller et al., 2001).
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(ii) Intermediate-term patterns, originally found in the

modeled and observed seismicity (Prozorov and

Schreider, 1990; Keilis-Borok and Shebalin, 1999;
Fig. 2. Regions where the proposed algorithm was te
Gabrielov et al., 2000; Keilis-Borok, 2002; Keilis-

Borok and Soloviev, 2003; Zaliapin et al., 2003).

They reflect four major types of premonitory phe-
sted by advance prediction. See text for details.
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nomena: rise of seismic activity, rise of earth-

quakes’ clustering, rise of earthquakes correlation

range, and a transformation of the magnitude–

frequency (Gutenberg–Richter) relation towards

an increasing share of relatively large magnitudes.

(iii) Pattern recognition of infrequent events is used to

define the precursory combination of the patterns.

Specifically, we used the Hamming algorithm

which in our case is analogous to voting (Kei-

lis-Borok and Soloviev, 2003); this algorithm is a

standard tool in making a decision by considering

several bopinionsQ. Formally, the Hamming dis-

tance between two Boolean vectors of the same

length is defined as the number of their non-

coincident symbols. In our problem, the Ham-

ming distance is the number of emergent inter-

mediate-term premonitory patterns.

RTP analysis consists of the following stages. First,

we detect chains—the bcandidatesQ for the short-term

precursors. We have found that precursory chains

emerge within months before most of the target earth-

quakes. However, up to 90% of the chains are not

followed so closely by strong earthquakes and in pre-

diction they would cause false alarms. To eliminate

false alarms, we next determine which intermediate-
Fig. 3. Results of advance prediction in California. The advance prediction s

one false (B), one current (C).
term precursors have occurred in the vicinity of each

candidate within few years preceding it. Finally, we

apply pattern recognition: knowing for each candidate

what intermediate-term patterns have preceded it, we

recognize which chains are precursory and which are

false alarms. Specifically, we discriminate precursory

and non-precursory chains using a set of M individual

intermediate-term premonitory patterns. Some of them

give premonitory signal (emerge) while other do not.

The current state of the patterns is represented by a

M�1 Boolean vector indicating which pattern emerge

(1) and which is not (0). A zero vector would indicate

that none of the patterns emerge and the chain is most

probably not precursory, while a vector consisting of all

ones that all the patterns emerge and the chain is most

probably precursory. Hamming distance, defined as the

number of ones in our Boolean vector, shows how far

the vector is from a zero one; in other words, how many

patterns bvotedQ for making the chain precursory. If

sufficient number of votes is accumulated (the thresh-

old is established during the learning) the chain is

considered precursory. This brings us to the prediction

proper. The emergence of each precursory chain starts

an alarm: a target earthquake is expected during s
months after the chain was formed and in its formally

defined vicinity.
tarted in July 2003. Three alarms were issued: one correct (marked A),



Fig. 4. Results of advance prediction in Japan. The advance prediction started in July 2003. Two alarms were issued: one correct (panel A), and one

false (panel B). We notice that two target earthquakes occurred outside the formal prediction region near the boundaries of our false alarm; if one

extended the prediction region to include these two target earthquakes, they would be successfully predicted with the current values of algorithm

parameters.
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Thus, the precursory chain indicates the narrow area

of a possibly complex shape (the chain vicinity) where

intermediate-term precursors should be looked for.

Their presence in turn validates the chain, as a short-

term precursor. A chain is considered first although it

emerges later—hence our analysis is called reverse.

3. Performance

We have tested our algorithm by advance prediction

in Southern and Central California using the earthquake

catalog ANSS/CNSS starting from January 1965. First,

the data for 1965–1994 have been used for blearningQ,
i.e. self-adaptation of some of the parameters (see

Appendix A3). Then, the resulting rule was tested on

independent data (i.e. the data not used for learning) for

the period from January 1995 to May 2003. In June

2003 we have launched advance prediction. The only

target earthquake that happened in the prediction region

during the advance phase of the experiment (the San

Simeon earthquake, December 22, 2003, M =6.5) was

successfully predicted. The alarm capturing this earth-

quake started on May 5, 2003—the date when the

precursory chain triggering the alarm was completed.

This alarm was reported on June 21 of the same year

(Aki et al., 2003).

The algorithm has also been applied to the territories

of Japan; Central Apennines, Alps, Northern Dinarides

and Po valley; and Eastern Mediterranean (Figs. 2–5)
Fig. 5. Results of advance prediction in Northern Dinarides. The advance pred

a big earthquake happened within our false alarm; this earthquake formally

done for MWN=5.5).
with magnitude of target earthquakes Mz7, Mz5.5

and Mz6.5 respectively. In Japan, the learning was

performed during 1975–2003, and advance prediction

started on July 1, 2003 (Shebalin et al., 2003). In

Central Apennines, Alps, Northern Dinarides and Po

valley the learning was performed during 1970–1990,

and advance prediction started on May 12, 2004. In

Eastern Mediterranean the learning was performed dur-

ing 1983–2003, and advance prediction started on May

12, 2004. The intermediate-term patterns (see Appendix

A3) showed amazing self-adjustment: they were appli-

cable within all three regions, and to all chains within

each region, with the same values of their four numer-

ical parameters.

The Tokachi-Oki, Japan, earthquake, 25 September

2003, M =8.1, has been also predicted in advance: the

alarm started on 27 March, 2003 and was reported on 2

July 2003 (Shebalin et al., 2004).

During the time period covered by our advance

prediction experiment, two target earthquakes have oc-

curred; both of them have been predicted. Three false

alarms were issued; one alarm is current. Figs. 3–5 and

Table 1 summarize the results of the experiment. It

is worth noticing for further research that a large earth-

quake (ML=5.7, MW=5.3) occurred within the alarm

issued in Northern Dinarides; and that two target earth-

quakes (MW=7.4, MW=7.2) occurred near one of the

alarms issued in Japan, but outside the formal predic-

tion region. A retrospective analysis for an extended
iction started in May 2004. One false alarm was issued. We notice that

does not fit the prediction as its magnitude MW=5.3 (prediction was



Table 1

Results of the advance prediction experiment

Region/target

earthquakes

Alarm duration Probability that a target

earthquake will occur at

random in the time–area of alarma

Japan MJMAz7.0 27 Mar 2003–27 Jan 2004

Tokachi-Oki, 25 Sep 2003, MW=8.3

0.25

Central and Southern

California

MANSSz6.4

5 May 2003–27 Feb 2004

San Simeon, 22 Dec 2004, M =6.5

0.05

Southern California

MANSSz6.4

29 Oct 2003–05 Sep 2004 False alarm 0.08

Honsu, Japan

MWz7.2

8 Feb 2004–8 Nov 2004 False alarm

(note: two quakes, MW=7.4 and

MW=7.2 outside formal

region boundaries)

0.07

Northern Dinarides

MWz5.5

29 Feb 2004–29 Nov 2004

False alarm (note: MW=5.3,

ML=5.7 in the area of alarm)

0.07

Southern California

MANSSz6.4

14 Nov 2004–14 Aug 2005 Current alarm 0.05

a See Appendix A7 for the explanations of how this estimation was obtained.
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region gives a successful prediction for those two

earthquakes.

4. Prediction quality

As we mentioned in the Introduction, the problem of

evaluating a binary prediction requires special tools.
Fig. 6. Significance of prediction in California: an illustration (see

Appendix A6 for details). Shaded ball shows performance of the

prediction algorithm during the time interval considered. A perfect

prediction would lie in the origin. Random binomial predictions

(alarm is declared for each elementary spatio-temporal unit with a

fixed probability s) asymptotically occupy the diagonal, but might

deviate from it with finite number of target earthquakes. Random

predictions with fixed s fall in the grey area with probability

a =0.001. Note that the shape of the grey area depends on the number

of the target earthquakes that actually happened within the predic-

tion region.
The main difference from evaluating a continuous pre-

diction is that we can no longer use a single measure of

discrepancy between prediction and observations (one

faces the same situation in classical hypothesis testing

where errors of two types are introduced). We use three

interdependent measures of prediction quality, defined

in Appendix A5: fraction of unpredicted earthquakes, n;

fraction of false alarms, f; and the space–time s covered

by all alarms together, normalized by the whole space–

time considered. The space is measured not in km2 but in

long-term average of seismicity. Specifically, we used

the average number of mainshocks with mz4. The

optimal tradeoff between different characteristics

depends on a loss function L(n,f,s) for preparedness

measures (Molchan, 1990, 2003).

The error diagram juxtaposes the prediction errors;

each particular prediction corresponds to a single point

in (n, s, f) space. The error diagram is used to evaluate

the predictive power of our prediction algorithm and its

stability. For illustration, the error diagram for our

prediction experiment in California during 1964–2005

is shown in Fig. 6; it shows the relative alarm coverage

s (10%) vs. the number of failures to predict (0); the

number of false alarms (5) is indicated in parentheses.

A more detailed discussion of error diagram approach is

given in Appendix A6.

5. Discussion

1. A possible physical mechanism underlying the

RTP methodology is based on models of dynamical
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systems (Gabrielov et al., 2000; Zaliapin et al., 2003)

and geodynamical models (Rundquist and Soloviev,

1999). Precursory chains outline the areas where insta-

bility is accumulated months before a target earthquake.

This instability reveals itself through an increase of the

earthquake correlation range. Intermediate-term pre-

monitory seismicity patterns considered reflect the ac-

cumulation of energy and instability necessary and

sufficient to trigger an earthquake, in the area outlined

by a precursory chain, but years before the chain. In

more general terms, RTP identifies a small-scale per-

turbation that carries a memory of the larger scale

history of a complex system (in our case, the fault

network). Increases of the correlation range are a

known symptom of critical transitions in statistical

physics and of bifurcation in nonlinear dynamics

(Kadanoff, 2000). Typically for premonitory patterns

of this kind precursors considered are sporadic short-

lived phenomena not necessarily reflecting the steady

trends of seismicity. This suggests that both patterns are

symptoms but not the causes of a target earthquake:

they signal its approach but do not trigger it. Such

sporadic precursors to critical phenomena have been

found also in socio-economic complex systems (Keilis-

Borok et al., 2000).

2. It seems promising to apply RTP analysis to the

detection of earthquake precursors in the other rel-

evant and available data such as electromagnetic fields

(Uyeda and Park, 2002), fluid regime (Ma et al., 1990),

InSAR and GPS (Simons et al., 2002). The first posi-

tive result has been obtained with precursors gauging

interaction between the ductile and brittle layers of

the Earth crust; this opens a highly promising link of

geodynamics and nonlinear dynamics approaches to

prediction (Jin et al., 2004).

3. The methodological advantage of RTP over a

direct analysis is in the drastic reduction in dimen-

sionality of the parameter space where premonitory

patterns are looked for. We have found here the

patterns formed in narrow areas different from case

to case, whose shape might be complicated, and with

diverse size. To find these areas by a trial-and-error

procedure would require trying different shapes, sizes,

and locations, which is hardly realistic. Reverse anal-

ysis resolves this impasse, determining from the start a

limited number of the areas to consider. Thus, RTP

analysis provides a common methodological approach

to the prediction of avalanches in a wide class of the

complex systems, formed separately or jointly by

nature and society.

4. The only decisive test of any prediction theory

is an experiment in advance prediction. Such an
experiment for the methodology described above

was launched in June 2003 and is currently main-

tained by University of California Los Angeles

(USA), Russian Academy of Sciences, and Institut

de Physique du Globe de Paris (France). The com-

plete results will be published elsewhere. The goal

of this paper is to present the essential underlying

concepts and report its first successes to a broad

range of multidisciplinary experts, attracting their

attention to the possibility of exploring premonitory

patterns in diverse physical fields using the RTP

methodology.
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Appendix A

A.1. Earthquake catalogs

The data used in analysis are provided by the

routinely compiled earthquake catalogs, which present

at the moment the most accurate and complete infor-

mation about the dynamics of seismicity. The earth-

quake catalog is taken from ANSS/CNSS (ANSS/

CNSS Worldwide Earthquake Catalog, 1965–2003)

and NEIC. We use a common representation of the

earthquake catalog {tj, uj, kj, Mj, bj}, j =1, 2, . . .
Here tj is the time of an earthquake, tjz tj�1; uj and

kj—latitude and longitude of its epicenter; and Mj

magnitude. We consider the earthquakes with magni-

tude MzMmin. As in most premonitory patterns of

that family (Keilis-Borok, 2002) aftershocks are elim-

inated from the catalog; however, an integral measure

of aftershocks activity bj is retained for each remain-

ing earthquake (main shocks and foreshocks); bj is

the number of aftershocks occurring immediately after

an earthquake (e.g. within 2 days).
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A.2. Chains

A chain captures a rise of earthquakes’ correlation

range in its vicinity. Let us call two earthquakes

bneighborsQ if their epicenters are closer than r and

their times are closer than s0. A chain is a sequence of

earthquakes where each earthquake has at least one

neighbor belonging to that sequence and, therefore, no

neighbors outside the sequence. he average density of

epicenters decreases with increasing magnitudes. Ac-

cordingly, r is normalized as r = r010
c(m�2.5), where m

is the smallest magnitude in the pair. The R-vicinity of a

chain is outlined by the smoothed envelope of the circles

of a radius R drawn around each epicenter in the chain.

We consider only the chains with two sufficiently large

characteristics: number of earthquakes kzk0, maximal

distance between epicenters lz l0. Two parameters of the

chains are common for all the regions: r0=50 km,

c =0.35. Other parameters are common for all chains

within a region, but differ between regions as follows:

Southern California, s0=20 days, k0=6, Mmin=2.9,

l0=175 km; Central California, s0=30 days, k0=10,

Mmin=2.9, l0=250 km; in Japan, s0=20 days, k0=10,

Mmin=3.6, l0=350 km, c0=0.4; Eastern Mediterranean,

s0=40 days, k0=6, Mmin=3.0, l0=200 km.

A.3. Intermediate-term patterns

We look for intermediate-term patterns in the R-

vicinity of each chain within T years preceding it. To

detect a pattern P we compute a function FP(tj) defined

in the bevent windowQ (Keilis-Borok and Soloviev,

2003), i.e. on the sequence of N consecutive earth-

quakes with indexes j�N +1, j�N +2,. . ., j. In R-

vicinity of each chain we normalize seismicity by the

lower magnitude cutoff M*. The latter is derived from

magnitude–frequency relation, by the condition

n(M*)=n*; here n(M*) is the annual number of earth-

quakes with magnitude MzM*.

Four functions represent a rise of activity. Namely

bActivity Q FU tj
� �

¼ N

tj � tj�Nþ1

ðA1Þ

is inversely proportional to the time it took to accumu-

late the most recent N earthquakes;

bSigma Q FR tj
� �

¼
Xj

k¼j�Nþ1

10Mk�M4 ðA2Þ

is shown to be a crude measure of total area of fault-

breaks during the most recent N earthquakes (Keilis-

Borok, 2002);
bRise of magnitudes Q;FM tj
� �

¼ 2

N=2½ �
Xj�Nþ N=2½ �

k¼j�Nþ1

Mk �
Xj

k¼j� N=2½ �þ1

Mk

1
A

0
@ ðA3Þ

is the difference between the average magnitude of the

last [N / 2] earthquakes and that of the first [N / 2] earth-

quakes within a series of N;

bAcceleration Q FC tj
� �

¼ 1

N=2½ �
Xj�Nþ N=2½ �

k¼j�Nþ1

1

tk tk�1

�
Xj

k¼j� N=2½ �þ1

1

tk � tk�1

1
A

0
@

ðA4Þ

is connected to the function bActivityQ. bAccelerationQ
increases if intercurrence time between earthquakes

decreases with time.

Here [x] denotes integer part of x.

Two functions depict a rise of clustering. The first

one, bSwarmQ, reflects clustering of mainshocks:

FW tj
� �

¼ 1�
Ar tj
� �

pr2N
: ðA5Þ

Here Ar is the area of the union of circles of radius r

centered at N epicenters in the sequence. The second

one, bb-microQ, reflects clustering of aftershocks:

Fbl tj
� �

¼
Xj

k¼j�Nþ1

X
l

10Mkl�M4

: ðA6Þ

Here Mkl, l=1, 2,. . . are the magnitudes of the after-

shocks of the kth main shock within the first 2 days

after the main shock.

The rise of earthquakes correlation range is

depicted by function

bAccord Q FA tj
� �

¼
Ar tj
� �

pr2
; ðA7Þ

which increases if earthquakes are widely distributed in

space and their r-neighbourhoods are barely overlap-

ping. Finally, the transformation of Gutenberg–Richter

relation is reflected by function

bGamma Q Fc tj
� �

¼ 1

NMkzM1=2

X
MkzM1=2

Mk �M 4
� �

; ðA8Þ

which increases if the magnitude distribution is shifted

to the larger magnitudes (e.g. if the GR slope is de-

creasing). Here M1/2 is the median of magnitudes of N

earthquakes in our sequence.
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Altogether the eight functions are determined by five

parameters. In each region we used the same eight

combinations of these parameters: n*=10 and R =50

km or n*=20 and R =100 km, N =10 or 50, T=6 or 24

months, r =50 km. Emergence of a pattern at the mo-

ment t is captured by the condition FP(t)zCP. Each

threshold CP is determined automatically at the learn-

ing stage. It minimises the sum n + f; here n is the rate

of failures to predict and f is the rate of false alarms in

prediction with a single pattern P.

In predicting the San Simeon and Tokachi-Oki earth-

quakes we used R =75 km to define the R-vicinity of a

chain. This choice corresponds to the average of R =50

km and R =100 km used in our definition of the inter-

mediate-term patterns. In the ongoing experiment we

use R =100 km in Japan (region with the highest mag-

nitude of a target earthquake, MW=7.2) and R =50 km

in all other regions.

A.4. Prediction

Final stage is recognition of precursory chain and

issuing an alarm: A chain is recognised as precursory if

it was preceded by C or more intermediate-term patterns

out of the ensemble considered. The thresholdC controls

the trade-off between the rates of false alarms and fail-

ures to predict. Emergence of precursory chain triggers

an alarm in its R-vicinity for the D months; statistics of

past alarms suggests D =9 months. A precursory chain

may keep growing accumulating subsequent earth-

quakes. In that case the alarm is extended. If a target

earthquake occurs in the R-vicinity of a chain, then the

chain no longer grows, but the alarm (if it has been

diagnosed for that chain) is not called off. After a target

earthquake all other chains containing its epicenter with-

in the R-vicinity are disregarded during the period D.

A.5. Quality of prediction

Suppose that the prediction was performed during

the time interval of length T (year) within the region X
with the area S (km2); N large earthquakes occurred

within this period; A alarms were declared and Af of

them were false; all the alarms together covered the

spatio-temporal volume VA (year�km2); Nf target

earthquakes were unpredicted. Prediction is described

by the following dimensionless errors: the fraction of

unpredicted earthquakes, n =Nf /N; the relative alarm

coverage, s=VA / (T�S); the fraction of false alarms,

f=Af /A.

When calculating the alarm coverage, it might be

advantageous to take into account the observed inho-
mogeneities of the earthquake spatial distribution. In

our prediction experiment, the relative alarm coverage

for an alarm that spans the time TA and space SA is

calculated as

sA ¼ TA

T

R
SA
dN4 rð ÞR

S
dN4 rð Þ

¼ TA

T

# EQ withmz4withinSAf g
# EQ withmz4withinSf g : ðA9Þ

Here by N4(r) we denote the 2D point process

of earthquakes with magnitude mz4. The total

alarm coverage is the sum of that for all individual

alarms.

A.6. Significance level: random binomial prediction

To evaluate significance of a prediction one typically

evaluates the chances of getting the same or better

result (same or smaller values of errors) when there is

no dependence between alarms and the occurrence of

target earthquakes. An extremely simple but easily

tractable model of prediction which produces alarms

independent of the target earthquakes is random bino-

mial prediction (Molchan, 2003): One divides the

space–time considered for prediction into M small

equal bins and declares alarm in each of them with

fixed probability p. Indeed, this approach is highly

unrealistic. Nevertheless, considered as a null (random)

prediction model, it provides a good coarse estimation

of the algorithm predictive power. Significance with

respect to a random binomial prediction may serve as

a necessary, but not sufficient, condition for validating

an algorithm.

It is readily checked that expected values of alarm

coverage s and fraction f of failures to predict in the

binomial prediction are given by:

E sð Þ ¼ p; E fð Þ ¼ 1� p

so the point corresponding to this prediction is on the

diagonal f=(1�s) in the 2D (s,f)-section of the error

diagram. The probability to predict exactly N�Nf out

of N target earthquakes, assuming that no more than

one target earthquake may occur within a single bin,

is given by binomial distribution

Pr predict N � Nf out of N
	 

¼ N

Nf

�
pN�Nf 1� pð ÞNf :

�
ðA10Þ



P. Shebalin et al. / Tectonophysics 413 (2006) 63–75 73
The probability to predict N�Nf out of N target

earthquakes issuing alarm within k bins out of M is

given by hypergeometric distribution

Pr predict N � Nf out of N declaring alarm in k bins
	

out ofMg ¼

k

N � Nf

� �
M � k

Nf

� �
M

N

� � : ðA11Þ

The number of false alarms can also be obtained, but

because of the simplistic binomial rules, the number

of binomial alarms (and false alarms) will be signif-

icantly larger than that in any realistic prediction

(where alarm is typically declared for considerable

spatio-temporal area, not for a small bin). Thus here

we do not make any inference about false alarms

using the binomial prediction model.

Using the above probabilities (A10, A11) one can

construct different significance measures for a given

prediction with errors (s*, n*). One approach is to

use the 2D (s, n) distribution under the binomial

model using (A10) with p =s*, and evaluate probability
of obtaining a prediction of the same or better quality,

say

Pr s; nð Þ : s þ nVs4 þ n4
	 


orPr s; nð Þ; sVs4&nVn4
	 


:

Another approach is to use (A11) to find the probability

to predict the same or larger number of earthquakes

with the same total duration of alarms. The difference

between using (A10) and (A11) is that in the first case

we assume fixed probability of declaring an alarm,

while in the second—fixed duration of alarm. Indeed,

in generic cases both approaches give very similar

evaluation of prediction performance.

To illustrate the above approach, Fig. 6 shows the

error diagram for the results of our prediction experi-

ment in California. Shaded ball represents the errors of

our prediction experiment during 1964–2005. The

probability for a random binomial prediction with

given value of s to fall within the shaded area (i.e. to

predict more than N(1�n) target earthquakes with

given s) is less or equal than 0.001 (0.1%). The point

that corresponds to our experiment is well within this

area, thus indicating very high predictive power. It

should be emphasized that the results presented in

this figure combine the information from the learning

period, independent data, and advance prediction (we

have too few alarms and target earthquakes during the

advance phase to use them alone). Thus, this analysis is

not equivalent to evaluating the real predictive power of
the algorithm, where only advance results must be used.

Nevertheless, the grey shadowed area that corresponds

to the binomial model gives a good orientation for the

expected significance of the results.

A.7. Significance level: empirical estimation

An alternative approach to testing significance of a

prediction algorithm involves empirical estimations of

occurrence rate for target earthquakes. Thus, the ap-

proach is unavoidably approximate due to the small

number of target earthquakes; yet it is much more

realistic comparing to the random binomial prediction.

Specifically, we assume that target earthquakes form

a Poisson process N(t,r) stationary in time but non-

homogeneous in space. The expected number of earth-

quake within the interval of length t and spatial region

R is given by

E N t;Rð Þð Þ ¼ tl Rð Þ ðA12Þ

where l(R) is some non-negative measure over the

space. In practice, a first-order approximation to this

measure can be obtained by considering the number NR

of target earthquakes within the region R per unit of

time using observations over S years:

l Rð ÞcNR=S:

With our assumptions, the probability of having exactly

k target earthquakes within the region R during time

interval of length t is given by Poisson distribution

Pr k target earthquakes within Rf g

¼ e�l Rð Þt l Rð Þtð Þk

k!
ðA13Þ

and the probability p to have at least one target earth-

quake is

p : ¼ Pr at least one target earthquake within Rf g
¼ 1� e�l Rð Þt: ðA14Þ

When the rate of target earthquakes is small (which is

indeed the case in our experiment), we can approximate

p as

p : ¼ Pr at least one target earthquake withinRf g

cl Rð Þtc NRt

S
ðA15Þ

Our final goal is to calculate the probability of predict-

ing N�Nf target earthquakes out of N by a set of

alarms Ai=(ti, Ri) that were declared for regions Ri
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and time intervals ti. We denote by pi the probability to

have at least one target earthquake within Ai.

The probability for a given target earthquake to be

predicted is calculated as the probability that it will be

predicted by at least one of the alarms:

Pr given target EQ is predictedf g

¼
X
i

Pr given target EQ is withinAif g

¼
X
i

Pr given target EQ is withinRi during tif g

¼
X
i

Pr given target EQ is withinRif g ti

T

¼
X
i

qi
ti

T

Here we used the fact that alarms are not overlapping

(by definition); factorization property (A12) of the

target event process; and the fact that conditional dis-

tribution of the occurrence time of an event from Pois-

son process is uniform, given that this event occurred

within the given time interval.

The probability for a given target earthquake

to happen within the spatial region Ri can be estimat-

ed as

qi ¼ Pr given target EQ happened within Rif g ¼ ni

NX
:

where ni is the number of target earthquakes within Ri

during some period S and NX is the total number of

target earthquakes within the region X considered for

prediction during the same time. Finally

Q : ¼ Pr given target EQ is predictedf gc
X
i

ni

NX

� ti

T
c
X
i

pi
S

NXT
;

and the distribution of the number of predicted target

earthquakes out of N is given by the binomial formula:

Pr N � Nf out of N target EQ are predicted
	 


¼ N

Nf

� �
QN�Nf 1� Qð ÞNf c

N

Nf

� � X
i

niti

NXT

 !N�Nf

�
1�

X
i

niti

NXT

�Nf

c
N

Nf

� � X
i

pi
S

NXT

 !N�Nf

�
1�

X
i

pi
S

NXT

�Nf
We apply the above approach to California. Specifi-

cally, we consider the region X shown in Fig. 2

during the period 1965–2004 (S =40 years); there

were NX =10 target earthquakes. The advance predic-

tion was performed within the same region during

July 2003–June 2005 (T=2 years), and resulted in

three alarms; N =1 target earthquake occurred during

this period. The probabilities pi of having at least one

target earthquake within each of the alarms are 5%,

8%, and 5% (see Table 1 and Eq. (A14)). The prob-

ability to predict the only target event by chance is

estimated as 36%. Notice that this is the conditional

probability given the actual number of target earth-

quakes and alarms. If one does not want to be condi-

tioned by the number of actual target earthquakes, then

we need to modify our results using (A13). In the case

of California, where we had only one target earthquake,

this will give:

Pr predict 1 target with our three alarmsf g

¼ Pr there is exactly one targetf g

� Pr it was predictedf g:

The first probability is estimated using (A13):

Pr there is exactly one targetf g

¼ l Rð ÞTe�l Rð ÞTc
NX

S
Te�

NX
S
T ¼ 10

40
2e�

10
40
2c0:3:

Thus, the probability to have only one target event and

predict it by chance is approximately 0.36�0.3=0.12

(or 12%).
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