ON A THEOREM OF HORMANDER

A. M. Gabrielov

In his paper at the Tokiiskoi‘conference of 1969, L. Hormander proved that for-an arbitrary differen-
tial polynomial P(D) in RD there exists a fundamental solution having a singularity in some cone K*(P)
(defined in paragraph 1). If P is a homogeneous polynomial and grad P(x) = 0 for P(x) =0, x * 0, then the
cone K*P) is simply the inverse cone to the cone defined by the roots of the polynomial P. For the general
case Hormander indicates that the geometrical meaning of K*(P) is not only vaguely understood, but it is not
even known whether or not K*(P) differs from the entire space (i.e., one wishes to prove an inclusion theo-
rem). In this paper we prove that K¥P) is contained in some cone X*(P), dim X*(P) < n, which constitutes
a semi-algebraic set in R, The cone X*(P) is constructed by means of a regular Whitney stratification
dependent on the asymptotic behavior of the roots of the polynomial P at infinity.

1. DEFINITION OF K*(P)
Let Pg be the linear space of all polynomials of order not greater than k in R%, P ¢ Pﬁ, P =0, Let
P(@) pe the derivative of P of order @ = (@ « . »» an) and P(x) = (ZIP“?’ (x) ]2)‘/‘ . Let L(P) be the set of
all polynomials Q € Plg, for which a sequence 7 exists such that ]i:1 [ni]=o0-and Lllzol P (x 4 n)/P (n) = Q (»).

(Using a theorem of Tarskii and Zaidenberg (see [1]) it is easily shown that it suffices to examine the
limits along semi-algebraic curves.® Now let Q € 1.(P). We denote by AQ) the orthogonal complement to

the space A(Q = {y € R1Q(x +y) = Q(x)} of variables of which Q is independent. Then K*(P) =QELL(JP) N(Q).

2. THE REGULAR STRATIFICATION OF WHITNEY
An algebraic variety in C™ is a set of the form X\Y, where X and Y are algebraic sets.

Definition 2.1 (Whitney [2]). Let M be an algebraic variety in C®, and M' a non-singular sub-variety
in M. The pair (M, M) is said to be a-regular if the following condition is met:

(a). Let x; be any point in M' and Tx,(M') be the tangent plane to M' at the point x;. Let xj — x; be a
sequence of simple points of the set Mand lim 7, (M)=7. Then T O TXO(M').
I—00

THEOREM 2.2 (Whitney [2]). Let X be an algebraic variety in C1, X' an algebraic sub-variety in X.
Then there exists an algebraic sub-variety S © X', dim S < dim X', such that (X, X'\S) is an a-regular pair.

Definition 2.3. Let X be an algebraic variety in CB. A decomposition of X into non-self-intersecting
subsets X;j ("striations") is called a stratification of the set X, if

1) Each Xj is a connected algebraic variety;
2) If X; N X * ¢ then Xj © X;.

COROLLARY 2.4 (Whitney [2]). Let X< C1 be an algebraic set. Then there exists a stratification
{Xi} of the set X (an @-regular stratification in the sense of Whitney) such that if Xj 2 Xj, then the pair
(Xi, Xj) is a~regular.

*A "semi-algebraic curve" in RD is a continuous mapping A: (0, 1] — RN, whose graph is a semi-algebraic
set. .

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 4, No. 2,
pp. 18-22, April-June, 1970. Original article submitted December 18, 1969,

©1970 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This arsicle cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

106

C.



3. THE CASE OF A HOMOGENEOUS POLYNOMIAL

Assume that the space CP is embedded in CPD, and that the infinite hyperplane for CPY" 1= CP is
identified with the set of complex lines in C? passing through ‘he origin.

Let y € RM (respectively C1); we will set Ry = {x ¢ Rlx = a@y. a €R} (respectively Cy = {z e cn/
z=ay,a €C}).

If Xis a set in CN, then we denote by p(X) the set X N CPY!, where X is the closure in CPn, If X' is
a set in CP™™!, then we denote by k(X') the set {z € CRlz = 0, Cz € X'}.

The set of simple points of an algebraic variety X is denoted by Xgp, while the set of singular points
is denoted by Xsg,

Let P be a homogeneous polynomial in R, X < CB the cone of its complex roots. Let X' =p(X), {XJ'}
an a-regular stratification of the set X', Xj = k(X‘j). Then {XJ} is an a-regular stratification of the set
X\ {0}. Let Yu./‘ == Xj ﬂR'ly YI.,' = (yl—l,/‘)sgv Xl,j Yl.j\yH—l.i . We will set NX[,,' == {2€ Rn| ’_S{XEXL,‘I 2_]_ Tx (X[,)}
It is easily proved that NX; ,jis a semi-algebraic set in RN, dim NXi . < n. Letus set X*(P) = (H NX7.,).

THEOREM 3.1. X*¥P)> KXP).
The following lemma, which is necessary for our work, will be stated here without proof,

LEMMA 3.2. LetA:s —Q(s),s €0, 1] be a semi-algebraic curve in PE, Q(0) # 0, Let Yg be the
set of complex roots of the polynomial Q(s) and y € (Y¢)sp. Then there exist sequences s; — 0, yj —y such
that yi € (Ys)gp and lim T, (¥y) =T, (Y,).

Proof of the Theorem. Let Q € L(P) be some polynomial and let g : x = u(x), s € (0, 1], be a semi-
algebraic curve such that lim|pu(s)|=oc, linP(x ;- u(s))/P (u(s)) = Q(v). Assume that for s — 0 the ray Ry(s)
50 50

tends in direction to that of some vector xg, %,/ =1. Let (y' = (Y4s » + +» Yn—-9» Yn) be coordinates in CR,
such that x, =(0, . ..,0,1). Let pu': y' = p'(s) be the projection of the curve p into the sub-subspace {yn=1}
with center at 0. Clearly, linp'(s) =x, . Let x, €X] ,j- We will show that for any simple point y the set

Find')

Y = {z € Cn|Q(z) =0} of the space Ty(Y) contains Tx,(X; j). Hence, it will at once follow that Tx (X7 ,j) ©
A(Q) and hence A'(Q) & NX; ;j < X*P).

i Let T =Ty(Y). By virtue of Lemma 3.2 it is possible to find some sequences sj —~ 0, yl -y, where
vl is a simple point of the set Yi = {z € Cn|P(z + p(s{)) /P (u(si)) = 0} such that lim T,(Y)=T . Letx;be
i—co

the projection of the point p(si) + yl onto {yn = 1} with center at 0. Then x; is a simple point of the set X,
limx; -x, and lm 7T, (X)-=T7 . But by the definition of an a-regular stratification T > TXO(Xj),which com-
{—Q0

[0

pletes the proof.

4, THE GENERAL CASE; STRATIFICATION AT INFINITY
In this paragraph we denote by G(n, p)the Grassman variety of all p-dimensional linear subspaces of
cn, If M €G(n,p), N €G(n, q) is a subspace in C1, we will denote by p(M, N) the term ‘Iﬁ,‘ n;ér\l %
We note that the graphs of the functions p(M, N) are semi-algebraic sets in G(n, p) XG(n, q) XR and that

pP(M, N) =0 MC N. Moreover, if p =q, then p is the usual metric in G(n, p). An analogous definition is
given in the real case.

LEMMA 4.1. Let R™ = M @ N, and x' (respectively x") be the coordinates in M (respectively in N).
Let A:(x', x"F = (A'(s), A"(s)), s € (0, 1} be some semi-algebraic curve in RM\M such that A"(s) =0(iA'(s)])
for s — 0 and l_in: A"(s)#=0 . Let Ix(s) be the tangent line to A at (A'(s), A"(s)). Then p(Ix(s), M) < cp(Ry(s),M)

for s — 0, where 0 <c< 1,

Proof. The assertion is easily reduced to the case dim M =dim N = 1. It can be assumed that A'(s) —
+ for s — 0, Then for sufficiently large x' we may assume that A:x" = Ax", where AMx") = o(x") for

©Q
X' — + and x}_iﬂml ()+0 . Let x =73 ¢t ™" be the Poissee expansion of the curve A for x' — + .

Then - k<iy=0, o
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_ We now find that p(Ra(x), M) ~ |A(x)/x'|~ lciolx"(ioﬂ{)/k, pxx", M) ~ | dNx) /dx' | ~=Ll e, | -
x(g*K /K for i, = 0, pIr(x"), M) = olx'(ig+k)/K) with i, =0, whence the assertion of the lemma follows.

Definition 4,2. Let X be an algebraic variety in C", and Y' a non-singular sub-variety in p(X), Y =
k(Y". The pair (X, Y) is called a-regular if the following condition is valid:

{@.). Let y, be any point in Y and let xj be some sequence of simple points of the set X, such that
lin|x;| = oo, linC, =C, ,and linT.(X)=T . Then T 2 Ty (Y).
{00 [ {—00

We note that condition (z.) is weaker than the requirement of Whitney regularity of the pair (X, Y") in
CPn, Example: X = {x—xy =0}< C3% Y' ={x =0} CP’ Here the pair (X, Y") is Whitney regular but not
ax-regular.

THEOREM 4.3. Let X be an algebraic variety in C1, and Y' an algebraic sub-variety in p(X), Y =
-k(Y". Then there exists some algebraic sub-variety 8'C Y', dim S' < dim Y', such that the pair (X, Y\k(S))
is a»-regular. » '

Proof. Letdim X =randlet Z = {x. T|x € Xgp, T = Tx(X)}be a set in C1 X G(n, r}. It is easily
proved that the closure 7 of the set Z in CPD X G(n, r) is an algebraic set. Let Z' =Z N (CP™"! x G(n, r)).
Let z" = {y. Tly ¢ Y'sp, T2 Ty(Y)} c CP™! x G(n, r) (here Ty(Y) denotes the tangent plane to Y at the
point z : Cz =y). -

It is easily proved that Z" is an algebraic set. Let 7: CP*™! x G(n, r) — CP" ! pe a projection opera-
tor and S' = (T(Z'\Z" U Y'sg) N Y'. Then S' is an algebraic sub-variety in Y, the pair (X, Y\k(S")) is @~
regular, and it suffices to prove that dim §' < dim Y'.

The standard method of hyperplane cross -sections leads to a reduction of the problem to the case
dim Y' = 1. We will assume now that dim Y' =dim S' =1. Then there exists a semi-algebraic curve
n € Z'\Z", which under the projection 7 is mapped in a one-to-one fashion onto some curve p< Y'Sp.
For y € pwe will write Ty : (y, Ty) €7.

Let y; € ¢ and assume that
W= {xeX,| Tycu: oG 9)<< (0 (Cxy )V 8 (T (X), Ty)<pEs, yo)}s
W2 = {x¢ Xy p(Co ToXN<(o(Cy, o))}, W =WIIW2
By the theorem of Tarskii and Zaidenberg it follows that W is a semi-algebraic set. We will show
that W is non-empty and that y, € W {the closure is taken with respect to CPn). Let y be any point of the

curve u, y # yo. Then the point (y, Ty) is the limit of points of the set Z in CPR X G(n, r). Hence in Xgp
there exists a semi-algebraic curve v :y = ¥(s), s €(0, 1], such that lin (y(s), T\ (X)) =(y, Ty) . We find
§=0

1)!im €y ) =0, ling(Tyy (X), Ty) =0, Ezlp(C-,(g‘,, o) - oly, y,), whence if s is sufficiently small
ye) €Wt

2) From the fact that I,(s) = Ty(s) 2nd E‘;’J p (), Cuy) =0 it follows that Hp(c.,(s), T (X)) =0,
while if s is sufficiently small y(s) € W2,

Thus, if s is sufficiently small ¥(s) €W.

Consequently, the set W is nonempty and since y can be chosen arbitrarily close to yy, \ .6 Yoo

LetA :y = Als),s €(0, 1], be a semi-algebraic curve in W such that 151_’mn A(s) =y, in CPD, and let
Ti(s) be the complex plane spanned by Cjy(g) and IA(s).

We will show that ¢{Cp(s), yp) < Ko (Ia(s), Cx(g)) for s — 9. With this aim we now set RM=Cn, M=
k(yy) .in the conditions of Lemma 4.1. If limA"(s) . =0, then the assertion is obvious. If linA"(s)50, then by
s>0 s—0
applying Lemma 4.1 we obtain p(Ia(s). yo < cp(Ra(s). Yo' = cp(Cr(s), Y9 Whence by the triangle inequality
p@r(8), Cr(s)) >(1—C)p(Cr(s), Y0~

Since A € W2, it follows that p(Cy(g)s Ty (s) (X)) < KX(p(ix(s), Cps)))? for s — 0, while since Ix(s) <

Ta(s)(X), we obtain lim 75, (X) Slin Tx(s) . But since A € Wi, lin Tag (&) = Wlim T, =Ty, Ty (Y), whence
$-20 = s—>0 yE1L9 =y,
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it suffices to prove that linT; (s) = T, (Y) . We will examine in CP" ! the curve A': A'(s) =C x(s)- Since

Radll

A EWL p(A'(s). @) < (P(X'(3), y))?, whence lim/; (s)=1,(y) . Since link(s)=y, it follows that lin Ty (s) =Ty, (Y)
$—0 5+

>0

Ty, (Y). The theorem is proved.

COROLLARY 4.4. Let X be an algebraic set in CU, X' = n(X). Then there exists a stratification {X' }
of the set X' such that for any j the pair (X, k(XJ)) is @4o-regular.

The corollary is easily obtained from Theorem 4.3.

Now' let P be a polynomial in Rh, X the set of its complex roots, X' = p{X) the set of roots of the
principal part of the polynomial P. Let {XJ } be the a.-regu la“ stratification of Corollary 4.4, Y, i
Xj NRY, v1 = (Y J)sg and X1 5 = Y] ]\Yz +1,j Then X*(P (LJNX, ;) is a semi-algebraic set in RN and
dim X*P) < n. .

THEOREM 4.5, XHP) D K¥P).
The proof is analogous to that of Theorem 3.1.
In conclusion the author wishes to express his appreciation to V. P. Palamodov for his suggestion of
this problem and for his help in the course of this work.
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