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Abstract. We present a series of examples of pairs of singular

semialgebraic surfaces (germs of real semialgebraic sets of dimen-

sion two) in R
3 and R

4 which are bi-Lipschitz equivalent with re-

spect to the outer metric, ambient topologically equivalent, but not

ambient Lipschitz equivalent. For each singular semialgebraic sur-

face S ⊂ R
4, we construct infinitely many semialgebraic surfaces

which are bi-lipschitz equivalent with respect to the outer met-

ric, ambient topologically equivalent to S, but pairwise ambient

Lipschitz non-equivalent.

1. Introduction

There are three different classification questions in Lipschitz Geom-

etry of Singularities. The first question is the classification of singular

sets with respect to the inner metric, where the distance between two

points of a setX is counted as an infimum of the lengths of arcs insideX

connecting the two points. The equivalence relation is the bi-Lipschitz

equivalence with respect to this metric. The second equivalence rela-

tion is the bi-Lipschitz equivalence defined by the outer metric, where

the distance is defined as the distance in the ambient space. It is

well known that the two classifications are not equivalent. For ex-

ample, all germs of irreducible complex curves are inner bi-Lipschitz

equivalent, but the question of the outer classification is much more

complicated (see Pham-Teissier [3] and Fernandes [1]). Here we con-

sider another natural equivalence relation. Two germs of semialgebraic
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sets are called ambient Lipschitz equivalent if there exists a germ of

a bi-Lipschitz homeomorphism of the ambient space transforming the

germ of the first set to the germ of the second one. Two outer bi-

Lipschitz equivalent sets are always inner bi-Lipschitz equivalent, but

can be ambient topologically non-equivalent (see Neumann-Pichon [2]).

The main question of the paper is the following. Suppose we have two

germs of semialgebraic sets bi-Lipschitz equivalent with respect to the

outer metric. Suppose that the germs are ambient topologically equiv-

alent. Does it imply that the sets are ambient Lipschitz equivalent?

In this paper, we present four examples of the germs of surfaces for

which the answer is negative. The surfaces in Examples 1, 2 and 3 are

ambient topologically equivalent and bi-Lipschitz equivalent with re-

spect to the outer metric, but their tangent cones at the origin are not

ambient topologically equivalent. By the theorem, recently proved by

Sampaio [4], ambient Lipschitz equivalence of two sets implies ambient

Lipschitz equivalence of their tangent cones. Thus the sets in our three

examples cannot be ambient Lipschitz equivalent. In Example 4, the

tangent cones of the two surfaces at the origin are ambient topologically

equivalent. The argument in that case is more delicate and requires a

special “broken bridge” construction. The last part of the paper is de-

voted to the proof of the main theorem of the paper: For any germ of a

semialgebraic surface S in R
4 there exist infinitely many semialgebraic

surfaces, such that all these surfaces are ambient topologically equiva-

lent to S, bi-Lipschitz equivalent with respect to the outer metric, but

any two of them are not ambient Lipschitz equivalent. To prove this

theorem, we generalize the broken bridge construction of Example 4.

The question on the relation of these classifications was posed to

us by Alexandre Fernandes and Zbigniew Jelonek. We thank them

for posing the question. We would like to thank Anne Pichon for her

comments and suggestions.
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Figure 1. Links of the surfaces (a) X1 and (b) X2 in

Example 1.

2. Examples in R
3

Example 1. Consider semialgebraic sets X1 and X2 in R
3 (see Fig. 1)

defined by the following equations and inequalities:

(1)

X1 =
{ (

(x2 − 2xt + y2) (x2 + 2xt+ y2)− tk
)
×(

(x− t)2 +
(
y − t

2

)2 − t2

16

)(
(x− t)2 +

(
y + t

2

)2 − t2

16

)
= 0,

t ≥ 0
}
.

(2)

X2 =
{ (

(x2 − 2xt+ y2) (x2 + 2xt + y2)− tk
)
×(

(x− t)2 + y2 − t2

16

)(
(x+ t)2 + y2 − t2

16

)
= 0,

t ≥ 0
}
.

Here k > 4 is an integer.
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Theorem 2.1. The germs at the origin of the surfaces X1 and X2

are bi-Lipschitz equivalent with respect to the outer metric, ambient

topologically equivalent, but not ambient Lipschitz equivalent.

Proof. Notice that X1 = U1 ∪ U2 ∪ U3, where

U1 =
{(

(x− t)2 + y2 − t2
) (

(x+ t)2 + y2 − t2
)
= tk, t ≥ 0

}

and the sets U2, U3 are straight cones over the circles (x− 1)2 +

(y − 1

2
)
2
= 1

16
and (x − 1)2 + (y + 1

2
)2 = 1

16
. The set X2 is the

union of U1 and the sets V2, V3 which are straight cones over the circles

(x− 1)2 + y2 = 1

16
and (x+ 1)2 + y2 = 1

16
.

Notice that U2, U3, V2 and V3 are linearly (thus bi-Lipschitz)

equivalent. In particular, there exist invertible linear maps ϕ : U2 →
V2 and ψ : U3 → V3 (one can define ϕ(x, y, t) = (x, y − t

2
, t) and

ψ(x, y, t) = (x − 2t, y + t
2
, t) ). Observe that U2 ∪ U3 and V2 ∪ V3 are

normally embedded. Moreover, there exist positive constants c1, c2

such that for any point p = (x, y, t) ∈ U2 ∪ U3 ∪ V2 ∪ V3 one has

c1t < d(p, U1) < c2t. Thus the map φ : X1 → X2 defined as

φ(p) =





p if p ∈ U1

ϕ(p) if p ∈ U2

ψ(p) if p ∈ U3

is bi-Lipschitz with respect to the outer metric.

The sets X1 and X2 are ambient topologically equivalent, each of

them being equivalent to a cone over the union of three disjoint circles

in the plane t = 1, two of them bounding non-intersecting discs inside

a disc bounded by the third one.

However, the tangent cones to X1 and X2, defined by the homoge-

neous parts of degree 4 of (1) and (2), are not ambient topologically

equivalent. The tangent cone of X1 at the origin is the union of U2, U3

and a straight cone W over two tangent circles (x − 1)2 + y2 = 1 and

(x + 1)2 + y2 = 1 in the plane t = 1, with the cones U2 and U3 inside

one of the two circular cones of W , while the tangent cone of X2 is the
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Figure 2. Links of the surfaces (a) X1 and (b) X2 in

Example 2.

union of V2, V3 and W , with the cones V2 and V3 inside two different

cones of W . Thus X1 and X2 are not ambient bi-Lipschitz equivalent,

by the theorem of Sampaio [4]. This happens, of course, because U1 is

not normally embedded, with the arcs γ+ and γ− in U1 ∩{x = 0} (see

Fig. 1) having the tangency order k/4 > 1. �

Example 2. Let X1 and X2 be semialgebraic surfaces in R
3 with the

links at the origin shown in Fig. 2, and tangent cones at the origin as in

Fig. 3. One can define X1 and X2 by explicit semialgebraic formulas,

similarly to the method employed in Example 1. Both surfaces X1 and

X2 are ambient topologically equivalent to a cone over a circle. These

surfaces are bi-Lipschitz equivalent with respect to the outer metric,

but not ambient Lipschitz equivalent by Sampaio’s theorem, since their

tangent cones are not ambient topologically equivalent. The arguments

are similar to those in Example 1.
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(a)

(b)

Figure 3. Links of the tangent cones at the origin of

the surfaces (a) X1 and (b) X2 in Example 2.

3. Examples in R
4

Example 3. Let H ⊂ R
4 be a surface defined as follows:

{
y2 − x2 = (x2 + y2 − 2t2)

2
, z = 0, |y| ≤ t ≤ 1

}
.

The surface H has two branches, tangent at the origin. It is bounded

by the straight lines

l1 = (z = 0, y = x = t), l2 = (z = 0, y = −x = t),

l3 = (z = 0, y = −x = −t), l4 = (z = 0, y = x = −t).

The tangent cone of H at the origin is the surface

{y = ±x, z = 0, |y| ≤ t} .

The link of H (more precisely, the section of H by the plane {z =

0, t = 1/8} ) is shown in Fig. 4. The arcs γ+ and γ− are tangent at

the origin.
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Figure 4. Link of the surface H in Example 3.

Let K1, K2, K3 be nontrivial knots in R
3 such that K3 is a connected

sum of K1 and K2. Let X1 be a surface in R
4, obtained as follows.

Consider a smooth semialgebraic embedding K̃1 of the knot K1 to

the hyperplane {t = 1} in R
4
x,y,z,t. Suppose that K̃1 contains the

points (1, 1, 0, 1) ∈ l1 and (1,−1, 0, 1) ∈ l3, and that K̃1 ∩ H con-

tains only these points. Let s1 ⊂ K̃1 be the segment connecting the

points (1, 1, 0, 1) and (1,−1, 0, 1) such that replacing this segment by

a straight line segment does not change the embedded topology of K̃1.

Let K̃2 be a smooth semialgebraic realization of K2, in the same hy-

perplane of R4. Suppose that K̃2 contains the points (−1, 1, 0, 1) ∈ l2

and (−1,−1, 0, 1) ∈ l4, and that a segment s2 of K̃2 connecting these

points may be replaced by a straight line segment without changing

the embedded topology of K̃2. Suppose that K̃2 ∩H contains only the

points (−1, 1, 0, 1) and (−1,−1, 0, 1), and that K̃2 ∩ K̃1 = ∅.
Let K ′

1 be the straight cone over K̃1 − s1 and let K ′

2 be the straight

cone over K̃2 − s2. Let X1 = K ′

1 ∪ H ∪K ′

2. The link of the set X1 is

shown in Fig. 5a.
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(b)
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Figure 5. Links of the surfaces (a) X1 and (b) X2 in

Example 3.

Let us define the set X2 using the same construction as above, with

the knot K1 replaced by K3 and the knot K2 by the unknotted circle

K4. We assume, as before, that a smooth semialgebraic realisation K̃3

of K3 contains points (1, 1, 0, 1) and (1,−1, 0, 1), that K̃3 ∩H contains

only these points, and that replacing the segment s3 of K̃3 connecting

these points by a straight line segment does not change the embedded

topology of K̃3. Similar assumptions are made about a smooth semial-

gebraic embedding K̃4 of K4 and its segment s4 connecting the points
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Figure 6. Links of the tangent cones at the origin of

the surfaces (a) X1 and (b) X2 in Example 3.

(−1, 1, 0, 1) and (−1,−1, 0, 1). Let K ′

3 and K ′

4 be the straight cones

over K̃3 − s3 and K̃4 − s4. Let X2 = K ′

3 ∪H ∪K ′

4 (see Fig. 5b).

Theorem 3.1. The germs of the sets X1 and X2 at the origin are

bi-Lipschitz equivalent with respect to the outer metric, ambient topo-

logically equivalent, but not ambient bi-Lipschitz equivalent.

Proof. Since K̃1, K̃2, K̃3, K̃4 are smooth, the corresponding cones K ′

1,

K ′

2, K
′

3, K
′

4 are normally embedded and bi-Lipschitz equivalent with
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respect to the outer metric. The bi-Lipschitz maps

φ1 : K
′

1 → K ′

3 and φ2 : K
′

2 → K ′

4

can be chosen in such a way that

φ1(K
′

1 ∩ {t = c}) = K ′

3 ∩ {t = c} for all c > 0, and

φ2(K
′

2 ∩ {t = c}) = K ′

4 ∩ {t = c} for all c > 0.

Then one can define the map φ as follows:

φ(x) =






φ1(x) if x ∈ K ′

1

x if x ∈ H

φ2(x) if x ∈ K ′

2

Clearly, the map φ is a bi-Lipschitz map. The surfaces X1 and X2 are

ambient topologically equivalent because their links are knots equiva-

lent to K3. From the other hand, the corresponding tangent cones at

the origin are not ambient topologically equivalent: the tangent cone

of X1 is a straight cone over the union of K1 and K2, pinched at one

point (see Fig. 6a), while the tangent cone of X2 is a straight cone over

the union of K3 and the unknotted circle, pinched at one point (see

Fig. 6b).

By the theorem of Sampaio [4], the surfaces X1 and X2 are not

ambient bi-Lipschitz equivalent. �

Example 4.

For 1 ≤ β < q, define the set Aq,β = T+ ∪ T− ⊂ R
4, where

T± =
{
0 ≤ t ≤ 1, −tβ ≤ x ≤ tβ , y = ±tq, z = 0

}

are two normally embedded β-Hölder triangles tangent at the origin

with the tangency exponent q. The set Aq,β is called a (q, β)-bridge

(see Fig. 7, left). The boundary of Ap,q consists of the four arcs

{t ≥ 0, x = ±tβ , y = ±tq}.
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Figure 8. (a) Link of the surface G in Example 4. (b)

Hölder triangles P+ and P−. (c) Broken (3, 2)-bridge B

with the Hölder triangles Q+ and Q−.

For some p such that β < p < q, let Bp,q,β be the set obtained from

Aq,β by removing from T+ the p-Hölder triangle bounded by the arcs

{t ≥ 0, x = ±tp, y = tq, z = 0}, and from T− the p-Hölder triangle

bounded by the arcs {t ≥ 0, x = ±tp, y = −tq, z = 0}), and replacing

them by two q-Hölder triangles

{0 ≤ t ≤ 1, x = tp, −tq ≤ y ≤ tq, z = 0} and

{0 ≤ t ≤ 1, x = −tp, −tq ≤ y ≤ tq, z = 0} .

The set Bp,q,β is called a broken (q, β)-bridge (see Fig. 7, right).

Let G ⊂ R
4 be a surface defined as follows:

{
y2t2 − x4 = (x2 + y2 − 2t2)

4
, z = 0, | y | ≤ t ≤ 1

}
.
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The surface G has two branches, tangent at the origin. It is bounded

by the straight lines

l1 = (z = 0, y = x = t), l2 = (z = 0, −y = x = t),

l3 = (z = 0, y = −x = t), l4 = (z = 0, y = x = −t).

The tangent cone of G at the origin is the surface

{
y2t2 = x4, z = 0, |y| ≤ t

}
.

The link of G (more precisely, the section of G by the plane {z = 0, t =

1/8} ) is shown in Fig. 8a. The intersection of G with any surface

{x = ctµ}, where µ ≥ 2, consists of two arcs having the tangency order

3. Thus G contains a subset A, consisting of two normally embedded

2-Hölder triangles A+ and A− (see Fig. 8a where [M,N ] is the link

of A− and [M ′, N ′] is the link of A+), which is ambient bi-Lipschitz

equivalent to a (3, 2)-bridge. It is easy to check that such a subset A

is unique up to a bi-Lipschitz homeomorphism of R4 preserving G.

Consider two trivial knots K0 and K1 embedded in the hyperplane

{t = 1} ⊂ R
4
x,y,z,t as shown in Fig. 9a and Fig. 9b. Suppose that each

of these two knots contains the four points

(1, 1, 0, 1) ∈ l1, (1,−1, 0, 1) ∈ l2, (−1, 1, 0, 1) ∈ l3, (−1,−1, 0, 1) ∈ l4,

and that the intersection of each of the two knots with the ball U of

radius
√
2 in {t = 1} consists of two unlinked segments s1 and s2 con-

necting (1, 1, 0, 1) with (−1, 1, 0, 1) and (1,−1, 0, 1) with (−1,−1, 0, 1),

respectively, as shown in Figs. 9a and 9c, where U is shown as a dotted

circle. We assume also that the union of the two segments s1 and s2

coincides with G ∩ {t = 1}.
We define the surface X0 as the union of G and a straight cone over

K0 \ U , and the surface X1 as the union of G and a straight cone over

K1 \ U .
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Figure 9. Links of the surfaces (a) X0 and (b) X1 in

Example 4.

Theorem 3.2. The germs of the surfaces X0 and X1 at the origin

are bi-Lipschitz equivalent with respect to the outer metric, ambient

topologically equivalent, but not ambient Lipschitz equivalent.

Proof. Suppose that X0 and X1 are ambient Lipschitz equivalent. Let

h : R4 → R
4 be a bi-Lipschitz homeomorphism such that h(X0) =

X1. The set A′ = h(A) is ambient Lipschitz equivalent to a (3, 2)-

bridge. For any arc γ ⊂ A′ there is an arc γ′ ⊂ A′ such that the

inner distance in X1 between γ and γ′ has exponent 1, but the outer

distance between them has exponent 3. No such arcs exist outside G.

Due to the uniqueness of a (3, 2)-bridge in G up to ambient Lipschitz

equivalence, there is a bi-Lipschitz homeomorphism h′ of R4 preserving

G and mapping A′ to A. Moreover, we may assume h′ to be identity

outside U , thus h′(X1) = X1. Combining h with h′, we may assume

that h(A) = A.
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For p ∈ (2, 3), let P ⊂ A be the union of two p-Hölder triangles

P+ and P− that should be removed from A and replaced by two q-

Hölder triangles Q+ and Q− to obtain a broken (3, 2)-bridge B (see

Figs. 8b and 8c). Define the surface X̃0 (see Fig. 9c) by replacing

A ⊂ X0 with B, and the surface X̃1 = h(X̃0) (see Fig. 9d) by replacing

A = h(A) ⊂ X1 with h(B). Then X̃0 and widetildeX1 are not ambient

topologically equivalent: the link of X̃0 consists of two unlinked circles,

while the link of X̃1 consists of two linked circles. This contradicts our

assumption that X0 and X1 are ambient Lipschitz equivalent. �

Remark 3.3. Notice that the tangent cones of X0 and X1 are ambient

topologically equivalent to a cone over two unknotted circles, pinched

at one point. Thus Sampaio’s theorem does not apply, and we need

the “broken bridge” construction in this example. Notice also that the

broken bridge construction employed in this example allows one to con-

struct examples (both in R
3 and in R

4) of outer bi-Lipschitz equivalent,

ambient topologically equivalent but ambient Lipschitz non-equivalent

surface germs with the tangent cones as small as a single ray.

Conjecture 3.4. Let (S0, 0) and (S1, 0) be two normally embedded real

semialgebraic surface germs which are ambient topologically equivalent

and bi-Lipschitz equivalent with respect to either inner or outer metric

(the two metrics are equivalent for normally embedded sets). Then S0

and S1 are ambient Lipschitz equivalent.

4. Main result

Theorem 4.1. For any semialgebraic surface germ (S, 0) ⊂ R
4 there

exist infinitely many semialgebraic surface germs (Xi, 0) ⊂ R
4 such

that

1) For all i, the germs (Xi, 0) are ambient topologically equivalent

to (S, 0);

2) All germs (Xi, 0) are bi-Lipschitz equivalent with respect to the

outer metric;
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3) The tangent cones of all germs Xi at the origin are ambient

topologically equivalent;

4) For i 6= j the germs Xi and Xj are not ambient bi-Lipschitz

equivalent.

Step 1 Consider first the case where the link L of S is an unknotted

circle. Our construction would be a modification of Example 4. The

germ (Xi, 0) is obtained from the surface G considered in Example 4

(see Fig. 8a) by attaching to it the straight cone over two segments in

such a way that the braid connecting the pair of points (M,N) with the

pair of points (M ′, N ′) has i twists. The germs (X0, 0) and (X1, 0) are
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(a)

(b)
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Figure 11. Links of the surfaces Y0 and Y1 in Step 2.
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exactly those considered in Example 4. Their links are shown in Fig. 9a

and Fig. 9b. The link of the germ (X2, 0) is shown in Fig. 10. All these

links are unknotted, thus all the surfaces Xi are ambient topologically

equivalent to the straight cone over the unknotted circle.

The same arguments as in the proof of Theorem 3.2 show that all

germs (Xi, 0) are bi-Lipschitz equivalent with respect to the outer met-

ric. We now construct a bi-Lipschitz map fij : (Xi, 0) → (Xj , 0) which

is the identity on the surface G. Since the complements of G in Xi and

Xj are straight cones, the map fij on the cones can be defined as the

conical extension of a bi-Lipschitz map on the links. The tangent cone

of Xi at the origin is ambient topologically equivalent to the cone over

two unknotted circles pinched at a point.

From the other hand, the broken bridge construction described in

Example 4 transforms Xi into a set X̃i with the link consists of two

circles having the linking number i, same as the number of twists of

the braid connecting (M,N) with (M ′, N ′). This implies that Xi is not

ambient bi-Lipschitz equivalent to Xj for i 6= j.

Step 2 Consider the case where the link L of the surface S has

a subset L′ which is a non-trivial knot. Consider the link Li of the

surface Xi constructed in Step 1. Since it is unknotted, its connected

sum with L′ is ambient topologically equivalent to L′. We define the

surface Yi so that its link is the link L of S with L′ replaced by the

connected sum of L′ and Li. The surface X ′ (except the cone over

a segment of its link where L′ is attached) is a subset of Yi, and its

complement in Yi is a cone over the link L of S (except the cone over

a segment of L′ where it is attached to Li). The links L0 and L1 from

Example 4 with the trefoil knot attached are shown in Fig. 11a and

Fig. 11b.

By the same arguments as in Step 1 we obtain the conclusion of

Theorem 4.1 in this case.
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Step 3 Consider the case where the link L of S is homeomorphic to

a segment. Consider a germ (Xi, 0), defined in Step 1. Let Tβ ⊂ Xi be

a Hölder triangle with the vertex at the origin, a subset of the conical

part of Xi.

Let (Zi, 0) = (Xi, 0) − Tβ . We claim that the germs (Zi, 0) satisfy

the conditions 1, 2, 3, 4 of Theorem 4.1. The conditions 1 and 2 are

evidently satisfied. The condition 3 is true because the tangent cones

of Xiand Zi at the origin are the same.

Suppose that hij : (R
4, 0) → (R4, 0) is a bi-Lipschitz map, such that

hij(Zi, 0) = (Zj, 0), where i 6= j. Let us apply the map hij to (Xi, 0).

Notice that the set hij(Xi) is different from Xi only in a small β-horn

containing the Hölder triangle Tβ .

If we apply the broken bridge construction to hij(Xi), we get the

same linking number for the two components as in Theorem 3.2.

Since the link of any surface germ either has a connected component

homeomorphic to a segment, or contains a subset which is a (possibly

trivial) knot, this completes the proof of Theorem 4.1.
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