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ABSTRACT: We consider two classes of threshold failure models, Abel-
ian avalanches and sandpiles, with the redistribution matrices satisfying nat-
ural conditions guaranteeing absence of infinite avalanches. We investigate
combinatorial structure of the set of recurrent configurations for these models
and the corresponding statistical properties of the distribution of avalanches.
We introduce reduction operator for redistribution matrices and show that
the dynamics of a model with a non-reduced matrix is completely determined
by the dynamics of the corresponding model with a reduced matrix. Finally,
we show that the stationary distributions of avalanches in the two classes of
models: discrete, stochastic Abelian sandpiles and continuous, deterministic
Abelian avalanches, are identical.

Introduction. Different cellular automaton models of failure (sandpiles, avalanches,

forest fires, etc.), starting with Bak, Tang and Wiesenfeld [BTW1, BTW2] sandpile model,

were introduced in connection with the concept of self-organized criticality. Traditionally,

all of these models are considered on uniform cubic lattices of different dimensions.

Recently Dhar [D1] suggested a generalization of the sandpile model with a general

(modulo some natural sign restrictions) integer matrix ∆ of redistribution of accumulated

particles during an avalanche. An important property of this Abelian sandpile (ASP)

model is the presence of an Abelian group governing its dynamics.

Dhar introduced the set of recurrent configurations for an Abelian sandpile model,

the principal geometric object governing its dynamics in the stationary state. The burning

algorithm introduced in [MD] allows to recognize, for a symmetric sandpile model, when
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a stable configuration is recurrent. A more sophisticated script algorithm suggested in

[S] plays the same role for asymmetric models. Both algorithms provide, in fact, certain

information on the combinatorial structure of the set of recurrent configurations.

Abelian sandpiles were also studied in [WTM, D2, DM, GM, Cr, Go, CC, G1, G2, S,

DMan]. In a non-dissipative case (
∑
j ∆ij = 0, for all i) an avalanche in the ASP model

coincides with a chip-firing game on a directed graph [BLS, BL] where −∆ is the Laplace

matrix of the underlying digraph.

Another class of lattice models of failure, slider block models introduced by Burridge

and Knopoff [BK] and studied in [CaL, Ca, N, MT, LKM], as well as models [FF, D-G,

OFC, CO, Z, PTZ, GNK] which are equivalent to quasistatic block models, have contin-

uous time and continuous quantity at the lattice sites which accumulates in time and is

redistributed during avalanches. This quantity is called the slope, height, stress or energy

by different authors. In slider block models it corresponds to force [OFC]. We use the term

height as in [D1].

Gabrielov [G1], introduced Abelian avalanche (AA) models, deterministic lattice mod-

els with continuous time and height values at the sites of the lattice, and with an arbitrary

redistribution matrix. For a symmetric matrix, these models are equivalent to arbitrarily

interconnected slider block systems. In the case of a uniform lattice, these models were

studied in [FF, D-G] and in [GNK] (as series case a).

The stationary behavior of the AA model is periodic or quasiperiodic, depending

on the loading rate vector. At the same time, the distribution of avalanches for a dis-

crete, stochastic ASP model is identical to the distribution of avalanches for an arbitrary

quasiperiodic trajectory (or to its average over all periodic trajectories) of a continuous,

deterministic AA model with the same redistribution matrix and loading rate [G1].

In this paper, we introduce general conditions on redistribution matrices that are

equivalent to the absence of infinite avalanches in the model. The models satisfying these

conditions include, in particular, the models with non-negative dissipation or codissipation
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considered before. We allow spatially inhomogeneous loading rate and show that the set of

recurrent configurations does not depend on the loading rate vector, as long as a natural

condition guaranteeing absence of non-loaded components in the model is satisfied.

We continue the study of the combinatorial structure of the set of recurrent configu-

rations started in [D1, DM, MD, S] and introduce a new description of this set, essentially

improving the script algorithm suggested in [S] for asymmetric redistribution matrices,

Additional possibility for the study of the models with asymmetric matrices arises

from the matrix reduction operations. These operations act on the redistribution matrices

in the same way as the topple operations act on unstable configurations, and satisfy the

same property of the independence of the resulting reduced matrix on the possible change

of the order of reductions. Each reduction operation simplifies the redistribution matrix,

and replaces the original model by a simpler reduced model such that the combinatorics

of the set of recurrent configurations for the reduced model completely determines the

combinatorics for the original non-reduced model.

In the first section, we define configurations, redistribution matrices and avalanche

operators. We show, following a construction implicitly present in [S], that a legal sequence

of topples satisfies certain minimality condition among all (possibly illegal) sequences of

topples with the same final stable configuration (lemma 1.1). This minimality condition

provides, in particular, a new proof of the principal Abelian property (theorem 1.2). We

introduce the class of avalanche-finite redistribution matrices satisfying eight equivalent

conditions and check these conditions for the matrices with non-negative dissipations and

codissipations.

In the second section, we define, following [G1], the AA model as a sequence of loading

periods and avalanches and describe the dynamics of the model on its attracting set of

recurrent configurations. The arguments here are similar to the arguments of Dhar [D1]

for the ASP models.

In the third section, we study the combinatorial structure of the set of recurrent
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configurations of the AA model. The principal result here, the theorem 3.8, describes this

set as the complement in the set of all stable configurations to the union of negative octants

with the vertices in a finite set N . An explicit constructive description of this set N is

given in the theorem 3.11.

In the fourth section, we show the possibilities to extract the information on the dy-

namics of an AA model from the dynamics of another model with a simplified redistribution

matrix. We introduce the total reduction operator for redistribution matrices, similar to

the avalanche operator for configurations. We show that the stationary dynamics of an

AA model with a redistribution matrix ∆ is completely determined by the dynamics of

the corresponding model with a reduced redistribution matrix, the total reduction of ∆.

In the fifth section, we introduce marginally stable configurations and derive formulas

for the mean number of avalanches. The arguments here are again similar to those of Dhar

[D1], modified for the more general situation considered here.

In the sixth section, we establish the identity between the distributions of avalanches

for AA and ASP models with the same redistribution matrices.

Some of the results of this paper were announced in [G2].

1. Redistribution matrices and avalanches. Let V be a finite set of N elements

(sites), and let ∆ be a N × N real matrix with indices in V . We call ∆ a redistribution

matrix when

∆ii > 0, for all i; ∆ij ≤ 0, for all i 6= j. (1)

A real vector h = {hi, i ∈ V } is called a configuration. The value hi is called the height

at the site i. For every site i, a threshold Hi is defined, and a site i with hi < Hi is called

stable. A configuration is stable when all the sites are stable.

For i ∈ V , a topple operator Ti is defined as

Ti(h) = h− δi (2)
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where δi = (∆i1, . . . ,∆iN) is the i-th row vector of ∆. Obviously, every two topple

operators commute. The topple Ti(h) is legal if hi ≥ Hi, i.e. if the site i is unstable.

No topples are legal for a stable configuration. A sequence of consecutive legal topples is

called an avalanche if it is either infinite or terminates at a stable configuration. In the

latter case, the integer vector n = {ni, i ∈ V } where ni is the number of topples at a site

i during the avalanche is called its script, and the total number
∑

i ni of topples in the

avalanche is called its size.

The following lemma shows that the avalanches are “extremal” among all the se-

quences of (possibly, illegal) consecutive topples with the same endpoints. It allows, in

particular, to give an alternative proof of the principal property of avalanches — the script

and the final stable configuration depend only on the starting configuration, not on the

possible choice in the sequence of topples (theorem 1.2 below).

Lemma 1.1. Let h be an arbitrary configuration and let m be an integer vector with

non-negative components mi such that g = h−
∑
miδi is a stable configuration. For any

finite sequence of consecutive legal topples started at h, with ni topples at a site i, we have

mi ≥ ni.

Proof. The arguments appear implicitly in [S]. We use induction on the size n =
∑
ni

of the sequence of legal topples. For n = 0, the statement is trivial. Let it be true, i.e.

mi ≥ ni, for a sequence with ni topples at a site i. If a site j is unstable for a configuration

f = h −
∑
niδi then gj < fj . Due to (1), this implies mj > nj, hence the statement

remains true when we add a topple at the site j to the sequence.

Theorem 1.2. (Sf. [D1], [BLS], [BL].) Every two avalanches starting at the same con-

figuration h are either both infinite or both finite. In the latter case, the scripts of both

avalanches coincide. In particular, both avalanches terminate at the same stable configu-

ration and have the same size.

Proof. The statement follows easily from the lemma 1.1.
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Remark 1.3. If we consider a configuration as an initial state of a game, and every legal

topple as a legal move, an avalanche becomes a (solitary) game. The theorem 1.2 means

that this game is strongly convergent in the definition of [E].

Lemma 1.4. For every site i that toppled at least once during an avalanche, hi ≥ Hi−∆ii

till the end of the avalanche.

The statement follows from (1) and (2).

Let RV
+ = {hi ≥ 0, for all i} and RV

− = −RV
+ denote positive and negative closed

octants in RV , and let ṘV
+ = {hi > 0, for all i} be an open positive octant. Let ∆′ be the

transpose of the matrix ∆.

Theorem 1.5. For a redistribution matrix ∆, the following properties are equivalent.

i. Every avalanche for ∆ is finite.

ii. ∆(RV
+ \ {0}) ∩RV

− = ∅.

iii. ∆(RV
+) ⊇ RV

+, i.e. ∆−1 exists and all its elements are non-negative.

iv. ∆(RV
+) ∩ ṘV

+ 6= ∅.

i′. Every avalanche for ∆′ is finite.

ii′. ∆′(RV
+ \ {0}) ∩RV

− = ∅.

iii′. ∆′(RV
+) ⊇ RV

+, i.e. ∆′−1 exists and all its elements are non-negative.

iv′. ∆′(RV
+) ∩ ṘV

+ 6= ∅.

Proof. (ii′)⇒ (i). Let us show that for ∆ satisfying (ii′), every avalanche is finite. If

there exists an infinite avalanche started at a configuration h, let r(k) = {ki/k, i ∈ V }

where ki is the number of topples at a site i after a total number of topples k. According

to (2), the configuration after k topples is h(k) = h − k∆′r(k). Let r ∈ RV \ {0} be

an accumulation point for r(k) (it exists because all these vectors have unit length) and

p = −∆′r an accumulation point for (h(k)− h)/k. According to lemma 1.4, components

of h(k)− h are bounded from below. Hence all components of p are non-negative, and ∆

does not satisfy (ii′).
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(i)⇒ (iii′). Let h be a configuration in RV
+, and let a finite avalanche starting at kh

terminates at a stable configuration h(k). Let r(k) = {ki/k, i ∈ V } where ki is the

number of topples at a site i during this avalanche. We have ∆′r(k) = h− h(k)/k. Let r

be an accumulation point for r(k), as k → ∞. Then r ∈ RV
+ and ∆′r = h, because h(k)

remains bounded as k→∞.

(iv)⇒ (ii′). Suppose that ∆ does not satisfy (ii′). This means that there exists a linear

form l 6= 0 with non-negative coefficients such that l(δi) ≤ 0, for all i. Hence l(
∑
ciδi) ≤ 0

for any combination of the vectors δi with non-negative coefficients ci. At the same time,

l(δ) > 0, for every δ ∈ ṘV
+. This means that ∆(RV

+)∩ ṘV
+ = ∅ and ∆ does not satisfy (iv).

(iii′)⇒ (iv′). The implication is obvious.

Combining the four implications, we have (iv)⇒ (ii′)⇒ (i)⇒ (iii′)⇒ (iv′). The same

arguments applied to ∆′ instead of ∆ imply (iv′)⇒ (ii)⇒ (i′)⇒ (iii)⇒ (iv). This com-

pletes the proof.

Definition 1.6. A redistribution matrix satisfying the conditions of the theorem 1.5 is

called avalanche-finite.

Remark 1.7. Let ∆ be an avalanche-finite matrix, and let t ∈ ṘV
+, ∆t ∈ ṘV

+. Such a

vector t always exists due to the property (iii) or (iv). Let |h|t = (h, t) be the t-weighted

length of a configuration h. Then |Ti(h)|t < |h|t, for all i ∈ V , i.e. every topple operator

dissipates the t-weighted length. This can be also used to prove the implications (iii)⇒ (i)

and (iv)⇒ (i).

Definition 1.8. The value si =
∑
j ∆ij is called the dissipation at the site i, and the

value s′j =
∑

i ∆ij is called the codissipation at the site j. A site i is called dissipative

(non-dissipative) if si > 0 (si = 0). A site j is called codissipative (non-codissipative) if

s′j > 0 (s′j = 0).

An underlying digraph Γ = Γ(∆) of a redistribution matrix ∆ is defined by the vertex

set V (Γ) = V and an edge from a site i to a site j drawn iff ∆ij < 0.
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Let s′ be a diagonal matrix with s′ii = s′i, and let

∆0 = ∆− s′ (3)

be the non-codissipative part of ∆. The matrix ∆0 coincides with the Kirchhoff matrix of

Γ, with conductance of an edge
−→
ij defined as −∆ij [T, p.138].

A subset W of V is called a sink in Γ if there are no edges from sites in W to sites

outside W , and a source if there are no edges from sites outside W to sites in W .

A matrix ∆ is called weakly dissipative if all the dissipation values si are non-negative

and the digraph Γ(∆) has no non-dissipative sinks, i.e. from every site there exists a

directed path in Γ(∆) to a dissipative site.

Proposition 1.9. A matrix with non-negative dissipation values is avalanche-finite if

and only if it is weakly dissipative.

Proof. If the graph Γ(∆) has a non-dissipative sink W ⊆ V then
∑
i∈W hi does not

decrease during an avalanche, hence the avalanche started at a configuration with large

enough values of hi, i ∈W , cannot be finite.

Suppose now that ∆ is weakly dissipative. It follows from the definition 1.8 that

σ =
∑
i hi does not increase at any topple and decreases when a dissipative site topples.

Suppose that there exists an infinite avalanche, and let W ⊂ V be the subset of sites

that topple infinite number of times in this avalanche. Then all the sites in W are non-

dissipative, otherwise σ would decrease indefinitely, in contradiction to the lemma 1.4. At

the same time, W is a sink of Γ, otherwise hj would increase indefinitely at any site j 6∈W

such that ∆ij < 0, for some i ∈W . This contradicts the definition 1.8.

Definition 1.10. A matrix ∆ is called weakly codissipative if all the codissipation values

s′j are non-negative and the digraph Γ(∆) has no non-codissipative sources, i.e. to every

site there exists a directed path in Γ(∆) from a codissipative site.

Proposition 1.11. A matrix with non-negative codissipation values is avalanche-finite

if and only if it is weakly codissipative.
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Proof. The statement follows from the theorem 1.5 and proposition 1.9, because the

transpose of a weakly codissipative matrix is weakly dissipative.

Proposition 1.12. For every avalanche-finite matrix ∆, det(∆) > 0.

Proof. Let a redistribution matrix ∆ satisfy the condition (ii) of the theorem 1.5. For

t ∈ [0, 1], all the matrices ∆t = t∆ + (1− t)E from the segment connecting with the unit

matrix E satisfy (ii). Hence all these matrices are avalanche-finite. Due to the condition

(iii), all the matrices in this segment are non-singular, hence their determinants have the

same (positive) sign.

In the following, we consider only avalanche-finite redistribution matrices.

Definition 1.13. For a configuration h, the avalanche operator Ah is defined as the

stable configuration that terminates an avalanche initiated at h. Due to the theorem 1.2,

this stable configuration is unique. If h is stable, Ah = h.

Example 1.14. The sandpile model introduced in [BTW], n× n square lattice with the

nearest neighbor interaction and particles dropping from the boundary, is defined by a

symmetric redistribution matrix ∆ of the size n2 × n2. The rows and columns of ∆ are

specified by a vector index i = (i1, i2) with 1 ≤ iν ≤ N , for ν = 1, 2, ∆i,i = 4, ∆i,j =

−1, for i1 = j1, i2 = j2±1, and for i1 = j1±1, i2 = j2, ∆i,j = 0 otherwise. This matrix

is weakly (co-) dissipative, hence avalanche-finite.

Example 1.15. The 1-dimensional model with the failure depending on the local slope,

introduced in [BTW] (for m = 1) and studied in [KNWZ, LLT, LT, S, CFKKP], is defined

as follows. At every site i, 1 ≤ i ≤ N , we place ki particles, and set kN+1 = 0. The site i

topples when ki − ki+1 ≥ m. The topple operator removes m particles from the site i and

adds one particle to each site j = i+1, . . . , i+m as soon as j ≤ N . After the transformation

hi = ki−ki+1, for 1 ≤ i ≤ N , this model can be defined by a redistribution matrix ∆ with

∆i,i = m + 1, for i < N, ∆N,N = m ∆i,i−1 = −m, for i > 1, ∆i,ν = −1, for i < N
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and ν = max(i+m,N) (sf. [S]). This matrix is not symmetric when m > 1. It is weakly

(co-) dissipative, hence avalanche-finite.

Example 1.16. A chip-firing game introduced in [BLS, BL] is defined by a (directed)

graph Γ with a certain number of chips placed at each of its vertices, and a sequence of

legal moves (fires), when one particle is allowed to be moved from a vertex i to the end of

each edge directed from i, in case the total number of chips at the vertex i is not less than

the total number of the edges directed from i. The corresponding redistribution matrix is,

after a sign change, the Laplace matrix of Γ. It is always degenerate (all the dissipations

are equal 0) hence not avalanche-finite.

Example 1.17. For N ≤ 3, a redistribution matrix ∆ is avalanche-finite iff det(∆) > 0.

However, for N ≥ 4 there exist redistribution matrices with positive determinant which

are not avalanche-finite. Consider, for example, an 4× 4-matrix

∆ =


1 −3 −1 0
−3 1 −1 0
−1 −1 1 −2

0 0 −2 1

 .

We have det(∆) = 16 > 0. At the same time, the matrix ∆ is not avalanche-finite, because

∆(1, 1, 0, 0) = (−2,−2,−2, 0), in contradiction to the condition (ii) of the theorem 1.5.

2. Abelian avalanche model. In this section, we define the Abelian avalanche model

as a sequence of slow loading periods and fast redistribution events (avalanches). Many

of the statements in this section are similar to the corresponding statements of Dhar [D1]

for the ASP models. We present these statements with short proofs to make the paper

self-contained. Also, the class of the redistribution matrices and loading vectors considered

here is more general than in [D1].

Let v = {vi, i ∈ V } be a non-zero vector with non-negative components. For an

(avalanche-finite) redistribution matrix ∆, an Abelian avalanche (AA) model [G1] with a

loading rate vector v is defined as follows.
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For every stable configuration, every height hi increases in time with the constant rate

vi, until a height hi equals or exceeds a threshold value Hi at some site i. Then the site i

topples according to (2) starting an avalanche which terminates at a stable configuration.

After this the loading resumes, and the process continues indefinitely.

Definition 2.1. An AA model is called properly loaded if the digraph Γ(∆) does not

contain non-loaded sources, e.g. to every site there exists a directed path in Γ(∆) from a

loaded site. Here a site i is called loaded if vi > 0 and non-loaded if vi = 0.

If the model is not properly loaded, some parts of the system do not evolve in time.

For a properly loaded model, it is easy to show that the rate of topples at every site is

positive.

The dynamics of the model does not change if we replace the values Hi by some

other values, and add the difference to all configuration vectors. For convenience we take

Hi = ∆ii. In this case, hi(t) ≥ 0 for any trajectory h(t) of the model when the i-th element

has been toppled at least once. Hence, for a properly loaded model, only configurations

h ∈ RV
+ are relevant for the long-term dynamics. Let S = {0 ≤ hi < ∆ii} be the set of all

stable configurations in RV
+ .

Remark 2.2. In the case of a symmetric matrix ∆ and vi = si, for all i, the AA model

is equivalent to a system of blocks where i-th block is connected to j-th block by a coil

spring of rigidity −∆ij , if ∆ij < 0, and to a slab moving with a unit rate by a leaf spring

of rigidity si. For every block, a static friction force Hi is defined, and a block is allowed to

move by one unit of space when the total force hi applied to this block from other blocks

and the moving slab, equals or exceeds Hi. The weak dissipation, weak codissipation and

proper loading conditions coincide in this case, and are satisfied when the system of blocks

(including the moving slab) is connected.

Proposition 2.3. (Sf. Dhar [D1].) Let r = {ri} be defined by ∆′r = v. Then ri is

equal to the average, per unit time, rate of topples at a site i, independent of the initial
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configuration.

Proof. Let r(t) = {ki(t)/t, i ∈ V } where ki(t) is the number of topples at a site i during

a time interval t. We have r(t)→ r as t→∞. Let h be an initial stable configuration at

t = 0. According to (2), the stable configuration at the time t is h(t) = h + vt− t∆′r(t).

As t→∞, the stable configuration h(t) remains bounded according to lemma 1.4, hence

∆′r(t)→ v.

Definition 2.4. For u ∈ RV
+, a load-avalanche operator Cu is defined as Cuh = A(h+u).

Theorem 2.5. (Sf. Dhar [D1].) For u,v ∈ RV
+, we have Cu ◦ Cv = Cu+v. In particular,

every two load-avalanche operators commute.

Proof. For every configuration h with an unstable site i, the site i remains unstable

when we add a vector with non-negative components to h. Hence in any sequence of legal

topples and loading periods all the topples remain legal if we do all the loading first.

Remark 2.6. Due to the theorem 2.5, the load-avalanche operators for an AA model

constitute an Abelian group, which is why the model is called “Abelian”.

Definition 2.7. A configuration h is called reachable if there exists an avalanche started

at a configuration with arbitrarily large components passing through h. A configuration

is recurrent if it is reachable and stable. It will be shown below that only recurrent

configurations can (and do) appear in the stationary state of any properly loaded AA

model, independent of the loading vector.

Definition 2.8. Let, as before, δi = (∆i1, . . . ,∆iN) be the i-th row vector of the matrix ∆.

Integer combinations of vectors δi generate a lattice L = L(∆) in RV . Two configurations

h and h′, are called equivalent if h′ − h belongs to L. A subset U ⊂ RV is a fundamental

domain for L if, for every h ∈ RV , there exists precisely one configuration in U equivalent

to h modulo L.
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Theorem 2.9. (Sf. Dhar [D1].) The set R of recurrent configurations is a fundamental

domain for the lattice L.

Proof. For every h ∈ RV
+, configuration Ah is equivalent to h and belongs to S. Hence S

contains a fundamental domain for L. For u ∈ RV
+, the set S + u contains a fundamental

domain for L because this property is translation-invariant. Hence A(S + u) = Cu(S)

contains a fundamental domain for L. The following lemma completes the proof.

Lemma 2.10. Cu(S) does not depend on u and is a fundamental domain for L when

ui ≥ ∆ii, for all i. (4)

Proof. It is enough to show that, if (4) holds, Ah = Ah′, for every configuration h ∈ S+u,

and for any configuration h′ with large enough components equivalent to h modulo L.

Due to the condition (iii)
′

of the theorem 1.5, (4) implies that h − Ah′ =
∑
niδi

with non-negative integer ni. Because the components of h and Ah′ and the values of ni

remain bounded, while the components of h′ are arbitrarily large, we can suppose that there

exists a sequence of legal topples, with ni topples at a site i, starting at h′′ = h′+h−Ah′

(this is the exact meaning of “large enough” components of h′). This sequence of topples

transforms h′′ into h′. Hence Ah′′ = Ah′. At the same time, an avalanche from h′ to Ah′

shifted by h−Ah′ (due to the condition (4), all components of h−Ah′ are non-negative)

transforms h′′ into h. Hence Ah′′ = Ah. This implies Ah′ = Ah.

Remark 2.11. The lemma 2.10 contains in fact a stronger statement than the theorem

2.9. In particular, the “configuration with arbitrarily large components” in the definition

2.7 can be replaced by the “configuration g with gi ≥ ∆ii.”

Let dh = dh1 · · ·dhN be the uniform measure in RV . For a subset D ⊂ RV , the

volume Vol(D) is defined as
∫
D
dh. It follows from the theorem 2.9 and proposition 1.12

that Vol(R) = det(∆), because every fundamental domain for L has volume | det(∆)|.
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Theorem 2.12. (Sf. Dhar [D1].) For a properly loaded AA model, the set R, with

the uniform measure dh, is invariant under the dynamics of the model. Every trajectory

starting outside R arrives in R after a finite time period, hence R is a global attractor.

Proof. The loading applied to a recurrent configuration obviously produces a reachable

configuration (we can shift the whole sequence of topples by the loading vector). Due to

the definition 2.7, Ah ∈ R, for every reachable configuration h. Hence R is invariant. The

measure dh is obviously invariant under both loading and avalanche operators.

Let us show that R is a global attractor. If all the components of the loading vector v

of the model are positive then h+vt has arbitrarily large components, for any configuration

h, if t is large enough. It follows then from the theorem 2.5 that the trajectory starting

at h arrives in R. In case some components of v are zero, it follows from the definition

2.1 that, for t sufficiently large, there exists an avalanche starting at h + vt and passing

through a configuration with arbitrarily large components. This completes the proof.

Proposition 2.13. For an AA model with a loading vector v, let r = ∆′−1v be the

topple rate vector. If, for some T > 0, Tr = n is an integer vector, then every trajectory

in R is periodic, with a period T , and a site i topples ni times during a period T , for every

periodic trajectory. Otherwise, every trajectory in R is quasiperiodic, with a rotation

vector r.

Proof. If Tr = n then ∆′n = vT . Hence h + vT is equivalent to h modulo L, for any

configuration h. If h ∈ R, due to the theorems 2.5 and 2.9, the stable configuration at the

trajectory started from h after time T coincides with h, hence T is a period. In general,

due to the theorems 2.9 and 2.12, the dynamics of the AA model on R is equivalent to the

flow on the n-torus RV /L with a constant rate v or, taking δi as a new basis, to the flow

on the torus RV /ZV with a constant rate r.

Example 2.14. The model from the example 1.14, with any non-zero loading vector

with non-negative components, is a properly loaded AA model. The set of recurrent
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configurations of this symmetric model is described in [D, MD] in terms of forbidden

subconfigurations. See also [S] and the remark 3.13 below.

Example 2.15. The model from the example 1.15, with any non-zero loading vector

with non-negative components, is a properly loaded AA model. In particular, the loading

vector (v, 0, . . . , 0), corresponds in the original sandpile model to adding particles to the

first site [LLT, LT, S]. However, adding particles to any other site produces a loading vector

with a negative component. This leads to non-commuting load-avalanche operators and

essentially more complicated dynamics [KNWZ, CFKKP].

Example 2.16. Let N = 2, and let

∆ =

(
a b
c d

)
, with a > 0, d > 0, b ≤ 0, c ≤ 0, ad > bc.

Then ∆ is avalanche-finite, and Vol(R) = ad− bc.

If −b ≤ d and −c ≤ a, i.e. the matrix ∆ is weakly codissipative, then the set R consists

of all stable configurations (h1, h2) (0 ≤ h1 < a, 0 ≤ h2 < d) outside the open negative

quadrant {h1 < −c, h2 < −b}. Otherwise, let −b > d (the case −c > a is similar). Let

k = [−b/d] be the integer part of −b/d, and

∆1 =

(
a+ kc b+ kd
c d

)
.

It will be shown in section 4 that the set R(∆) shifted by (kc, 0) coincides with the set

R(∆1). Iterating if necessary this procedure, we eventually reduce the matrix ∆ to a

matrix with −b ≤ d and −c ≤ a and with the set of recurrent configuration coincident

with R(∆), after an appropriate shift. In particular, R(∆) is either a rectangle with a

vertex at (a, d) and the sides parallel to the coordinate axes, or a difference of such a

rectangle and an open negative quadrant with a vertex inside it.

In particular, for (a, b, c, d) = (8,−7,−5, 5), the set R(∆) consists of (h1, h2) with

5 ≤ h1 < 8, 4 ≤ h2 < 5 or 7 ≤ h1 < 8, 2 ≤ h2 < 4.
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3. Recurrent configurations. We want to investigate the combinatorial structure of

the set R of recurrent configurations for the AA model. We show that this set can be

defined by subtracting certain open negative octants from the set S of all stable configu-

rations. Our goal is to reduce as much as possible the number of the necessary octants.

This would allow to estimate the combinatorial complexity of the set R, and to reduce the

number of operations necessary to check whether a given configuration is recurrent.

For two vectors u and v, we write u > v if ui > vi, for all i, u ≥ v if ui ≥ vi, for all

i, u � v if u ≥ v and u 6= v. For a subset X of V , let 1X be the vector with the i-th

component equal 1 when i ∈ X and 0 otherwise.

Let Q = diag(∆) = (∆11, . . . ,∆NN). For an integer vector n, let Qn = Q −∆′n =

Q −
∑
niδi and let Vn = {h < Qn} be an open negative octant with a vertex at Qn. In

particular, V0 = {h < Q} coincides with the set of all stable configurations. For n = 1X ,

we write QX and VX instead of Qn and Vn.

Proposition 3.1. If n has at least one positive component, the set Vn contains no

reachable configurations. In particular,

R = V0 \
⋃
Vn, (5)

the union taken over integer vectors n with at least one positive component.

Proof. If there exists a reachable configuration g ∈ Vn, then all configurations in Vn close

to Qn are reachable, because they can be obtained from g by non-negative loading. There

exists a configuration h in R arbitrarily close to Q. The configuration hn = h − ∆′n is

equivalent to h, belongs to Vn and is close to Qn. Any avalanche starting at a configuration

with large enough components that passes through hn should terminate at h ∈ R. But

this is possible only if all the components of n are non-positive.

We want to show that the set of the integer vectors n in (5) necessary to define all recurrent

configurations can be significantly reduced.



Asymmetric Abelian Avalanches and Sandpiles Page 17

Definition 3.2. Let ∆ be a redistribution matrix, not necessarily avalanche-finite. Let

X ⊆ V . For a configuration h, a site i is called X-stable if

hi < ∆ii, for i ∈ X, hi < 2∆ii, for i 6∈ X. (6)

A configuration is X-stable when all the sites are X-stable. In particular, the V -stable

configurations are the ordinary stable configurations. A topple Ti(h) is X-legal if the site

i is X-unstable. A sequence of consecutive X-legal topples is called an X-avalanche if it

is either infinite or terminates at an X-stable configuration.

A site or a configuration is marginally X-stable if “<” can be replaced by “≤” at both

places in (6), and a topple at a site which is not marginally X-stable is called marginally

X-legal. A sequence of consecutive marginally X-legal topples is called a marginal X-

avalanche if it is either infinite or terminates at a marginally X-stable configuration.

The lemma 1.1 and theorem 1.2 can be reformulated for the (marginal) X-avalanches

as follows.

Proposition 3.3. Let h be an arbitrary configuration and let m be an integer vector

with non-negative components mi such that g = h −
∑
miδi is a (marginally) X-stable

configuration. For any finite sequence of consecutive (marginally) X-legal topples started

at h, with ni topples at a site i, we have mi ≥ ni.

Every two (marginal) X-avalanches starting at the same configuration h are either

both infinite or both finite. In the latter case, the number of topples at every site is

the same for both avalanches and the two avalanches terminate at the same (marginally)

X-stable configuration.

Obviously, for an avalanche-finite matrix, every (marginal) X-avalanche is finite. In

the following, we consider only avalanche-finite matrices.

Definition 3.4. We define the X-avalanche operator h 7→ AXh where AXh is the unique

X-stable configuration terminating any X-avalanche started at the configuration h. The
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marginal X-avalanche operator h 7→ AXh is defined by the unique marginally X-stable

configuration terminating any marginal X-avalanche started at a configuration h.

For h = Q, we have AXQ = Q −∆′NX where NX is a non-negative integer vector.

It is easy to show that AXQ = AXQX , hence NX ≥ 1X . The vector NX is called the

X-script. For X = {i}, we write Ni instead of NX . The marginal X-script NX is defined

by AXQX = Q−∆′NX . By definition, NX ≥ 1X .

Lemma 3.5. We have

0 < (∆′NX)i ≤ ∆ii, for i ∈ X, −∆ii < (∆′NX)i ≤ 0, for i 6∈ X; (7)

0 ≤ (∆′NX)i ≤ ∆ii, for i ∈ X, −∆ii ≤ (∆′NX)i ≤ 0, for i 6∈ X. (8)

The statement follows easily from the definitions 3.2 and 3.4.

Remark 3.6. If the graph Γ(∆) is strongly connected, i.e. from every site i there exists

a directed path in Γ(∆) to every site j 6= i, the marginal V -script NV coincides with the

script N defined in [S].

Theorem 3.7. (Sf. Speer [S].) A stable configuration is recurrent if and only if it does

not belong to any octant Vn, for 0 ≺ n ≤ NV .

This theorem reduces the number of the negative octants Vn required in the proposition

3.1 for the description ofR. The following stronger statement provides a further reduction.

Theorem 3.8. For an integer vector n, let Z(n) = {i ∈ V : (Qn)i < ∆ii}. Let N be the

set of all integer vectors n such that Z(n) 6= ∅, NZ(n) ≤ n ≤ NV , and 0 ≤ (Qn)i < 2∆ii,

for all i. A stable configuration is recurrent if and only if, for any n ∈ N , it does not

belong to Vn.

Proof. Let n0 be an integer vector with at least one non-negative component. We want

to find an integer vector n ∈ N such that Vn0 ∩ V0 ⊆ Vn ∩ V0. The claim of the theorem

3.8 follows then from the proposition 3.1.
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Let P = Qn0 . If P has a negative component Pi, then Vn0 ∩ V0 ⊂ V{i} ∩ V0, so it is

enough to consider the case when all the components of P are non-negative.

The set Z(n0) is not empty, otherwise Vn0 contains V0 and there are no recurrent

configurations at all. If Pi ≥ 2∆ii, for some i, then Vn0 ∩ V0 ⊆ Vn0+1i ∩ V0. Applying

the same arguments to n0 + 1i, we can finally find an integer vector n1 such that 0 ≤

(Qn1)i < 2∆ii, for all i, and Vn0 ∩V0 ⊆ Vn1 ∩V0 (the process cannot continue indefinitely

because every step is a legal topple and the matrix ∆ is avalanche-finite). Note that

Z(n1) ⊆ Z(n0). Due to the proposition 3.3, n1 ≥ NZ(n1). If n1 6≤ NV then n2 = n1−NV

has at least one non-negative component and Vn1 ∩V0 ⊆ Vn2 ∩V0. Again, Z(n2) ⊆ Z(n1).

If (Qn2)i ≥ 2∆ii, for some i, we can proceed as before and find a vector n3 such that

0 ≤ (Qn3)i, for all i, and Vn2 ∩ V0 ⊆ Vn3 ∩ V0, and so on.

Let us show that the sequence of vectors nk cannot be infinite. First, the sequence

Z(nk) is non-increasing, and Z = ∩Z(nk) 6= ∅. Second, for any i ∈ Z, the i-th component

of nk decreases when we subtract NV and does not increase when we add 1j , j 6∈ Z.

Finally, for an avalanche-finite matrix there are only finitely many integer vectors m such

that Qm is Z-stable and Vn0 ∩ V0 ⊆ Vm. Hence the sequence {nk} terminates at a vector

n which necessarily belongs to N .

Example 3.9. Let N = 2, and let the matrix ∆ be defined as in the example 2.16.

If −b < d and −c < a then N1 = (1, 0), N2 = (0, 1), N̄V = (1, 1), with Q(1,0) =

(0, d+ b), Q(0,1) = (a+ c, 0), Q(1,1) = (−c,−b).

If kd ≤ −b < (k+ 1)d, for an integer k ≥ 1, then N1 = (1, k), N2 = (0, 1). The script

NV can be found by the reduction procedure described in the example 2.16.

In particular, for (a, b, c, d) = (8,−7,−5, 5), we have N1 = (1, 1), N2 = (0, 1), N̄V =

(2, 3), with Q(1,1) = (5, 7), Q(0,1) = (13, 0), Q(2,3) = (7, 4). The set N includes also (1, 2)

and (2, 2), with Q(1,2) = (10, 2) and Q(2,2) = (2, 9). Only three of the five vectors n ∈ N

are sufficient to define R, those with Qn = (5, 7), (7, 4), and (10, 2).
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Example 3.10. Let N = 3, and

∆ =

 6 −2 −2
−3 9 −5
−2 −2 6

 .

The matrix ∆ has positive dissipations, and Vol(R) = det(∆) = 160. We have NX = 1X ,

for all subsets X ⊆ V , except N{1,1} = (1, 1, 1) and NV = NV = (2, 1, 2). The correspond-

ing vertices Qn are (0, 11, 8), (9, 0, 11), (8, 11, 0), (5, 4, 7), (2, 13, 2), (11, 2, 5), (1, 8, 3).

The set N contains, except these 7 vectors, n = (1, 1, 2), with Qn = (7, 6, 1). It is easy to

check that all 8 vertices Qn, n ∈ N , are necessary to define R. In particular, the set R is

different from a set of recurrent configurations for any weakly codissipative 3 × 3-matrix,

where 7 vertices are always enough.

Theorem 3.11. The set N defined in the theorem 3.8 coincides with the minimal set of

integer vectors containing

(a) for every nonempty subset X of V , the script NX ;

(b) for any vector m ∈ N with Z(m) = X, a vector n = m + NY when n ≤ NV , Z(n) =

Y , and 0 ≤ (Qn)i < 2∆ii, for all i.

Proof. Let n ∈ N , i.e. NZ(n) ≤ n ≤ NV and 0 ≤ (Qn)i < 2∆ii, for all i. Let P = Qn

and Y = Z(n) = {i : Pi < ∆ii}. Due to the proposition 3.3, n ≥ NY . If n = NY ,

the claim of the theorem is true. Otherwise, let P′ = P + ∆′NY . Due to the lemma

3.5, 0 < P ′i < 2∆ii, for all i. Let m = n − NY and X = {i : P ′i < ∆ii}. Then

m � 0, P′ = Qm, and X = Z(m). Due to the proposition 3.3, m ≥ NX . Hence m ∈ N

and the condition (b) of the theorem 3.11 is valid for m and n.

Remark 3.12. The theorem 3.11 provides a simple algorithm to find a small (not always

the smallest) set of conditions defining R. First, we have to find the scripts NX , for

∅ 6= X ⊂ V , and the script NV . Then, we have to check all the scripts N = NX + NY ,

for X 6= Y , and add to the set those of them for which N ≺ NV , Z = Z(QN) is either

X or Y , and 0 ≤ (QN)i < 2∆ii, for all i. For every new script N added at this step, we
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check the scripts N′ = N + NX , ∅ 6= X ⊂ V , and add to the set those of them for which

N′ ≺ NV , Z(QN′) = X, and 0 ≤ (QN′)i < 2∆ii, for all i, and so on, until there will be

nothing to add.

Remark 3.13. If n = 1X , the set S ∩ Vn coincides with the stable forbidden subconfig-

urations [D1]

FX = {h ∈ S, hj < −
∑

i∈X, i6=j
∆ij , for j ∈ X}. (9)

For a weakly codissipative matrix, NV = (1, . . . , 1) and the theorem 3.8 implies the de-

scription of R in terms of forbidden subconfigurations [D1, MD, S]. A direct combinatorial

proof of this description is given in [G1]. It is essentially equivalent to the following non-

trivial theorem of linear algebra (see [G1]).

Theorem 3.14. For any matrix ∆,

det(∆) =
∑
l≥0

(−1)|V |−|Xl|
∑

X0⊂X1⊂...⊂Xl

∏
j 6∈Xl

∆jj

l∏
i=1

∏
j∈Xi\Xi−1

∑
ν∈Xi,ν 6=j

∆νj .

4. Matrix reduction. In this section, we show that the dynamics of the AA model with

a non-reduced (see the definition 4.2 below) redistribution matrix ∆ can be completely

determined by the dynamics of a simpler AA model with a reduced redistribution matrix

Θ, such that the rows of Θ are combinations of the rows of ∆ with non-negative integer

coefficients. This implies that each topple operator of the second model is a combination of

the topple operators of the first model. At the same time, the sets of recurent configurations

and the avalanche operators for both models in the stationary state are essentially the same,

i.e. the topple operators in any recurrent avalanche of the original model appear necessarily

in the combinations required to constitute the topple operators of the second model (this

is why the second model is simpler — its avalanches are shorter).

Theorem 4.1. Let ∆ be an avalanche-finite redistribution matrix, and let K = (kij) be

a matrix with non-negative integer elements with det(K) = 1. Let Θ = K∆. If Θ is also

a redistribution matrix then



Asymmetric Abelian Avalanches and Sandpiles Page 22

(a) Θ is avalanche-finite.

(b) The sets R(∆) and R(Θ) of recurrent configurations for the AA models with matrices

∆ and Θ satisfy R(∆)− diag(∆) = R(Θ)− diag(Θ).

(c) For every avalanche for the AA model with the matrix ∆ starting at h and terminating

at A∆h ∈ R(∆), with a script N, there exists an avalanche for the AA model with

the matrix Θ starting at h′ = h + diag(Θ) − diag(∆) and terminating at AΘh′ =

A∆h + diag(Θ)− diag(∆) ∈ R(Θ), with a script n such that N = K ′n.

Proof. (a) Every row vector θi of the matrix Θ is a non-zero combination of vectors δj

with non-negative coefficients,

θi =
∑
j

kijδj . (10)

As ∆ is avalanche-finite, a non-zero combination of vectors δi with non-negative coefficients

cannot belong to RV
−, Due to the property (ii)′ of the theorem 1.5. Hence the same property

(ii)′ of the theorem 1.5 is valid for Θ.

(b) Due to (10) the set R(Θ)− diag(Θ) + diag(∆) coincides with V0 \ ∪Vn where the

union is taken over all non-zero integer combinations of vectors ki = (ki1, . . . , kiN). This

set contains R(∆) due to (5). As det(Θ) = det(∆), the two sets coincide.

(c) Let h′ = h+diag(Θ)−diag(∆), and let h′′ = A∆h+diag(Θ)−diag(∆). As A∆h is

equivalent to h modulo the lattice L generated by the integer combinations of θi, we have

h′′ is equivalent to h′ modulo the same lattice L generated by the integer combinations of

δi. (The two lattices coincide because det(K) = 1.) As A∆h ∈ R(∆), we have h′′ ∈ R(Θ)

due to (b). As R(Θ) is a fundamental domain for the lattice L, we have h′′ = AΘh′. The

formula for the scripts follows from (10).

Definition 4.2. Redistribution matrix ∆ is reduced if −∆ij < ∆jj , for all i 6= j.

We describe here two methods that allow to replace a model with a non-reduced

redistribution matrix by an equivalent, in the sense of the theorem 4.1, model with a re-

duced rredistribution matrix. First, we use the results of the previous section to construct
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a reduced redistribution matrix from a given non-reduced matrix. Next, we introduce

reduction operations on redistribution matrices, similar to the topple operations on con-

figurations. Although these operations do not always commute, the reduced matrix ter-

minating a sequence of consecutive reduction operations does not depend on the possible

choice of the sequence, similarly to the Abelian property of the topple operations. At the

same time, each reduction operation replaces a redistribution matrix by an equivalent one.

Lemma 4.3. Let NX be the X-script defined in 3.4. For any two subsets X and Y of V

with X ∩ Y = ∅, we have NX∪Y ≥ NX + NY .

Proof. By definition, every X-legal topple is also (X ∪ Y )-legal. Hence every topple in

the X-avalanche started at Q and terminated at AXQ = QNX
is (X ∪ Y )-legal.

Let us now shift by QNX
− Q the Y -avalanche started at Q and terminated at

AY QY = QNY
. Due to the lemma 3.5, all the topples in this sequence started at QNX

and terminated at P = QNX
+ QNY

−Q = QNX+NY
are X ∪Y -legal. Hence there exists

an X ∪ Y -avalanche started at Q passing through P, and NX∪Y ≥ NX + NY .

Lemma 4.4. For every n ≥ 0 with (Qn)i < 2∆ii, for all i, we have n =
∑
kiNi, with

non-negative integer ki.

Proof. Let Z = Z(n). The case n = 0 is trivial, and for n � 0 the set Z is nonempty, due

to the property (ii′) of the theorem 1.5. Let i ∈ Z. As n is Z-stable, we have n ≥ NZ due

to the proposition 3.3, hence n ≥ Ni due to the lemma 4.3. If n = Ni there is nothing to

prove. Otherwise, let n′ = n−Ni � 0 and P = Qn′ . From the lemma 3.5, (∆′Ni)i ≤ ∆ii

and (∆′Ni)j ≤ 0, for j 6= i. Hence Pi < 2∆ii, for all i, and the statement is reduced to

the same statement for n′ ≺ n.

Theorem 4.5. Let θi = ∆′Ni and let Θ be the matrix with θi as an i-th row. Then Θ

is an avalanche-finite redistribution matrix with det(Θ) = det(∆). The matrices ∆ and Θ

satisfy the conditions of the theorem 4.1, for the matrix K with the rows Ni. We have

Θ = ∆ if and only if ∆ is reduced.
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Proof. Due to the definition 3.4 and lemma 3.5, all components of θi are non-positive,

except the i-th component which is positive. Hence Θ is a redistribution matrix. As ∆ is

avalanche-finite, a non-zero combination of vectors δi with non-negative coefficients cannot

belong to RV
−, due to the property (ii)′ of the theorem 1.5. Hence the same property (ii)′

of the theorem 1.5 is valid for Θ.

As the row vectors of Θ are linear combinations of the row vectors of ∆, we have

L(Θ) ⊆ L(∆). The opposite inclusion follows from the lemma 4.4. In particular, det(Θ) =

det(∆). By definition, Θ = K∆, hence det(K) = 1.

Finally, Θ = ∆ means that Ni = 1i, for all i, which is equivalent to the condition of

4.2.

Now we want to investigate another method of matrix reduction, using the reduction

operations.

Definition 4.6. For i 6= j, an operation Tij replacing ∆ik by ∆ik + ∆jk, for all k, is

called a reduction. A reduction is legal if −∆ij ≥ ∆jj . A sequence of consecutive legal

reductions is called a total reduction if it terminates at a reduced matrix.

Lemma 4.7. For an avalanche-finite redistribution matrix ∆, the result of a legal reduc-

tion Tij(∆) is an avalanche-finite redistribution matrix.

Proof. Due to the property (ii) of the theorem 1.5, −∆ij ≥ ∆jj implies −∆ji < ∆ii,

otherwise ∆(1i + 1j) would have all non-positive components. Hence Tij(∆) is a redistri-

bution matrix, for a legal reduction Tij . As the property (iv) of the theorem 1.5 is valid

for ∆, it is valid also for Tij(∆). Hence Tij(∆) is avalanche-finite.

Lemma 4.8. For an avalanche-finite redistribution matrix, every sequence of consecutive

legal reductions is finite.

Proof. Due to the lemma 4.7, the result of any sequence of consecutive legal reductions

is an avalanche-finite matrix.
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Theorem 4.9. Every two total reductions terminate at the same reduced matrix T∆,

the total reduction of ∆.

Proof. The proof is based on a non-commutative variant of the “diamond lemma” [B].

The reduction operations Tij defined for j 6= i satisfy the following commutation relations.

TijTkl = TklTij , for j 6= k, l 6= i; TkiTij = TijTkjTki.

Suppose that there exists a matrix ∆ with two different total reductions, i.e. with two

sequences of consecutive legal reductions terminated at two different reduced matrices Θ′

and Θ′′. Let Tij and Tkl be the first reductions in these two sequences.

We have (k, l) 6= (j, i), otherwise we would have −∆ij ≥ ∆jj and −∆ji ≥ ∆ii, which

is impossible for an avalanche-finite redistribution matrix.

If j 6= k and l 6= i, it is easy to check that the reduction Tkl is legal for Tij∆ and the

reduction Tij is legal for Tkl∆. Let ∆′ = TklTij∆ = TijTkl∆. A sequence of consecutive

legal reductions started at ∆′ terminates at a reduced matrix which is different form at

least one of the matrices Θ′ and Θ′′. Hence at least one of the two matrices Tij∆ and Tkl∆

allows two different total reductions.

Finally, if l = i, j 6= k then the operation Tki is legal for Tij∆, the operation Tkj is

legal for Tki∆, and the operation Tij is legal for TkjTki∆ Let ∆′ = TkiTij∆ = TijTkjTki∆.

A sequence of consecutive legal reductions started at ∆′ terminates at a reduced matrix

which is different form at least one of the matrices Θ′ and Θ′′. Hence at least one of the

two matrices Tij∆ and Tki∆ allows two different total reductions.

Continuing this process, we can find a sequence of consecutive legal reductions started

at ∆ such that the resulting matrix at any step allows two different total reductions. This

sequence terminates at a reduced matrix, which has obviously the only one total reduction

(itself). This brings us to a contradiction.

Remark 4.10. The matrix reduction procedure described in this section can be also

considered as a game on matrices, with a legal reduction corresponding to a legal move.
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The statement of the theorem 4.9 means that this game, for an avalanche-finite matrix,

always terminates at the same state, the total reduction, independent of the possible choice

of the legal moves. However, this is not a strongly convergent game, in the definition of

[E], since the number of steps in the game depends on the choice of moves.

5. Marginally stable recurrent configurations. Let

Ri = R∩ {hi = ∆ii} (11)

be the set of marginally stable configurations where the recurrent avalanches with a first

topple at i start. Here R is the closure of R. Let dhi = dh1 · · ·dhi−1dhi+1 · · ·dhN be the

uniform measure on Ri. For a subset D ⊂ Ri, we define Vol(D) =
∫
D
dhi

Proposition 5.1. Let D be an open domain in Ri. For any quasiperiodic trajectory

of an AA model, the mean (per unit time) frequency pi(D) of the intersections with D is

equal to

pi(D) = viVol(D)/Vol(R) = viVol(D)/ det(∆). (12)

In the periodic case, the same is true after averaging over all periodic trajectories.

Proof. The statement follows from the proposition 2.13, because the dynamics of the

model is equivalent to the flow with the constant rate v in RV modulo L and (ni,v) = vi

where ni is the unit normal to Ri.

Corollary 5.2. For a quasiperiodic trajectory of an AA model (in the periodic case, for

a randomly chosen periodic trajectory) the mean number of avalanches started at a site i

is equal to

pi(Ri) = viVol(Ri)/ det(∆). (13)

Corollary 5.3. For a quasiperiodic trajectory of an AA model (in the periodic case, for

a randomly chosen periodic trajectory) the mean (per avalanche) number of topples at a
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site j during avalanches started at a site i is equal to

mij =
det(∆)(∆−1)ij

Vol(Ri)
, (14)

independent of the loading rate v.

Proof. From (12), the topple rate (per unit time) at a site j after an avalanche started

at a site i is equal to

vi
det(∆)

∫
Ri
nj(h)dhi (15)

where nj(h) is the number of topples at a site j during an avalanche started at h. Hence

the mean number rj of topples at a site j per unit time is equal to

rj =
∑
i

vi
det(∆)

∫
Ri
nj(h)dhi (16)

Due to the proposition 2.3, the topple rate vector r = {rj} satisfies ∆′r = v. Hence∫
Ri
nj(h)dhi = det(∆)(∆−1)ij . (17)

The value mij can be now computed as

1

pi(Ri)
vi

det(∆)

∫
Ri
nj(h)dhi =

det(∆)(∆−1)ij
Vol(Ri)

. (18)

Theorem 5.4. For a codissipative matrix ∆, i.e.

∑
i∈V

∆ij > 0, for all j, (19)

we have

Vol(Ri) = det(∆(i)) = det(∆)(∆−1)ii, (20)

the mean number of avalanches started at a site i per unit time is

pi(Ri) = vi det(∆(i))/ det(∆) = vi(∆
−1)ii, (21)
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and the mean (per avalanche) number of topples at a site j during avalanches started at a

site i is

mij = (∆−1)ij/(∆
−1)ii. (22)

Here ∆(i) is ∆ with i-th row and i-th column deleted.

Proof. If (19) holds, the values of h′ = {hj , j ∈ V, j 6= i} in Ri are defined, due to

(9), by the same inequalities as the set of all recurrent configurations for an AA model on

V \{i} with a matrix ∆(i). The claim of the theorem 5.4 follows now from the proposition

5.1 and corollaries 5.2 and 5.3.

Remark 5.5. If the matrix ∆ is weakly codissipative but not codissipative, the volume

of Rj is less than det(∆(j)). Due to (9), for every subset X ⊂ V \ {j} such that ∆jj +∑
i∈X ∆ij = 0, configurations with hj = ∆jj and hν < −∆jν −

∑
i∈F ∆iν , for ν ∈ F , do

not belong to Rj . It can be shown, however, that the formulas (20)-(22) are still valid for

the following modification of the model.

We allow every site to topple at most once in an avalanche. At the end of an avalanche

started at a site i, the value hi can be still at the threshold level ∆ii. In this case we

immediately start a new avalanche at a site i, and so on until finally we arrive at a stable

configuration.

For a weakly codissipative matrix, (20)-(22) are true if we count every avalanche with

the multiplicity of the number of topples at its starting site.

6. Avalanches in AA and ASP models. In this section, we compare the distributions

of avalanches in a discrete, stochastic ASP model and a continuous, deterministic AA model

with the same redistribution matrix and loading rate. We show that these distributions

are identical when the behavior of the AA model is quasiperiodic. In case of the periodic

behavior, the same is true after averaging over all periodic trajectories.

Definition 6.1. Let ∆ be an integer avalanche-finite redistribution matrix with indices
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in a set V , and let a non-negative loading vector v satisfy
∑
i vi = 1. An Abelian sandpile

(ASP) model (Dhar, [D1]) is defined as follows.

The time is discrete, and the heights hi, i ∈ V , are integer. For a stable configuration

(hi < ∆ii, for all i) a time step consists of adding 1 to hi at a site i chosen with the

probability vi. If this site remains stable, we proceed with the next time step, otherwise it

topples according to (2) starting an avalanche which terminates at a stable configuration,

and the process continues.

A configuration is called recurrent if it appears with a non-zero probability in the

steady-state regime of the ASP model.

Remark 6.2. (a) Due to its physical origin, the matrix ∆ is usually supposed to be

weakly dissipative. This guarantees that ∆ is avalanche-finite. Otherwise this condition

plays no special role.

(b) Most of the previous papers on ASP models consider uniform loading (all vi are

equal). However, the arguments are usually valid for any properly loaded (definition 2.1)

ASP model.

Definition 6.3. A subset U ⊂ ZV is a Z-fundamental domain for a lattice L in ZV if,

for every h ∈ ZV , there exists precisely one configuration in U equivalent to h modulo L.

Theorem 6.4. (Dhar, [D1].) For a properly loaded ASP model with a redistribution

matrix ∆, the set Z of recurrent configurations is a Z-fundamental domain for the lattice

L generated by the row vectors of ∆. The number #(Z) of configurations in Z is equal to

det(∆). The set Z is invariant under the dynamics of the model, and every configuration

in Z is attended with equal probability.

Proposition 6.5. The set Z coincides with the set of integer points in the set R of

recurrent configurations of the AA model with the matrix ∆.

Proof. The same arguments as in the proof of the lemma 2.10 show that an integer

configuration is recurrent for the ASP model if and only if it belongs to A(Su ∩ZN) when
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ui ≥ ∆ii, for all i. The same property identifies the integer points in R.

Proposition 6.6. For i ∈ V , the set Zi of marginally stable recurrent configurations with

hi = ∆ii of the ASP model starting avalanches at the site i coincides with the set of integer

points in the set Ri of the marginally stable recurrent configurations for the AA model

defined in (11). The number #(Zi) of configurations Zi is equal to Vol(Ri) =
∫
Ri dhi.

Proof. By definition, Zi is the set of configurations h with hi = ∆ii such that h−1i ∈ Z.

Due to (5) this coincides with the set of integer points in Ri = R ∩ {hi = ∆ii} for an

integer matrix ∆. The same formula (5) guarantees that the number of integer points in

Ri is equal to Vol(Ri).

Proposition 6.7. For a randomly chosen configuration in Z, the probability pi of ini-

tiation of an avalanche at a site i after one time step is equal to #(Zi)vi/ det(∆). In

particular, pi is equal to the mean number of avalanches pi(Ri) initiated at i defined in

(13) for the AA model.

Proof. The probability pi is the product of the probability of the configuration to belong

to Zi, equal to #(Zi)/ det(∆) due to the theorem 6.4, and the probability to choose the

site i at a time step, equal to vi. The second statement follows from the proposition 6.6.

Theorem 6.8. For a non-negative integer vector k wit ki > 0, let Ri,k ⊂ Ri be the set of

configurations where avalanches for the AA model with the script k start, and let Zi,k be

the corresponding set for the ASP model. Then Zi,k = Ri,k∩ZN and #(Zi,k) = Vol(Ri,k).

The mean number per time step of avalanches for the ASP model with the script k

started at the site i is equal to #(Zi,k)vi/ det(∆), which coincides with the mean number

per unit time of avalanches of the same type for any quasiperiodic trajectory (in the

periodic case, for a randomly chosen periodic trajectory) of the AA model.

Proof. Let us show first that

Ri,k = (R+ ∆′k) ∩Ri. (23)
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An avalanche started at any configuration h ∈ Ri terminates at a (unique) recurrent

configuration equivalent to h. Hence an avalanche started at h ∈ (R+∆′k)∩Ri terminates

at h−∆′k ∈ R, which is recurrent and equivalent to h. This means that h ∈ Ri,k. The

opposite implication is trivial. The same arguments show that Zi,k = (Z+∆′k)∩Zi. Due

to the propositions 6.5 and 6.6, this coincides with Ri,k ∩ ZN . Due to (5) the number of

integer points in (23) coincides with its volume.

The mean number per time step of avalanches for the ASP model with the script k

started at the site i is equal to the product of the probability that a configuration belongs

to Zi,k which, due to the theorem 6.4, is equal to #(Zi,k)/ det(∆), and the probability to

choose the site i at a time step, equal to vi. This, according to (12), is equal to

pi(Ri,k) = viVol(Ri,k)/ det(∆). (24)

Corollary 6.9. The distribution of avalanche sizes for the ASP model with a redistri-

bution matrix ∆ and a loading rate vector v coincides with the distribution of avalanche

sizes for any quasiperiodic trajectory of the AA model with the same redistribution matrix

and loading rate vector or, in the periodic case, with the average of this distribution over

all periodic trajectories of the AA model.
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