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Abstract: The multiplicity of a zero of a restriction of a polynomial of
degree q in Cn, n ≥ 2, to a non-singular trajectory of a polynomial vec-
tor field ξ with coefficients of degree p does not exceed [pq(p + q)]2

n−2

, if
the polynomial does not vanish identically on this trajectory. For a system
of polynomial vector fields, this implies an effective estimate on degree of
nonholonomy i.e., the minimal order of brackets necessary to generate a sub-
space of maximal possible dimension at each point. In particular, this allows
to check effectively whether a given system of polynomial vector fields is to-
tally nonholonomic (controllable) at each point. Similar estimates are found
for systems of vector fields with analytic coefficients satisfying polynomial
Pfaffian equations. This allows to check effectively whether such a system is
totally nonholonomic (controllable) at a given point.

Introduction. The problem of an effective bound on the multiplicity of a zero

of a polynomial Q in n variables restricted to a trajectory of a polynomial vector field

ξ was suggested by J.-J. Risler [18] in connection with the problem of controllability of

polynomial control systems in nonholonomic control theory [4, 21]. For n = 2, the solution

is given in [6]. In this case, the problem is a special case of the estimates for the Pfaffian

multiplicities [7]. However, for n ≥ 3, the problem cannot be reduced to the Pfaffian case.

J.-J. Risler [18] found that the order at z of the restriction of Q to a trajectory of ξ through

z does not exceed µ+ n− 1 where µ is the multiplicity at z of the ideal generated by the

polynomial Q and its n − 1 consecutive derivatives along ξ at z. If µ is finite, it can be

easily estimated through the Bezout theorem. The estimate is single exponential in n.

In this paper, we give an effective estimate of the multiplicity κ of a zero of an arbitrary

polynomial of degree q on a trajectory of a polynomial vector field with coefficients of degree

p in Cn (Theorem 1):

κ ≤ p2n−2−1q2n−2

(p+ q)2n−2

. (1)
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This estimate is doubly exponential in n.

For a system of polynomial vector fields of degree p in Cn, the estimate (1) allows to

define an effective upper bound on the degree of nonholonomy i.e., the minimal order N of

brackets necessary to generate a subspace of maximal possible dimension d at each point

(Theorem 3):

N ≤ (d− 2)
(
23d−75p3

)2n−2

+ d− 1, for d ≥ 3; N ≤
(
6p3
)2n−2

+ 1, for d = 2. (2)

Obviously, N = 1 for d = 1.

In particular, a system of polynomial vector fields is totally nonholonomic i.e., d = n

at each point, when a finite system of polynomial equations defined by coefficients of all

brackets of order not exceeding N is incompatible. The latter property can be checked (at

least for polynomials with rational coefficients) with any standard algorithm for deciding

consistency of a system of algebraic equations. Thus, the problem whether a system of

polynomial vector fields is totally nonholonomic is algorithmically decidable (Corollary

from Theorem 3).

The estimates for vector fields with “Noetherian” coefficients i.e., analytic functions

satisfying polynomial Pfaffian equations, can be easily deduced from the estimates (1)

and (2) for polynomial vector fields (Theorems 2 and 4). In order to check whether

a given system of vector fields with Noetherian coefficients is totally nonholonomic, we

have to decide whether a system of transcendental equations with Noetherian functions is

compatible. Usually this cannot be done algorithmically. However, if we want to decide

whether our system is controllable at a given point where its coefficients are computable,

the problem is again reduced to compatibility of a system of algebraic equations, which is

algorithmically decidable (Corollary from Theorem 4).

Totally nonholonomic systems play important role in control theory, where they are

called controllable [4, 21]. The estimate (2) allows to check effectively controllability of a

given polynomial control system (see [18] for a discussion).

Systems of this kind appear also in the theory of hypoelliptic partial differential equa-

tions where the total nonholonomy is known as the “Hörmander’s condition,” and the

degree of nonholonomy is involved in the a priori subelliptic estimates. This connection

was first established by Hörmander [12] (see [5, 11, 16, 19, and 13, Ch. 22] for further

developments).

In the theory of probabilities, Hörmander’s condition appears in connection with the

diffusion processes along trajectories of vector fields (Stratonovich diffusion). See [15] for

discussion and further references.
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In differential geometry, totally nonholonomic systems appear as anisotropic Carnot-

Carathéodory [9, 10] or sub-Riemannian [20] metrics. The degree of nonholonomy de-

termines how far the metric is from a Riemannian metric: for a system with degree of

nonholonomy r, the Carnot-Carathéodory distance in the worst direction is proportional

to 1/r-th power of the Riemannian distance.

In the theory of several complex variables, the degree of nonholonomy is closely con-

nected to the ‘type’ condition for boundaries of non-strictly pseudoconvex domains in-

troduced by Kohn [14], and studied in [2, 3]. See [1] for the latest development in this

area.

Polynomials on trajectories of polynomial vector fields.

Lemma 1. Let Q(x) be a germ of an analytic function at 0 ∈ Cn, such that

Q|{x1=...=xn−1=0} 6≡ 0. (3)

Let Q(i) = ∂iQ/∂xin, and let Ii be the ideal in C{x} generated by Q(0), . . . , Q(i). Suppose

that Zi = V (Ii) has dimension d, and let µi be the multiplicity of Ii at a generic point

z of any d-dimensional irreducible component of Zi, i.e. the rank at z of Oz(Cn)/Ii over

Oz(Zi). Then dimZi+µi < d.

Proof. Let z be a generic point of a d-dimensional component of Zi. Due to (3) the

the direction of the xn axis is not tangent to Zi at z. Consider a surface S of codimension

d, transversal to Zi at z, containing the line L parallel to the xn axis through z. Let ν be

the order of Q|L at z. We have µi = dimCOz(S)/
(
Ii ⊗Oz(S)

)
. At the same time, all the

generators of Ii, when restricted to L, belong to (tν−i) where t is a local parameter on L

at z. Hence the epimorphism of rings Oz(S)→ C{t} (the restriction from S to L) induces

an epimorphism of rings Oz(S)/(Ii ⊗Oz(S))→ C{t}/(tν−i). As the dimension over C of

the second ring is equal to ν − i, we have ν − i ≤ µi. This means that the point z cannot

belong to Zi+µi , q.e.d.

Theorem 1. Let ξ(y) =
∑

j Pj(y)∂/∂yj be a vector field in Cn, n ≥ 2, with polynomial

in y = (y1, . . . , yn) coefficients Pj of degree not exceeding p ≥ 1. Let γ be a non-singular

trajectory of ξ, i.e., ξ 6= 0 at each point of γ. For a polynomial Q(y) of degree q, either

Q|γ ≡ 0 or the order of a zero of Q|γ at each point of γ does not exceed

p2n−2−1q2n−2

(p+ q)2n−2

. (4)

Proof. Let y0 be a point of γ where (4) is violated. Let us choose the coordinates x in

Cn near y0 so that ξ = ∂/∂xn, and use the notations of the lemma 1 in these coordinates.
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Then Q(i) is the i-th derivative of Q along ξ. Suppose that Q|γ 6≡ 0. Then Q 6≡ 0, hence

dimZ0 = n − 1. We can suppose also that Q is irreducible, because the estimate for

Q1Q2 follows from the estimates for Q1 and Q2. In this case, the multiplicity of Q at a

generic point of Z0 is equal 1. From the lemma 1 we have dimZ1 = n − 2. To estimate

the multiplicity µ1, we note that Q(1) =
∑

j Pj∂Q/∂yj is a polynomial in y of degree

not exceeding q + p − 1. From the Bezout theorem applied to Q and Q(1) restricted to a

2-dimensional linear (in the coordinates y) subspace transversal to Z1 in its generic point,

µ1 ≤ q(q + p − 1) ≤ q(p + q) − 1. From the lemma 1 we have dimZq(p+q) < n − 2. Let

us choose ν ≤ q(p + q) so that dimZν = n − 3. For a generic linear combination G of

Q(2), . . . , Q(ν), the functions Q, Q(1), and G define a complete intersection Y of dimension

n−3. The function G is a polynomial in y of the degree not exceeding q+(p−1)q(p+q). Let

L be a linear (in the coordinates y) 3-dimensional subspace transversal to Y in its generic

point z, and let I be the ideal generated inOz(L) by the restrictions of Q, Q(1), andG to L.

From the Bezout theorem dimCOz(L)/I does not exceed q(p+q−1)[q+(p−1)q(p+q)] ≤
pq2(p+ q)2 − q(p+ q). Hence µν does not exceed pq2(p+ q)2 − q(p+ q). From the lemma

1 we have dimZpq2(p+q)2 < n− 3.

The same argument inductively shows that

dimZν < n− k, for 2 ≤ k ≤ n and ν ≥ p2k−2−1q2k−2

(p+ q)2k−2

. (5)

In particular, dimZν < 0, i.e. Zν is empty, for ν ≥ p2n−2−1q2n−2

(p+ q)2n−2

, q.e.d.

Definition 1. (Khovanskii, unpublished; see Tougeron [22].) A Noetherian chain of

order m and degree α is a system f = (f1(y), . . . , fm(y)) of germs of analytic functions at

the origin 0 of a complex or real n-dimensional space, satisfying Pfaffian equations

∂fi
∂yj

= gij
(
y, f1(y), . . . , fm(y)

)
, for i = 1, . . . ,m and j = 1, . . . , n, (6)

where gij are polynomials in y and f of degree not exceeding α ≥ 1. A function φ(y) =

P
(
y, f1(y), . . . , fm(y)

)
, where P is a polynomial in y and f of degree not exceeding p, is

called a Noetherian function of degree p, with the Noetherian chain f1, . . . , fm. For the

real case, all the functions and polynomials in this definition are supposed to be real.

Theorem 1 can be extended from polynomial to Noetherian functions as follows:

Theorem 2. Let f = (f1, . . . , fm) be a Noetherian chain of order m and degree α,

and let ξ =
∑
j φj(y)∂/∂yj be a vector field with the coefficients φj Noetherian of degree

p, with the Noetherian chain f . Let ψ be a Noetherian function of degree q, with the
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Noetherian chain f . Suppose that ξ(0) 6= 0 and that ψ does not vanish identically on the

trajectory γ of ξ through 0. Then the multiplicity of the zero of ψ|γ at 0 does not exceed

(p+ α)2m+n−2−1q2m+n−2

(p+ α+ q)2m+n−2

.

Proof. The statement follows from Theorem 1 after we add f1, . . . , fm to the list of

variables and note that ψ|γ coincides with the restriction of a polynomial Q(y, f) to the

trajectory through 0 of the polynomial vector field

n∑
j=1

Pj(y, f)
∂

∂yj
+

m∑
i=1

 n∑
j=1

Pj(y, f)gij(y, f)

 ∂

∂fi
.

Remark. Simple arguments (see [22]) show that, for any given integers n, m, α, and q,

there exists an integer M(n,m, α, q) such that the multiplicity of any isolated intersection

ψ1(y) = . . . = ψn(y) = 0, where ψj are Noetherian functions in Cn of degree q, with a

Noetherian chain of order m and degree α, does not exceed M(n,m, α, q).

To show this, we remind first that the condition µ ≥ M , for the multiplicity µ of

an intersection defined by analytic functions ψi in Cn can be formulated as a system of

polynomial equations on the values of the functions ψi and their partial derivatives of the

order not exceeding µ0. For Noetherian functions ψj , the values of their partial derivatives

can be expressed as polynomials of the variables yi, values of ψj , and the coefficients of

the polynomials involved in the definition of the Noetherian chain and function. Consider

now the ring R of polynomials in all these variables. Condition µ ≥ M is represented

now by an ideal IM ⊂ R. As IM ⊆ IM+1, for each M , and R is a Noetherian ring, the

sequence IM stabilizes at some M = M(n,m, α, q). This means that any intersection with

the multiplicity µ = M(m,n, α, q) or greater has infinite multiplicity.

Theorem 1 can be interpreted now as an explicit estimate of the number M(1, n, p, q)

for Noetherian functions in one variable. The corresponding effective estimate in n > 1

variables remains an open problem.

Degree of nonholonomy.

Definition 2. For a set Ξ of analytic vector fields ξi in Cn, let L1(Ξ) denote the

space of all linear combinations of ξi with complex coefficients. For r ≥ 2, we define

Lr(Ξ) = Lr−1(Ξ)+[L1(Ξ),Lr−1(Ξ)]. Finally, L(Ξ) = ∪rLr(Ξ) is the Lie algebra generated

by the vector fields ξi. For z ∈ Cn, let dr(z) be dimension of the subspace generated by

the values at z of the vector fields from Lr(Ξ), and let d(Ξ, z) = maxr dr(z) be dimension
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of the subspace generated by the values at z of the vector fields from L(Ξ). The minimal

r such that dr(z) = d(Ξ, z) is called degree of nonholonomy of Ξ at z. In particular,

d(Ξ, z) = n means that Ξ is totally nonholonomic at z (see [8, 23]). It is easy to check that

the values dr do not change if we allow linear combinations of vector fields with analytic

(instead of constant) coefficients. The same is true for degree of nonholonomy.

Definition 3. For a germ at 0 of an analytic vector field ξ in Cn such that ξ(0) 6= 0,

let γ(ξ) denote a germ at 0 of the trajectory of ξ through 0. For a finite set {ξ1, . . . , ξk} of

germs at 0 of analytic vector fields in Cn, let ε = (ε1, . . . , εk) ∈ Ck and ξε = ξ+ε1ξ1 + . . .+

εkξk. Let Ξ(x, ε) = (ξε(x), 0) be a germ at (0,0ε) of a vector field in Cn×Ck. The flow of

Ξ through 0 ×Ck generates a germ at (0,0ε) of a (k + 1)-dimensional analytic manifold

B = B(ξ, ξ1, . . . , ξk). This manifold can be considered as a union of germs (γ(ξε), ε) over

small values of ε ∈ Ck.

Let π : Cn ×Ck → Cn. A value of ε is called regular if the rank of π : B → Cn is

equal k + 1 at small non-zero points of (γ(ξε), ε). The system of vector fields ξ, ξ1, . . . , ξk

is called non-degenerate if the set of regular values of ε is non-empty.

Note that B remains essentially unchanged when we replace ξ by ξε, for a small ε ∈ Ck.

More precisely, if we choose a representative B̃ of the germ B in Cn × Ck and choose ε

so that (0, ε) ∈ B̃, then the germ B(ξε, ξ1, . . . , ξk) at the origin of Cn ×Ck coincides with

the germ of B̃ at (0, ε).

Lemma 2. For a small ε ∈ Ck and a small non-zero point z ∈ γ(ξε), the tangent

space Tz,εB to B = B(ξ, ξ1, . . . , ξk) at (z, ε) is generated by the vectors (ζi(z),1i), for

i = 1, . . . , k, and (ξε(z),0ε). Here 1i = ∂/∂εi is the i-th basis vector in Ck, and the vector

fields ζi satisfy the following conditions: ζi(0) = 0 and [ξε, ζi] = ξi.

Proof. In a coordinate system where ξε = ∂/∂x1 ≡ (1, 0, . . . , 0) we have [ξε, ζi] =

∂ζi/∂x1 and γ(ξε) coincides with the x1-axis. Let z = (t, 0, . . . , 0) be the point of γ(ξε)

at a time moment t. Let gi(t, εi) be the point of γ(ξε + εiξi) at a time moment t. We

have gi(0, εi) ≡ 0 and gi(t, 0) = z. As the trajectories γ(ξε+ εiξi) belong to B, its tangent

space Tz,εB at a point (z, ε) contains vectors (∂gi(t, εi)/∂εi,1i), for i = 1, . . . , k, and

((1, 0, . . . , 0),0ε). As these k + 1 vectors are independent, they generate Tz,εB.

To prove Lemma 2, we want to show that

ζi(t, 0, . . . , 0) =
∂gi
∂εi

(t, 0).

By definition, ∂gi(t, εi)/∂t = ξε(gi(t, εi)) + εiξi(gi(t, εi)). As ξε is a constant vector field in
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our coordinate system,

∂2gi
∂t ∂εi

(t, 0) = ξi(t, 0, . . . , 0) =
∂ζi
∂t

(t, 0, . . . , 0).

This implies ζi(t, 0, . . . , 0) = ∂gi/∂εi(t, 0), as both sides of this equation vanish at t = 0.

Lemma 3. For a non-degenerate system ξ, ξ1, . . . , ξk, the set of regular values of ε is an

open semi-algebraic set in Ck.

Proof. According to Lemma 2, ε is a regular value if and only if Ω = ξε ∧ ζ1 ∧ . . . ∧ ζk
does not vanish identically on γ(ξε). Let ε be a regular value. As Ω is analytic on γε, it

has a finite multiplicity ν at the origin. This implies that LνξεΩ, the ν-th derivative of Ω

along ξε does not vanish at the origin. For a non-regular value of ε, we have

LνξεΩ(0) = 0, (7)

for all ν ≥ 0. As ζi(0) = 0 and Lξεζi = ξi, (7) is valid for all ε when ν < k, and LνξεΩ(0)

is polynomial in ε of degree ν − k + 1, for ν ≥ k. Hence the set of non-regular values of ε

is defined by a system of algebraic equations (7) in Ck.

Lemma 4. Let ξ, ξ1, . . . , ξk be a non-degenerate system of vector fields, ξ(0) 6= 0,

and let ε = (ε1, . . . , εk) be a regular value. If [ξε, ξi](z) belong to the subspace gen-

erated by ξε(z), ξ1(z), . . . , ξk(z), for small non-zero z ∈ γ(ξε) and i = 1, . . . , k, then

ξε(z), ξ1(z), . . . , ξk(z) generate Lz = πTz,εB(ξ, ξ1, . . . , ξk), for small non-zero z ∈ γ(ξε).

Proof. In a coordinate system where ξε = ∂/∂x1, we have [ξε, ξi] = ∂ξi/∂x1 and

γ(ξε) is the x1-axis. Let V (t) be the subspace generated by ξε(z), ξ1(z), . . . , ξk(z) at z =

(t, 0, . . . , 0) ∈ γ(ξε). If [ξε, ξi](t, 0, . . . , 0) = d/dt(ξi(t, 0, . . . , 0)) belong to V (t), for i =

1, . . . , k and small t 6= 0, then V (t) ≡ V does not depend on t. Due to Lemma 2, the

space Lz, for z = (t, 0, . . . , 0), is generated by (1, 0, . . . , 0) and k vectors ζi(t) satisfying

ζi(0) = 0 and d/dt(ζi(t)) = ξi(t, 0, . . . , 0). This implies that ζi(t) ∈ V , for small t. As ε is

a regular value, the k + 1 vectors (1, 0, . . . , 0), ζ1(t), . . . , ζk(t) are linearly independent, for

small non-zero t. As all these vectors belong to V , and dimension of V does not exceed

k + 1, the space V coincides with Lz, for each small non-zero z = (t, 0, . . . , 0) ∈ γ(ξε).

Hence this space is generated by ξε, ξ1, . . . , ξk.

Lemma 5. If the conditions of Lemma 4 are valid for all values of ε in an open set in Ck

then d(ξ, ξ1, . . . , ξk,0) = k+ 1 i.e., there exists a (k+ 1)-dimensional integral submanifold

for ξ, ξ1, . . . , ξk through 0.
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Proof. The value of d = d(ξ, ξ1, . . . , ξk,0) cannot be smaller than k + 1 as there exist

points close to o where the k + 1 vector fields ξ, ξ1, . . . , ξk are independent.

It follows from Lemmas 3 and 4 that the vector fields ξε, ξ1, . . . , ξk belong to Lz, for

small non-zero z ∈ γ(ξε), for an open set of regular values of ε. This implies that there

exists an open subset U ∈ B(ξ, ξ1, . . . , ξk) such that π has rank k + 1 at each point of U ,

the set πU is a (k+1)-dimensional analytic submanifold in Cn with 0 ∈ πU and the vector

fields ξ, ξ1, . . . , ξk are tangent to πU . Hence the brackets of all orders of these vector fields

are tangent to πU as well.

If d = d(ξ, ξ1, . . . , ξk) > k + 1 then there exist k + 2 vector fields from L(ξ, ξ1, . . . , ξk)

that are independent at 0. As πU is (k + 1)-dimensional, these vector fields cannot be all

tangent to πU . This contradiction proves that d = k + 1.

Proposition 1. Let Ξ = {ξi} be a set of germs at 0 ∈ Cn of analytic vector fields

such that ξ1(0) 6= 0, and let f be a germ of an analytic function in Cn, with f(0) = 0,

which does not vanish identically on γ(ξ1). Let d = d(Ξ,0). There exist d vector fields

χ, χ1, . . . , χd−1 where

a) χ = ξ1, χ1 is one of ξi, and χk, for 1 < k < d, is either one of ξi or belongs to the

linear subspace generated by [χµ, fχν ], for µ, ν < k,

and the following properties are valid for k = 1, . . . , d− 1:

bk) The system {χ, χ1, . . . , χk} is non-degenerate, and a regular value ε = (ε1, . . . , εk)

with εk = 0 can be found.

ck) χ ∧ χ1 ∧ . . . ∧ χk|γ(χε) 6≡ 0, for all values of ε = (ε1, . . . , εk) in an open semi-

algebraic set in Ck, and a value of ε satisfying this property with εk = 0 can be found.

Here χε = χ+ ε1χ1 + . . .+ εkχk.

Proof. Starting with χ = ξ1, we want to define the vector fields χk inductively in k.

Suppose that, for k < d, the vector fields χ1, . . . , χk−1 satisfying a), bk−1), and ck−1) are

already found. We want to find a vector field χk such that the system {χ, χ1, . . . , χk}
satisfies a), bk), and ck).

Let Bk−1 = B(χ, χ1, . . . , χk−1). There are two possible cases. Suppose first that

χ(z), χ1(z), . . . , χk−1(z) belong to Lz = πTz,εBk−1 (8)

where z ∈ γ(χε) is a small non-zero point, and ε is any regular value. This is always

the case when k = 1. Due to Lemma 5, there exists a germ of a k-dimensional integral

manifold Y for χ, χ1, . . . , χk−1 at 0. As k < d = d(Ξ,0), there exists a vector field ξi ∈ Ξ

such that ξi|Y is not identically tangent to Y . In this case, we define χk = ξi.
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Due to inductive hypothesis, the vector fields χ, χ1, . . . , χk−1 are independent at small

non-zero z ∈ γ(χε) ⊂ Y , for ε = (ε1, . . . , εk−1) outside an open semi-algebraic set in Ck−1.

As all these vector fields are tangent to Y , and χk|Y is not identically tangent to Y , the

vector fields χ, χ1, . . . , χk are independent at a generic point of Y . The same arguments

as in the proof of Lemma 3 show that the set of values (ε, δ) ∈ Ck for which χ, χ1, . . . , χk

are independent at small non-zero points of γ(χε + δχk) is an open semi-algebraic set. In

our case, the intersection of this set with δ = 0 is non-empty. Hence the property ck) is

valid for our k + 1 vector fields.

Let us check the property bk). Let ε = (ε1, . . . , εk−1) be a regular value for the non-

degenerate system {χ, χ1, . . . , χk−1} such that χk is not tangent to Y at small non-zero

z ∈ γ(χε). We claim that (ε, 0) is a regular value for the system {χ, χ1, . . . , χk}.
We can choose a coordinate system where χε = ∂/∂x1 and Y = {xk+1 = . . . =

xn = 0}. Let z = (t, 0, . . . , 0) ∈ γ(χε). According to Lemma 2, there exists a tangent

vector (ζ(t), 0, . . . , 0, 1) to Bk = B(χ, χ1, . . . , χk) at a point (z, ε, 0), where ζ(0) = 0 and

dζ(t)/dt = χk. As χk is not tangent to Y at small non-zero z = (t, 0, . . . , 0), the same

is true for ζ(t). In particular, ζ(t) does not belong to Lz for these values of z. As ε is

a regular value for {χ, χ1, . . . , χk−1}, the space Lz is k-dimensional, for small non-zero

z = (t, 0, . . . , 0). As πTz,ε,0Bk contains both Lz and ζ(t), it is (k + 1)-dimensional i.e.,

(ε, 0) is a regular value for {χ, χ1, . . . , χk}.
Suppose now that (8) is not valid for a regular value of ε ∈ Ck−1 i.e., a generic linear

combination τ of the vector fields χ, χ1, . . . , χk−1 does not belong to Lz, for small non-zero

z ∈ γ(χε). As f does not vanish identically on γ(χ), we can choose χε so that f does not

vanish identically on γ(χε). Due to Lemma 4, we can suppose that [χε, τ ] does not belong

to the subspace generated by χ, χ1, . . . , χk−1 at small non-zero z ∈ γ(χε). In this case,

we define χk = [χε, fτ ] = f [χε, τ ] + df(χε)τ . As f does not vanish identically on γ(χε),

the vector fields χ, χ1, . . . , χk are independent at small non-zero points of this trajectory.

The same arguments as in the proof of Lemma 3 show that the set of values (ε, δ) ∈ Ck

for which χ, χ1, . . . , χk are independent at small non-zero points of γ(χε + δχk) is an open

semi-algebraic set. Hence the property ck) is valid for these k + 1 vector fields.

As f(0) = 0, the property bk) follows from Lemma 2, as a vector (ζk(z), 0, . . . , 0, 1)

is tangent to Bk at (z, ε, 0), for small non-zero z ∈ γ(χε), with ζk = fτ . As τ(z) does

not belong to Lz, for small non-zero z ∈ γ(χε), the value (ε, 0) is regular for the system

{χ, χ1, . . . , χk}.

Proposition 2. In the conditions of Proposition 1, let vector fields ξi be polynomial,

of degree not exceeding p, and let f be a linear function. Then each vector field χk is
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polynomial of degree not exceeding 2k−1p.

Proof. The statement follows from the property a) in Proposition 1.

Definition 4. A subring S of the ring R of real numbers is called computable if each

a ∈ S can be defined by a finite expression, for each two numbers a and b in S there exists

a procedure that allow to derive expressions for a− b and ab from expressions for a and b,

and there exists a procedure that allows to decide, for a number a ∈ S defined by a given

expression, whether a > 0, a < 0, or a = 0 (see [17]).

Theorem 3. Let Ξ = {ξi} be a system of vector fields in Cn or Rn with polynomial

coefficients of degree not exceeding p ≥ 1. For z ∈ Cn, let d = d(Ξ, z). The degree of

nonholonomy of Ξ at any point z does not exceed

(d− 2)
(
23d−75p3

)2n−2

+ d− 1, for d ≥ 3, and
(
6p3
)2n−2

+ 1, for d = 2. (9)

Proof. We can take z = 0. Let χ0 = χ, χ1, . . . , χd−1 be the polynomial vector fields

defined in Proposition 2. Due to condition cd−1) of Proposition 1, Q = χ0 ∧ . . . ∧ χd−1

does not vanish identically on γ(χε), for some ε = (ε1, . . . , εd−2, 0). Here χε = χ0 + ε1χ1 +

. . .+ εd−2χd−2. We have

Q =
∑

i1,...,id

Qi1...id
∂

∂zi1
∧ . . . ∧ ∂

∂zid

where Qi1...id are polynomials of degree not exceeding 2d−1p. Due to the property a) of

Proposition 1, χε is a polynomial vector field of degree not exceeding p, for d = 2, and

2d−3p, for d ≥ 3. Due to Theorem 1, this implies that the multiplicity κ of restriction of

Q to γ(χε) does not exceed the maximum of (6p3)2n−2

(for d = 2) and

(
2d−3p

)2n−2 (
2d−1p

)2n−2 (
2d−35p

)2n−2

=
(
23d−75p3

)2n−2

.

Each derivation of Q along χε decreases this multiplicity by 1. Hence the result of κ

consecutive derivations of Q along χε does not vanish at 0. From the property a) of

Proposition 1, each χk is a linear combination with polynomial coefficients of brackets of

the vector fields ξi of order not exceeding d − 1, and χε is a combination of brackets of

order not exceeding max(1, d− 2). Taking into account the derivation formula

Lχε(χ0 ∧ . . . ∧ χd−1) =
d−1∑
i=0

χ0 ∧ . . . ∧ [χε, χi] ∧ . . . ∧ χd−1,
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we obtain the estimate (9).

Corollary. If a system Ξ of vector fields in Cn or Rn is finite, Ξ = {ξi, i = 1, . . . , I},
and if the coefficients of the vector fields in Ξ are polynomials of degree not exceeding

p with coefficients from a computable ring S (Definition 4), there exists an algorithm

which allows to decide whether the system Ξ is totally nonholonomic (controllable) i.e.,

d(Ξ, z) = n at each point z. The complexity of this algorithm can be effectively estimated

in terms of the integer numbers I, n, and p and the complexity of computations in the

ring S.

Proof. According to Theorem 3, the system Ξ is totally nonholonomic if and only if

the following system of polynomial equations is incompatible:

χi1 ∧ . . . ∧ χin = 0, for 1 ≤ i1 < . . . < in ≤M.

Here χj = [ξj1 . . . [ξjk−1
, ξjk ] . . .], with 1 ≤ jν ≤ I, is a bracket of vector fields from Ξ of

the order k not exceeding maximal possible degree of nonholonomy in (9) with d = n, and

M is the total number of such brackets. The algorithm [17] allows to check consistency of

a system of algebraic equations with computable coefficients, The estimate of complexity

follow from the estimate (9) and the estimate of complexity of the algorithm [17].

Theorem 4. Let f1(y), . . . , fm(y) be a Noetherian chain (Definition 1) in Cn or Rn

of order m and degree α ≥ 1. Let Ξ = {ξi} be a set of vector fields with Noetherian

coefficients:

ξi =
∑
j

Pij
(
y, f1(y), . . . , fm(y)

) ∂
∂yj

with Pij polynomial in y and f of degrees not exceeding p ≥ 1. Let d = d(Ξ,0). The

degree of nonholonomy of Ξ at 0 does not exceed

(d−2)
(
23d−75(p+ α)3

)2m+n−2

+d−1, for d ≥ 3, and
(
6(p+ α)3

)2m+n−2

+1, for d = 2.

(10)

Proof. Consider a submanifold Y = {fi = fi(y)} in Cn+m
y,f with a natural projection

π : Y → Cn
y . It is easy to show that the polynomial vector fields

n∑
j=1

Pij(y, f)
∂

∂yj
+

m∑
l=1

 n∑
j=1

Pij(y, f)glj(y, f)

 ∂

∂fl
(11)

are tangent to Y and their restrictions to Y coincide with π∗ξi. Here glj are polynomials

from the definition (6) of a Noetherian chain. The same is true, of course, for the brackets
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of any order of these vector fields. The statement follows now from Theorem 3 applied to

the polynomial vector fields (11).

Corollary. Suppose that in Theorem 4 the system Ξ is finite, Ξ = {ξi, i = 1, . . . , I},
and that the values f1(0), . . . , fm(0), the coefficients of the polynomials gij in the definition

of the Noetherian chain f1, . . . , fm, and the coefficients of the polynomials Pij belong to a

computable ring S (Definition 4). Then there exists an algorithm which allows to decide

whether the system Ξ is totally nonholonomic (controllable) at 0 i.e., d(Ξ,0) = n. The

complexity of this algorithm can be effectively estimated in terms of the integer numbers

I, n, m, α, and p, and the complexity of computations in the ring S.

Proof. According to Theorem 4, the system Ξ is totally nonholonomic at 0 if and only

if the following system of polynomial equations with coefficients from S is incompatible:

χi1
(
0, f(0)

)
∧ . . . ∧ χin

(
0, f(0)

)
= 0, for 1 ≤ i1 < . . . < in ≤M.

Here χj = [ξj1 . . . [ξjk−1
, ξjk ] . . .], with 1 ≤ jν ≤ I, is a bracket of the polynomial vector

fields (11) in (n + m)-dimensional space of the order k not exceeding maximal possible

degree of nonholonomy in (10) with d = n, and M is the total number of such brackets.
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