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We consider here the interaction of direct and inverse cascades in a hierarchical nonlinear system that is
continuously loaded by external forces. The load is applied to the largest element and is transferred down the
hierarchy to consecutively smaller elements, thereby forming a direct cascade. The elements of the system fail
~i.e., break down! under the load. The smallest elements fail first. The failures gradually expand up the
hierarchy to the larger elements, thus forming an inverse cascade. Eventually the failures heal, ensuring that the
system will function indefinitely. The direct and inverse cascades collide and interact. Loading triggers the
failures, while failures release and redistribute the load. Notwithstanding its relative simplicity, this model
reproduces the major dynamical features observed in seismicity, including the seismic cycle, intermittence of
seismic regime, power-law energy distribution, clustering in space and time, long-range correlations, and a set
of seismicity patterns premonitory to a strong earthquake. In this context, the hierarchical structure of the
model crudely imitates a system of tectonic blocks spread by a network of faults~note that the behavior of such
a network is different from that of a single fault!. Loading mimics the impact of tectonic forces, and failures
simulate earthquakes. The model exhibits three basic types of premonitory pattern reflecting seismic activity,
clustering of earthquakes in space and time, and the range of correlation between the earthquakes. The
colliding-cascade model seemingly exhibits regularities that are common in a wide class of complex hierar-
chical systems, not necessarily Earth specific.

PACS number~s!: 05.65.1b, 91.30.Px, 91.30.Dk, 64.60.Ht
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I. INTRODUCTION

We synthesize here three phenomena that play an im
tant role in many complex systems. First, the system ha
hierarchical structure, with the smallest elements merging
turn to form larger and larger ones, the largest element be
the entire system. Second, thesystem is continuously loade
or driven by external sources. Finally, theelements of the
system fail~break down! under the load, causing redistribu
tion of the load throughout the system. Eventually the fai
elements ‘‘heal’’ and regain their structural integrity, there
facilitating the continuous operation of the system.

The load is transferred from the top of the hierarchy to
bottom, thus forming adirect cascadefrom the largest to the
smallest scales. Failures are initiated at the lowest leve
the hierarchy or tree, and gradually propagate upwa
thereby forming aninverse cascade. The interaction of direct
and inverse cascades establishes the dynamics of the sy

Direct cascades are well known, for example, in t
theory of three-dimensional turbulent flow where ener
PRE 621063-651X/2000/62~1!/237~13!/$15.00
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and/or momentum is transferred from large eddies to sm
ones, eventually dissipating through viscosity@1#. Another
example is plate tectonics—the influence of mantle conv
tion is transferred to consecutively smaller structures@2#. Ex-
amples of inverse cascades@3# include the escalating se
quence of earthquakes; avalanches in rock, sand, and s
the consecutive coalescence of fractures in a solid body;
est fires and epidemics; the clustering of animals into floc
herds, schools, and so on; and chain reactions in phys
chemistry, and economics. In many systems both direct
inverse cascades coexist and interact. Loading increase
stability and causes an inverse cascade of failures, while
ures release and redirect loading. In this study we mo
such an interaction.

The hierarchical structure of the model imitates the act
lithosphere, composed of a hierarchy of volumes~‘‘blocks’’ !
separated by faults. Loading in the model imitates the in
ence of tectonic forces, while failures imitate earthquake

We focus here on thecollective behavior of multiscale
failures, which correspond to the seismicity of a fault n
237 ©2000 The American Physical Society
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work, and not on the dynamics of a single failure. Moreov
we explore the major robust features of the behavior of c
liding cascades. Accordingly, as is usually the case in s
models, we employ the basic condition of failure specified
Sec. II D below.

Heuristic or empirical constraints are derived from stud
of seismicity. We make the model as simple as we can, p
viding a skeletal representation of a real lithosphere with
immense complexity. Nevertheless, the model reprodu
the major regularities in the observed dynamics of seism
ity, namely, the seismic cycle, intermittency in the seism
regime, power-law energy distribution, clustering in spa
and time, long-range spatial correlations, and a wide var
of seismicity patterns premonitory to a strong earthquake

We consider here three basic types of premonitory p
tern. Two patterns of the first type reflect the rise of seism
activity. The pattern of the second type reflects the rise in
clustering of earthquakes in space and time; and two patt
of the third type mirror the rise in the correlation distan
between the earthquakes. Each pattern was defined s
rately for different magnitude ranges.

Although the model of colliding cascades reproduces
well the major features of earthquake sequences, the de
of the model is not specific to seismicity, or even to the m
general phenomenon of multiple fracturing in solids. O
model probably exhibits regularities that are common to
wide class of complex hierarchical systems. Turcotteet al.
@4# provide a theoretical basis for such universality, outlini
the connection between seismicity and other processes
power-law scaling, such as those studied in statistical ph
ics.

II. COLLIDING-CASCADE MODEL

We begin by providing an overview of the structure a
dynamics of the simple dynamical system that we are c
structing. We then proceed to describe the processes of l
ing, failure, and healing as well as the governing differen
equations. Finally, we describe a synthetic sequence of
ures~‘‘earthquakes’’! and demonstrate how it is generated
the interaction of direct and inverse cascades.

A. Structure

We consider a dynamical system acting on the tern
tree shown in Fig. 1. Nodes of the tree are called theele-

FIG. 1. Structure of the three-branched or ternary tree mo
Figure shows four highest levels of the seven-level tree, use
simulation.
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mentsof the system, and each element has its ownindex,
consisting of two numbersi 5(mug). Here, m is the level
where an element is situated and is enumerated from
bottom to the top of the hierarchy. The second integeg
identifies the position of an element within its levelm, count-
ing from left to right, namely, from 1 to 3m̄2m, where m̄
identifies the top level in the hierarchy. Indexing of eleme
is illustrated in Fig. 1. It is convenient to describe the ta
onomy of this system using the imagery of a family tree. T
top element (m̄u1) has three ‘‘children’’—the elements (m̄

21u1), (m̄21u2), and (m̄21u3). They are referred to a
‘‘siblings’’ while the element (m̄u1) identifies their ‘‘par-
ent.’’ For example, the elements (m̄22u4), (m̄22u5), and
(m̄22u6) are the children of the parent element (m̄21u2)
and the siblings of each other. Conceptually, this structur
similar to that of a wavelet, where the complementary
mensions, crudely, the position and the~logarithm! of the
wavelength, have a direct physical meaning and significan

B. Dynamics

The behavior of an arbitrary elementi is described by two
functions, namely, a continuous positive-valued functi
s i(t) and a Boolean functionf i(t). We think ofs i(t) as the
‘‘load’’ supported by an element and off i(t) as its ‘‘state.’’
An elementi is ‘‘whole’’ or intact when f i(t)50, and ‘‘bro-
ken’’ or failed whenf i(t)51. The direct cascade of loadin
is described by the set of functions$s i(t)% while the inverse
cascade of fracturing is described by the set of functio
$ f i(t)%. The dynamics of the system is described by inter
tion of direct and inverse cascades. The functionss i(t) sat-
isfy a system of ordinary differential equations with the rig
sides depending upon the functions$ f j (t)%. The functions
f i(t) change their values according to certain logical rules
conditions that depend upons i(t) and$ f j (t)%.

C. Loading

First, we introduce equations for the top element (m̄u1),
namely.

ṡ top~ t !5H v2
bs top~ t !

@u2s top~ t !#
if f top~ t !50

v2as top~ t ! if f top~ t !51,

~2.1!

wherev.0, b.0, u.0, anda.0. Herev is a constant
describing the application of the load to the top element
the system. Note that, in the present realization of the mo
this is the only method for introducing a load into the sy
tem. The load is transferred in this ternary model to the th
elements (m̄21u1), (m̄21u2), and (m̄21u3). The rate of
load outflow in Eq.~2.1! depends on the state of the to
element. If this element is whole, i.e.,f top(t)50, then the
rate is equal to

bs top~ t !

@u2s top~ t !#
,

whereb is a constant. If this element is broken, i.e.,f top(t)

l.
in
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51, then the rate is proportional to the load accumulated
the element at that instant of time.

In the stationary or steady state case, when the time
rivatives in Eqs.~2.1! vanish, we have

s top,ss
w [

uv
v1b

~2.2!

for a whole element, and

s top,ss
b [

v
a

~2.3!

for a broken one. The load of the top element (m̄u1) tends to
approach the values~2.2! or ~2.3!, depending on the state o
the element.

It is clear from Eq.~2.1! that the load applied to the to
element in the whole state can never exceedu. We shall call
u a ‘‘critical threshold’’ for the load.

Equations fors i(t) for all iÞ(m̄u1) are constructed in a
manner analogous to those for (m̄u1). The only difference is
that each elementiÞ(m̄u1) receives a load not only from it
parent but from its siblings as well. Furthermore, the rate
load transfer depends on the load accumulated by the pa
and the siblings at that time, namely,

ṡ i~ t !5Ui~ t !2Wi~ t !. ~2.4!

Here

Wi~ t !5H bs i~ t !

@u2s i~ t !#
if f i~ t !50

as i~ t ! if f i~ t !51

and

Ui~ t !5CWp~ t !1
12C

2
Ws1~ t !1

12C

2
Ws2~ t !, 0<C<1.

The subindexp refers to the parent of thei th element, while
subindicess1 and s2 refer to its two siblings. In order to
maintain parallelism, we define for the top element

Wtop~ t !5H bs top~ t !

@u2s top~ t !#
if f top~ t !50

as top~ t ! if f top~ t !51,

U top~ t !5v.

With this notation, the loading is described by the syst
~2.4!.

As before, the load supported by an intact element
never exceed the critical thresholdu. In the stationary case
when the time derivatives in Eqs.~2.4! vanish, we have the
steady state solutions

s i,ss
w [

uv
v1b

~2.5!

for a whole elementi, and
y

e-

f
nt

n

s i,ss
b [

v
a

~2.6!

for a broken one. Note that these steady state solutions
the same as those for the top element via Eqs.~2.2! and~2.3!.

We assume that at timet50 all elements are intact, i.e
f i(0)50, and support no load, i.e.,s i(0)50. As given by
Eqs. ~2.4!, the load is added to the hierarchical syste
through the top element and is subsequently redistribu
among all other elements in the tree. Since all dynam
equations are symmetric with respect to the siblings’ indi
( i ,s1,s2), all of the elements on any level retain the sam
load until at least one element fails.

D. Failure

A whole elementiÞ(m̄u1) fails when the following con-
dition is satisfied:

s i~ t !>uq2[ f c1(t)1 f c2(t)1 f c3(t)]3s2[ f s1(t)1 f s2(t)] ,

q>1, s>1. ~2.7!

Here, the subindicesc1, c2, andc3 refer to the three chil-
dren of the i th element whiles1 and s2 refer to its two
siblings. The exponents ofq and ofs indicate the number of
broken children and siblings, respectively. If all children a
siblings of thei th element are intact, then this condition r
duces to

s i~ t !>u.

If some of the siblings or children are broken, thei th element
is weakened, that is, the threshold for failure is reduced. T
parametersq ands in Eqs.~2.7! quantitatively determine this
weakening. Equation~2.7! describing the top element re
duces to

s top~ t !>uq2[ f c1(t)1 f c2(t)1 f c3(t)]

due to the absence of siblings. As we have mentioned ab
the load applied to an intact element can never exceedu.
Therefore, an element cannot fail until at least one of
siblings or children fails. Accordingly, the failures propaga
upward and thereby form an inverse cascade.

At the bottom level of the tree where the elements ha
no children, we introduce random failures with a rate prop
tional to the intensity of the direct cascade. This mim
‘‘juvenile cracking’’ in earthquake phenomenology. Letts be
the time when the load of an element rises close to the
tionary value,s i(t)>s i,ss

w 2e for e small and positive. This
element fails at a later timets1x, where x is a random
variable, distributed exponentially with a decay timel. This
randomness ensures that the dynamics of our model sho
degree of inhomogeneity in spite of the above mention
symmetry.

E. Healing

In order to ensure the perpetual operation of our syst
we introduce the effect of ‘‘healing,’’ i.e., the restoration
an unbroken state of a previously broken element. Otherw
the system will cease to function once all elements h
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failed. We assume that a broken element heals when
following two conditions hold during the ensuing expone
tially distributed time interval with a decay timeL. At leastn
children of thei th element are intact, and

s i~ t !,uq2[ f c1(t)1 f c2(t)1 f c3(t)]s2[ f s1(t)1 f s2(t)] . ~2.8!

Finally, at the bottom level we replace the latter by

s i~ t !,u. ~2.9!

Having formulated our model, we now provide it in dime
sionless form.

F. Dimensionless equations

Equations~2.4! contain values ofs i(t) measured in units
@u#, and time measured in units@ t#. Meanwhile, the vari-
ablesv andb are measured in units@u/t#, variableu in @u#,
a in @ t21#, andl andL in @ t#.

We now define a time scalet05u/v. Let us introduce the
following dimensionless variables:

t[t/t0 , s̃ i~t![
s i~ t !

u
,

and dimensionless parameters

g[b/v,

ã[
au

v
.

We then obtain the dimensionless equations

ṡ̃ i~t!5Ũ i~t!2W̃i~t!. ~2.10!

Here

W̃i~t!5H gs̃ i~t!

@12s̃ i~t!#
if f i~t!50

ãs̃ i~t!, if f i~t!51,

Ũ i~t!5CW̃p~t!1
12C

2
W̃s1~t!1

12C

2
W̃s2~t!

iÞ~m̄u1!,

Ũ i~t!51, i 5~m̄u1!.

As before, the subindexp refers to the parent of thei th
element, while the subindicess1,s2 refer to the two siblings
of i th element.

G. Sequence of failures

The colliding-cascade model determines for each elem
both the loads i(t) and the statef i(t)—whether the elemen
is broken or whole. In many relevant processes, includ
seismicity, the data for failure events are especially comp
since it is easier to both measure and catalog the failures
the load. We represent the sequence of failures as
he
-

nt

g
te
an

~ tk ,mk ,gk!, k51,2, . . . , tk<tk11 . ~2.11!

Here,tk is the time of failure for an element, whereasmk and
gk indicate its position within the model~see Fig. 1!. The
usual basic representation of an observed earthquake
quence is very similar to Eq.~2.11!, where the vectorgk
constitutes the coordinates of the hypocenter, i.e., the ac
point of origin of an earthquake event~the epicenter is its
projection on the Earth’s surface!. Often overlooked, how-
ever, is the fact that the region of rupture, which we will lat
call L, is 101–102 km in extent for earthquakes with mag
nitudes between 7 and 8. Earthquakes arenot point source
events. An earthquake starts with a localized rupture t
then spreads on a complex surface of finite dimensions
has distinctly different near-field, intermediate zone, and f
field effects.

Strictly speaking, this model has no three-dimensio
space of hypocenters, but we regardg to be a coarse analo
of the hypocenter, since it identifies the position of a fail
element in relation to other ones~see Fig. 1!. Finally, we
regard the valuem in synthetic earthquake sequences as
analog of the earthquake magnitude—the latter is a logar
mic measure of energy released by an earthquake.

An example of the sequence generated by the collidi
cascades model is shown in Fig. 2. It was computed us
the numerical parameters provided in Table I. The en
sequence is shown in the top panel, followed by a seque
of exploded views. Each event is formed by simultaneo
failure of one or more elements. In a case when several
ments fail at the same time, only the events at the high

FIG. 2. Synthetic earthquake sequence. The complete sequ
is shown on the top panel followed by exploded views in the f
lowing three panels. Note that all times given, in this and sub
quent figures, are in dimensionless units.

TABLE I. Values of parameters used in computations.

g ã C q s e l L n

0.2 27.2 0.9 1.096 1.03 0.1 3.0 3.4 2
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level in the hierarchy are indicated. The vertical scale sho
their maximum level, referred to as a ‘‘magnitude’’m.

Figure 3 shows the interaction between direct and inve
cascades prior to a major failure, i.e.,m57, and following
its aftermath. Until some time~i.e., the initiation of rupture!,
we can see only a direct cascade moving downward~a!. Af-
ter a while~b!, the cascade has reached the lowest level
triggers the inverse cascade that is shown in~c!. The inverse
cascade triggers the rupture that in turn triggers secon
direct cascades. Panel~d! describes the instant when inver
cascade has reached the second-highest level, namely,
6. The elements with the darkest shading identify a seco
ary direct cascade, triggered by a failure at that level. Me
while, the secondary direct cascade is evolving~e! and trig-
gers an aftershock at level 5~the darkest broken element!.
Panel~f! demonstrates another inverse cascade that is i
ated in the right hand branch of the model. It triggered
stantaneous failure that propagated to top level. These
ures are connected in the figure. Panel~g! shows that yet
another secondary direct cascade has started. Finally, th
verse cascade is weakening~h!. Healing prevails until the
subsequent direct cascade reaches level 1.

In subsequent sections, we investigate whether synth
seismicity generated by the colliding-cascade model rep

FIG. 3. Cascades in the five highest levels of the model. Fig
portrays the case history of a cycle. Shading is employed to
scribe proximity in time to failure—the darker the shade, the clo
an element to the critical thresholdu. Black dots identify broken
elements. The time remaining to the major event is indicated at e
frame.
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duces the basic regular features of real seismicity.

III. HEURISTIC CONSTRAINTS:
REGULARITIES IN OBSERVED SEISMICITY

Real earthquake sequences exhibit a high degree of c
plexity but, upon averaging, manifest a remarkable degre
regularity—such is the usual case in complex systems.
summarize these features in this section and compare t
with synthetic seismicity in Secs. IV and V.

A. Seismic cycle

The level of seismic activity or seismicity in an area go
through three different phases@5#. First, there is a‘‘preseis-
mic’’ rise culminating in one or several major earthquake
This is followed by a period of ‘‘postseismic’’ activity
which gradually declines with time. Finally, there emerge
long period of relatively low activity that ultimately return
to another rise, and so on. Such transitions take place
different time and space scales. The characteristic time in
val between the strongest earthquakes in active regions,
as southern California, is of the order of 101–102 years. Usu-
ally, however, there is no real periodicity. Observed interv
between major earthquakes depart considerably from
mean, and the character of each phase in the ‘‘seis
cycle’’ varies strongly from case to case. In different epoc
seismic cycles may culminate in earthquakes of differ
magnitude. Generally, a seismic regime exhibits large in
mittency.

B. Power-law energy distribution

Otherwise known as theGutenberg-Richterlaw @6–11#,
the energy distribution of earthquakes in a fault system m
be approximately described as

log10 N~m!5a2bm. ~3.1!

Here, N(m) is the average annual number of earthqua
with magnitude abovem in a specified spatial region. Thi
law is valid for sufficiently large fault systems and time i
tervals and for a certain magnitude range@m1 ,m2# @8#. It is
important to note that it doesnot describe the frequency o
events on a small-scale, individual fault. Typically,b'1, not
changing much with variation of the geometry of the fa
system, the local tectonics, and so on, thereby hinting a
universal mechanism for the dynamics of seismicity.

The power-law energy distribution~3.1! is at the heart of
many models of seismicity. It is noteworthy, therefore, th
Eq. ~3.1! is only an approximation to real seismicity. Th
most frequently observed deviations from Eq.~3.1! that are
not attributable to inaccurate observations are summar
below.

~a! log10 N(m) bends over or changes slope at the larg
magnitudes@6,8#. In the case of a downward bend, the Ko
mogoroff log-normal relation@12#, which describes the dis
tribution of the size of the rocks in a fractured massive
gion, sometimes happens to fit the earthquake ene
distribution better than Eq.~3.1!. In some cases, howeve
there is an upward bend@13#, or the values ofN(m) for the
largestm are scattered above the power-law approximat

e
e-
r

ch
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~3.1!. Such magnitudes are often attributed to what is som
times called a ‘‘characteristic earthquake,’’ an event hav
the maximum possible size in the region considered@7,14#.

~b! log10 N(m) may be represented by a collection
overlapping power laws with statistically significant diffe
ences in the slopeb of the different segments@8,15#. ~This
refers to the whole magnitude range, as well as to what
described above for its ends.!

~c! The shape and parameters of the energy distribu
change with time. This includes two kinds of changes p
monitory to a major earthquake.~1! The upward bend of
distribution for relatively largem @13,16#; it reflects premoni-
tory increase of seismic activity.~2! A possible increase in
theb value for smaller magnitudes. In@15# such changes ar
found both in the observed seismicity and in fracturing
steel samples.

~d! For the physical interpretation of the Gutenber
Richter law~3.1! its multiscale nature is primal@10,8#. Sta-
tistics of earthquakes with magnitudem have to be estab
lished in spatial regions of linear dimension much larger th
L(m), the characteristic dimension of the earthquake sou
Accordingly, the parametersa andb have to be determined
for increasingly larger areas, when larger magnitude ran
are considered. The above deviations from the power
~3.1! depend on the spatial scale considered. For larger
gions some of them may disappear.

We now return to other forms of regularity observed
seismicity.

C. Clustering

Earthquakes are observed to cluster in both space
time @9,17,18#. A typical cluster is a main shock, namely, th
earthquake, followed by a string of weaker shocks, ca
aftershocks. Some earthquakes are also preceded by
shocks of a smaller magnitude. Typically, about 30%
main shocks have foreshocks. The number of foreshock
usually small. Clusters of another kind, known
‘‘swarms,’’ are formed by main shocks of comparable ma
nitude that occur in proximity~in both space and time! to
each other, with their own overlapping sets of aftersho
and foreshocks@19#.

D. Premonitory seismicity patterns

Often, a strong earthquake in a region is preceded by a
of unusual patterns of seismicity~@20–22# and references
therein!. This anticipatory behavior was summarized
Keilis-Borok @23# as follows. Typically, a few years in ad
vance of a strong earthquake, a sequence of seismic eve
a medium magnitude range becomes increasingly intense
irregular. These events become more clustered in both s
and time, and their correlation distance probably increa
All of these phenomena may be caused by an increased
sponse of the lithosphere to excitation.

The scaling of these phenomena depends on the sca
the ‘‘strong’’ earthquake they foretell. LetM be its magni-
tude, andL(M ) be the linear size of its source. These ph
nomena are defined, then, in the magnitude range dow
aboutM24, and in a region of linear dimension of 5L –10L.
They precede a strong earthquake by a few years.
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Such premonitory phenomena, formally defined, ha
been used in algorithmic earthquake prediction—see@22,23#
and references cited therein. We apply here the same de
tions of premonitory behavior to synthetic seismicity gen
ated by our model.

In addition, we consider accelerating Benioff stre
release—a precursor described in@24–27#. It consists of
power-law escalation of seismicity possibly including an a
celerating and, possibly, log-periodic oscillatory compone

IV. SYNTHETIC SEISMICITY: SEISMIC CYCLE,
ENERGY DISTRIBUTION, AND CLUSTERING

Here, and in the next section, we demonstrate that
colliding-cascade model reproduces many of the regular
tures of observed seismicity, described in the previous s
tion. The major advantage provided by our synthetic
quence is the relative simplicity of its temporal structu
That facilitates the establishment of connections between
ferent forms of regularity, and the possible identification
yet undiscovered regularities or patterns, which can then
validated by analysis of observations.

Seismic cycles.About half of the time, the sequenc
shown in Fig. 2 consists of well-separated cycles, culmin
ing in a ‘‘major event’’ of magnitude 7. There is clear inte
mittency in the seismic regime—seismicity is very differe
during the time interval 900–2200 time units—the mag
tudes there do not exceed 6, and separation of the record
individual time cycles is not clear. Possibly, this interv
includes shorter seismic cycles culminating in earthqua
with m56. Such seismic intermittency is also typical in re
seismicity. A composite portrait of the seismic cycle
shown in Fig. 4. All seismic cycles are superimposed in t
figure with each major event centered at the same time
gin, i.e., t50. The top panel shows all earthquakes, in
linear time scale, while the bottom panel shows mainsho
and aftershocks in logarithmic time scale.

Energy distribution.Figure 5 shows the energy distribu
tion in our synthetic earthquake sequence. We see that i
well the Gutenberg-Richter law~3.1! without strong devia-
tions.

Clustering. We have identified the aftershocks by th
same method as is used in analysis of observations;

FIG. 4. Composite catalog. All cycles are combined, with ea
major event placed at timet50.
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FIG. 5. Energy distribution function, log10 N5a2bm whereN is the number of events with magnitudem. Note that the magnitude is
given discrete integer values from 1 to 7.
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described in the Appendix. Statistics of aftershocks
shown in Fig. 5. We see here the features in common w
real seismicity—aftershocks constitute about half of
earthquake events, and theb parameter of the Gutenberg
Richter law for aftershocks is slightly higher than for ma
shocks.

V. SYNTHETIC SEISMICITY:
PREMONITORY SEISMICITY PATTERNS

Here we apply to the analysis of earthquake precursor
approach known as ‘‘pattern recognition of infreque
events.’’ It was developed by Gelfand co-workers over t
decades ago for the study of rare phenomena of highly c
plex origin, a situation where classical statistical methods
inapplicable. The methodology of pattern recognition is ve
robust and its essence will be clear from the way synth
data are analyzed here. In our problem, the goal of pat
recognition is the identification of behavior that almost
ways occurs before a main shock, yet almost never oc
otherwise. A more detailed description can be found in@28#.

In this approach to the search for earthquake precurs
we conventionally divide the time period considered into
tervals of three kinds, which are designated by the symb
e
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D, N, andX. Figure 6 illustrates this division. An intervalD
precedes a major earthquake—that letter is chosen to m
monically represent ‘‘danger.’’ An intervalX follows it and
is characterized by post-major-earthquake activity, includ
waning aftershock sequences. The latter have a charact
tically inverse time rate of occurrence sometimes known
Omori’s law. The rest of the time between the major ear
quakes comprises the~null! intervalsN; thus, they are dis-
tanced from major earthquakes. This division of time allo

FIG. 6. Division of time into three kinds of periods: interva
D—less than 20 time units before a major event (m57); interval
X—within 20 time units after a major event; and intervalN—all
other time intervals, except empty ones. Premonitory phenom
are considered in the lastD0 time units of each intervalD.
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us to explore precursors by the pattern recognition appro
A precursor is recognized if it seems to emerge in the in
vals D more frequently in a statistically significant way tha
in intervalsN. ~Ideal precursors emerging only in the inte
vals D have yet to be found.! The application of such an
approach to the observed seismicity is described in@23,29#
and references therein. Several precursors considered i
next section have been identified using the above condit
Now, we explore whether they exist in our synthetic seism
ity.

First, we eliminate the intervalsX from the search for
precursors, since these intervals are dominated by spe
features of post-major-earthquake activity, even if we
clude aftershocks.~These intervals, however, are consider
separately for prediction of a second strong earthquake,
pair @30#. This problem is beyond the scope of the pres
study.!

The exact duration ofD intervals is not knowna priori.
To ensure sufficient separation between intervalsD and N,
we consider in each intervalD only the finalD0 time units
preceding a major event. Empty intervals between the cy
are disregarded.

We assume the duration 20 time units for the intervalsD
and X, independently of what precursor is explored.D0 is
chosen to be 3 or 5 time units, depending on the precur

A. Statistically significant precursors validated
by prediction of real earthquakes

The precursors considered here have been identified
the analysis of observations of real earthquakes, with
pattern recognition approach described above~@21,22# and
references therein!. They are defined on the sequence
main shocks. Elimination of aftershocks from the sequenc
necessary for the following reason. On average, the t
number of aftershocks grows with the magnitude of the m
shock. Therefore, unless aftershocks are eliminated, the
tively strong main shocks would be represented in premo
tory patterns twice—by themselves and by their aftershoc
However, for each main shock, we retain the number of
aftershocks; these numbers are used in the definition of
monitory clustering.

1. Clustering

We consider as a measure of clustering the funct
Bm(tkut) which identifies the number of aftershocks within
time intervalt following a main shock@31–33#. Here,m is
the magnitude of the main shock, whilek identifies its posi-
tion in the sequence of main shocks. Thus,t1 denotes the
time of the first main shock,t2 the second, and so on. I
earthquake prediction studies,Bm is assessed over a ver
short time interval, namely,t52 days, while the ensuing
aftershock sequence may last a year or more. The applica
of this measure to observed seismicity is described in de
in @31,34#. In our analysis of synthetic events, we assumt
50.05 time units.

Let PD(Bm) be the density distribution of the values
Bm taken collectively from all intervalsD. Similarly,
PN(Bm) is the density distribution corresponding with th
intervalsN. Precursory behavior in the variableBm is char-
acterized, according to a familiar Bayesian approach, by
h.
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difference of these densities, namely,

D~Bm!5PD~Bm!2PN~Bm!.

If large values ofBm preferentially occur prior to a majo
event, then the functionD should be positive for these value
of Bm , and negative for smaller ones.

To make our analysis robust, we divide all the values oB
into three groups, namely, ‘‘small,’’ ‘‘medium,’’ and
‘‘large.’’ They are separated by the percentiles of the lev
33.3% and 66.6%. In other words, this division is made
ing the condition that each group contains equal number
events and, therefore, equal numbers of valuesB. This is
done for the intervalsD andN taken together so thata priori
knowledge of major events is not used in discretization
the values ofB. The functionsD(B6) and D(B5), thus dis-
cretized, are shown in panels~a! and~b! of Fig. 7 . The last
D055 time units are considered in the intervalsD. Note that
D is given as a percentage. We see clearly that the genera
of aftershocks tends to be larger inD. Similar results were
obtained form52, 3, and 4.

2. Premonitory rise of seismic activity

Following @29,35# and references therein, we consid
two functions reflecting the premonitory rise of seismic a
tivity. These functions areNm(tus), defined as the number o
main shocks with magnitudem, and

Sm~ tus!5( Sk~ tus!.

Here, Sk is the area of rupture in the earthquake sour
wherek again is its number in the sequence of main shoc
Summation is taken over all the main shocks with magnitu
less than or equal tom. In the analysis of real observation
this area is crudely estimated from the earthquake ma
tude. For synthetic seismicity, we assume thatSi53m2m̄,
wherem̄ is the index of the top level; this value is propo
tional to the number of elements at the lowest or first le
that are the offspring of the element on levelm ~Fig. 1!. The
contribution of the top element, namely, (m̄u1), is unity.
Both functionsNm(tus) andSm(tus) are counted in a sliding
time window (t2s,t), wheres52. Note that their values are
attributed to theendof this window so that information from
the future is not used. Panels~c!–~e! of Fig. 7 display the
functionsD(N1), D(N2), andD(S6). The finalD053 time
units are considered in the intervalsD. We clearly see that
each measure tends to be larger inD. Similar results were
obtained forNm , m53,4,5, and forSm with m varying from
2 to 5.

B. A precursor explored by retrospective analysis
of observations: ‘‘Accelerated Benioff strain release’’

In the studies by Bufe and Varnes,@24#, Sornette and
Sammis@25#, Newmanet al. @26#, and Johansenet al. @27#
~see also references therein!, premonitory escalation of seis
micity is represented by the empirically based function

e~ t !5e02B~ t f2t !a.

Here,e is the cumulative Benioff stress release
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FIG. 7. Premonitory phenom-
ena depicted by the difference o
distributions within intervalsD
andN. D(F) is the difference be-
tween distributions of values o
premonitory functionF(t) within
intervals D and N. Concentration
of high values of the function
F(t) within the intervalsD is de-
picted by positive differences
D(F), which can be~a! D(B6);
~b! D(B5); ~c! D(N1); ~d! D(N2);
~e! D(S6); or ~f! D(R).
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as a function of time over the interval (t0 ,t), Ek is earth-
quake energy estimated from the magnitude with the s
mation taken over all earthquakes in the region without
elimination of aftershocks, andt f is the actual time of a
strong earthquake. Figure 8 demonstrates this phenom
on the composite seismic cycle shown in Fig. 4. We see
e indeed is rising steeply starting at about 10 time un
before the major earthquake. Panel~a! in Fig. 8 gives the
usual representation of that function while panel~b! shows
that, during a time interval from25 to 21 time units, the
function e is rising according to a power law, witha50.4.
However, unlike the reported real observations, the gro
of synthetic seismicity terminates about 0.5 time units bef
a major earthquake.

C. Potential precursors not yet identified in observations

We consider the premonitory increase in the range of s
tial correlation between the earthquakes. Qualitatively,
-
e
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phenomenon was hypothesized by Keilis-Borok@20#. How-
ever, specific precursors of that type are introduced in
paper.

1. Range of correlation (precursor ROC…

Consider two main shocks (tk ,g1 ,m1) and (t l ,g2 ,m2)
generated by the failure of elementsi 5(m1ug1) and j
5(m2ug2). The pairwise~ultrametric! distancer ( i , j ) be-
tween these elements along the ternary tree~see Fig. 1! is
defined as

min
mp

~mp2m1 ,mp2m2!,

wheremp is the level of an element from which bothi and j
descend. LetR(t) be the pairwise distancer ( i , j ) between
the main shocks, which occurred within an intervalt from
each other. The functionD(R) is shown in panel~f! of Fig.
7. The lastD053 time units were considered in the interva
D and a thresholdt50.1 was used. We clearly see that va
ues ofR tend to be larger inD. A related effect was intro-
duced into studies of the dynamics of seismicity by Prozo
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FIG. 8. Premonitory escalation of the failure sequence—the power-law rise of the cumulative Benioff stress releasee. The functione(t)
is determined for the composite sequence~see Fig. 4! with aftershocks included.~a! Linear scale. Dark zone at the right marks the interv
@25,21#, where power-law behavior is observed. Dark zone at the left marks interval with linear behavior ofe. ~b! Bilogarithmic scale.
Line corresponds to the power lawe(t)5e02B(t f2t)a with parametersB547.3, a50.4 estimated by the least squares method within
interval @25,21#. Parametere0 equalse(0)5117.1. Note that values of (e02e) are shown in the reverse direction.
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in the early 1970s@36#. He considered ‘‘long-range after
shocks,’’ i.e., intermediate magnitude earthquakes, wh
sometimes follow a major earthquake within a short tim
interval. According to these studies of real data, such af
shocks mark the location where another major earthquak
going to occur.

2. Accord

This precursor depicts simultaneous rise of activity in
three major branches of the model that descend from
elements on the second highest level,m56. The intuitive
significance of this precursor is that several branches of
tree are undergoing simultaneous activation. Hence, the
‘‘accord’’ is appropriate since it means~i! to be in agree-
ment, and~ii ! in music, to strike several chords at once.

We consider the functionS6(tus), defined in Sec. V A 2,
individually for each branch. Our precursor is depicted
the functionA(t) which is the number of branches whe
S6(tus) simultaneously exceeds a common threshold,
CA . By definition, A(t) may assume only integer value
from 0 to 3. The distribution ofA(t) in the intervalsD andN
h
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is shown in panel~a! of Fig. 9. Their differenceD(A) is
shown in panel~b!. The lastD053 time units are considere
in the intervalsD. Computations are made with the thresho
CA51/9. We clearly see that values ofA tend to be larger in
D. In application to real observations, the different branch
of fault zones, which are known to be organized hierarc
cally, have to be considered instead of branches of
model.

VI. DISCUSSION

We enumerate below how the colliding-cascade mo
compares and contrasts with real seismicity.

~1! The colliding-cascade model indeed reproduces
basic features of observed earthquake sequences, alth
the latter are more complicated and irregular. Seismicity g
erated by this model satisfies the basic empirical pattern
rived from observations—the seismic cycle, intermittency
the seismic regime, power-law energy distribution, ear
quake clustering in space and time, and a set of seism
patterns premonitory to a strong earthquake. These seis
FIG. 9. Premonitory increase of the range of correlation—simultaneous rise of activity in the major branches of the model~precursor
calledAccord!. A(t) may assume integer values from 0 to 3. The lastD053 time units are considered in the intervalsD. ThresholdCA

51/9 is used.~a! Density distributions, in percent, ofA(t) in the intervalsD ~upward dark bars! and N ~downward light bars!. ~b!
D(A)—difference of these density distributions.
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ity patterns include the three patterns established by sta
cally significant prediction of real~observed! earthquakes.
They reflect the premonitory rise of seismicity and ear
quake clustering. Two additional patterns reflecting premo
tory increase of the range of the earthquakes’ correla
have been found in the model and have become candi
premonitors for real events, which we plan to test by
analysis of real observations.

We have reproduced using a single model a broad se
major features of the dynamics of seismicity. This agreem
between model and observation provides strong suppo
the colliding-cascade concept. We find of particular imp
tance the reproduction of the three major types of premo
tory seismicity patterns. Note, also, that we have explo
here the collective behavior of the fault network. Due to t
scale invariance of such networks, this behavior may
manifest on different scales. However, this similarity may
limited @23,30# and is probably not applicable to a sing
fault of a nonhierarchical structure.

Here we detail the differences between observed and
thetic sequences~a! Real seismic cycles do not have th
same degree of periodicity;~b! during real seismic cycles
periods of low seismicity are not as ‘‘silent;’’~c! the energy
distribution in the observed seismicity has considerable
viations from the Gutenberg-Richter power law at the larg
and smallest magnitudes; and~d! a distinction between the
intervalsD andN is much clearer in synthetic seismicity tha
in the observed one, or in other words, premonitory pheno
ena~not unexpectedly! are more prominent in the model.

We believe that these quantitative differences are a m
festation of the relative simplicity of our model. On th
whole, the model provides an acceptable description of
dynamics of seismicity. In particular, no other existin
model to our knowledge has shown such a wide set of spa
temporal structures characteristic for real seismicity prec
ing major earthquakes, albeit several precursors have b
shown to be reproducible in the models~see @13,37#!. In-
deed, simplicity is an essential virtue of the colliding-casca
model, since it facilitates the model’s exploration, testin
and application. Moreover, it facilitates understanding of
processes considered, while reproducing their high comp
ity. The basic characteristics of seismicity considered h
are robust. Extensive numerical experiments have dem
strated that they are stable to initial conditions.

~2! In Sec. V, we established that the precursory pheno
ena associated with real earthquake sequences are a hal
of our synthetic seismicity. The essential value of such p
cursors is that the ability to identify them could lead to
significant predictive capacity. The performance of prec
sors is a measure of their overall success. Not only must
presence of a precursor establish that an event will occur
the absence of a precursor must establish that an event
not occur. The performance of a precursor, therefore, m
involve the ratio of its successes to failures, and it must
applied to the prediction of individual strong events in bo
real and synthetic seismicity. We must learn how to av
‘‘false alarms,’’ yet maintain confidence that no significa
event will go unpredicted. This will be a topic of a separa
study.

~3! The ultimate measure of success of a model is
discovery of previously unknown phenomena, which a
ti-
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confirmed by real observations. Our modeling has sugge
several so far unobserved precursors depicting an increa
the range of correlation in earthquake sequences. Thes
clude the simultaneous escalation of activity in ma
branches of a fault system—this would be depicted by
precursor ‘‘Accord;’’ the increased number of faults in
volved in a premonitory escalation of activity—this wou
be depicted by the precursor‘‘ROC;’’ and the more genera
realization of the same phenomenon expressed in a sprea
of the premonitory escalation of seismicity over an incre
ingly larger area. These precursors may be used in par
with other ones, or they may help to discriminate the fa
and confirmed alarms obtained with other precursors.

~4! The model allows us to explore a broad variety
other relevant phenomena. For example, different meas
of loading may be considered, ranging from straightforwa
ones~e.g., stress or energy! to geometric incompatibility in
the fault system@21# ~this is due to the driven motion o
disjoint and disparate fragments of crustal material!. Loading
can be applied to more than one level of the model, and
necessarily to the top one. We have considered thus fartime-
independentloading. It is certainly worth exploring the cas
when the loading is changing in time. The relevance of su
changes to formation of earthquake precursors is discusse
@2,13#. Moreover, the model may be truncated from above
that the top level will consist of several elements.

~5! We have considered, thus far, the dynamics of
model with fixed parameters. It remains to be seen how
occurrence of major events is influenced also by change
the parameters, e.g., loading, strength, time of healing,
so on.

~6! The colliding-cascade model is not particularly ear
quake specific. At the same time, it reproduces the precur
that were first discovered in observed earthquake sequen
This confirms the previous conclusion, as in@23,38# and ref-
erences therein, that these precursors are not earthquake
cific but symptomatic of more general features of critic
transitions in hierarchical nonlinear systems.~The features of
the seismically active lithosphere may be reflected,
course, in the values of the parameters of the model.! One
can hardly doubt that earthquake-specific precursors also
ist, but they have to be reproduced on models of a differ
kind ~e.g.,@21#!.

~7! The colliding-cascade model is more complex th
other models advanced to describe the earthquake phen
ena. It lacks the grand simplicity of slider block@39#, sand-
pile @40#, and fiber bundle@26# models. This is largely due to
the fact that we have considered both inverse and direct
cades. Also, we have attempted to describe the full scop
phenomena observed in real earthquake sequences—na
the seismic cycle, power-law energy distribution, cluster
in space and time, as well as premonitory seism
activity—by incorporating a richer set of interactions. Ne
ertheless, it would be a worthwhile endeavor to explo
whether the same phenomena may be reproduced by a
pler model.

We remain optimistic that the richer array of phenome
described by this model, and its overall agreement with
basic premonitory characteristics evident in real earthqua
will ultimately facilitate the design of better algorithms fo
the prediction of real earthquakes.
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APPENDIX: DEFINITION OF AFTERSHOCKS

In the analysis of precursory behavior in observed s
micity, we employed@31# the following definition of after-
shocks:

M j<Mi ;

0,t j2t i<T~Mi !;
id

,
,

g

n,
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di j <D~Mi !;

uhi2hj u<H~Mi !.

Here, the indicesi and j refer to a main shock and any of it
aftershocks, respectively. The distance between epicente
given bydi j , while h is the focal depth, i.e., the depth of th
hypocenter. The windowsT, D, and H are empirical func-
tions of the main shock’s magnitudeMi . This definition is
robust—it is coarse yet stable. A more subtle definition
given by Molchan and Dmitrieva@18#.

We employed a similar definition for synthetic seismicit
An aftershock is a child or a sibling of a main shock
magnitudem that occurred within a time intervalT(m) from
the main shock. For convenience, we assumed time thr
oldsT(m)5m, m51,2, . . . ,7. Therestriction of aftershocks
to the children and siblings of a main shock is a coarse a
log of the proximity of epicenters in real seismicity.
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