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SUMMARY

INTRODUCTION

A wide set of premonitory seismicity patterns is reproduced on a numerical model of
seismicity, and their performance in the prediction of major model earthquakes is
evaluated. Seismicity is generated by the colliding cascades model, recently developed by
the authors. The model has a hierarchical structure. It describes the interaction of two
cascades: a direct cascade of loading, which is applied to the top (largest) element and
transfers down the hierarchy, and an inverse cascade of failures, which goes up the
hierarchy, from the smaller to the larger elements. These cascades collide and interact:
loading leads to failures, while failures release and redistribute the loading. Three basic
types of earthquake precursors are considered: (i) the clustering of earthquakes in space
and time, (ii) the intensity of earthquake sequences, and (iii) the correlation distance
between earthquakes. Patterns of the first two types are used in intermediate-term earth-
quake prediction algorithms. Patterns of the third type are found in the colliding cascades
model, although they were hypothesized previously. They have not been validated by
observations. For each precursor, we explore what is called an ‘error diagram’ showing
the total duration of alarms, the rate of failures to predict, and the rate of false alarms.

Key words: aftershocks, earthquake prediction, foreshocks, seismic modelling,
synthetic earthquake catalogues.

dynamic problems (Kraichnan & Montgomery 1980), it became
apparent that cascades could emerge in the opposite direction;
that is, energy could be transferred from the smallest scales

1.1 The model

We explore here the process wherein seismicity undergoes a
qualitative change, culminating in a major earthquake. This is
done for synthetic seismicity generated by the model of colliding
cascades (CC model), which is described in the Appendices.
The concept of cascades has been employed in physics for more
than half a century.

Originating in the context of fully developed isotropic
turbulence, the original work of Kolmogoroff (Kolmogoroff
1941a,b; Batchelor 1959; Tennekes & Lumley 1972) was based
on a direct cascade that would deliver energy from the largest
size scales (production range) through the intervening size scales
(inertial range) to the smallest size scales (dissipation range).
In 2-D hydrodynamic problems, as well as in magnetohydro-
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through the intermediate scales to the largest scales of the system.
This may be regarded, loosely, as a form of self-organization.
In turbulent environments, cascades were often considered as a
description of a steady process of energy transfer.

Cascades, however, are not limited conceptually to fluid
problems and can occur with the deposition of energy into one
size scale that then results in energy transfer to the smallest or,
alternatively, the largest scales (Barenblatt 1982). In solid mech-
anics, particularly in the brittle stress regime, microcracking
spontaneously occurs. The microscopic cracks tend to coalesce
with each other to form larger cracks, which then coalesce to
form still larger cracks and so on, ultimately resulting in the
catastrophic failure of the system (Newman & Knopoff 1982,
1983, 1989; Alleégre et al. 1982). The concept of cascades has
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been extended to seismicity (Knopoff & Newman 1983), forest
fires (Malamud ez al. 1998; Turcotte et al. 1999) and other forms
of clustering (Gabrielov et al. 1999). The colliding cascades
model was first proposed by Gabrielov et al. (2000) in order to
synthesize the three following basic features of many complex
systems, not seismicity alone.

(1) Hierarchical structure. We consider the case of a ternary
tree (Fig. 1).

(2) Direct cascade of loading by external sources. The load
is applied at the top (largest) element and transfers down the
hierarchy, thus forming a direct cascade.

(3) Inverse cascade of failures. The elements fail under the
load. The failures start at the bottom level and expand up
the hierarchy, thus forming an inverse cascade. Eventually the
failures heal, ensuring a continuous functioning of the system.
The direct and inverse cascades collide and interact—Iloading
leads to failures, while failures release and redistribute the
loading.

A brief description of the CC model is given in the Appendices.
This model is akin to other lattice models of seismicity such
as the pioneering slider-blocks model (Burridge & Knopoff
1967), the ‘scaling of fracture tectonics’ renormalization model
(Allegre et al. 1982), the hierarchical model of defect develop-
ment (Narkunskaya & Shnirman 1990; Shnirman & Blanter
1999), fibre bundles (Newman er al. 1995) and forest fires
(Drossel & Schwabl 1992; Bak et al. 1992; Malamud et al. 1998;
Turcotte et al. 1999; Gabrielov et al. 1999). Models of that kind
are reviewed in Newman et al. (1994) and Turcotte (1997). They
depict mainly inverse cascades, while the CC model deals with
the interaction of both inverse and direct cascades. A similar
approach was employed by Blanter ez al. (1999) in modelling a
magnetic dynamo. Lattice models, notwithstanding their simple
design, do reproduce and explain many basic features of real
seismicity, although evidently not all of them. These models do
not consider directly the geometry of the fault system nor the
specific physical mechanisms controlling stress and strength
in the lithosphere. At best, such factors may be reflected in
the parameters of a lattice model. On the other hand, lattice
models reproduce common features of a wide class of chaotic
processes, seismicity being just one of them.

(7|1

(6[1) (612) (63)

([ | (52) | 53) | (514) | G5I5) | (516) | (5I7) | (518) | (5]9)

Figure 1. Structure of the three-branched or ternary tree model. The
figure shows the four highest levels of the seven-level tree, which were
used in the simulation. Indexing of elements is shown in brackets.
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1.2 The goal

The general objective of the colliding cascades model has been
to reproduce the major known features of seismicity as well
as to find new premonitory phenomena, which then may be
validated by the analysis of real seismicity and used for earth-
quake prediction. An example of seismicity generated by this
model is shown in the top panel of Fig. 2. About half of the
time, the sequence shown is quasi-periodic, consisting of easily
identifiable cycles, with each culminating in a major event.
During the remaining period, there is no clear periodicity or
separation into regular cycles. Gabrielov et al. (2000) demon-
strated that seismicity generated by the CC model exhibits basic
regularities, observed in nature, including the seismic cycle, inter-
mittency of the seismic regime, power law energy—frequency
distribution, spatio-temporal clustering and a set of seismicity
patterns premonitory to a strong earthquake. However, in the
CC model, only the existence in a statistical sense has been
established for premonitory patterns—it was demonstrated that
on average these patterns emerge more frequently as a strong
earthquake approaches. Here we examine their performance for
predicting strong earthquakes, one by one.

The problem of earthquake prediction is posed as the
consecutive stage-by-stage reduction of the time interval and
spatial region where a strong earthquake might occur (Keilis-
Borok 1996). It is realistically expected that prediction errors
are possible. Both types of errors—false alarms and failures
to predict—are illustrated in Fig. 3. (The absence of an alarm
implies that no event is expected.) The choice of safety measures
undertaken in response to a prediction depends on the prob-
ability of an error of each kind (Molchan 1990). Note that
many important safety measures do not require a particularly
low probability of an error.

Usually, the following stages of prediction are distinguished,
with characteristic time intervals indicated in brackets: long term
(10" yr), intermediate term (10°— 107" yr), short term (102 yr),
and immediate (10~ yr or less). The point of departure in this
study is the intermediate-term prediction based on premonitory
seismicity patterns. So far this is the only kind of prediction
for which statistical significance is rigorously established by
worldwide tests (Molchan er al. 1990; Kossobokov et al. 1999;
Vorobieva 1999).

2 GENERAL SCHEME OF PREDICTION

In the analysis of model seismicity, we follow here the general
scheme of algorithmic prediction described in Keilis-Borok
(1996, 1999) and Gabrielov et al. (1986).

2.1 Earthquake sequence

Prediction is based on the analysis of an earthquake sequence,
with aftershocks excluded. A procedure for identifying main
shocks and aftershocks is described in e.g. Keilis-Borok ez al.
(1980). However, the number of immediate aftershocks is
retained for each main shock for further processing. As in
the analysis of observations, the immediate foreshocks, which
are relatively rare, are not differentiated from main shocks. An
earthquake sequence is represented as

{tka Mic, 8k, B(tk|s)}7 kzla 27 5 tk§t1(+1~ (1)
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Figure 2. Synthetic earthquake sequence. The complete sequence is shown on the top panel followed by enlarged views in the following

three panels.

Here ¢, is the time of the kth main shock, m is its magnitude, g
are the coordinates of the hypocentre and B(#|s) is the number
of aftershocks within the first s time units that reside in the
interval [, f; +s].

We single out in this sequence the ‘major’ earthquakes—those
with the largest magnitudes, m > M. Our goal is to predict them
by analysing the whole sequence.

2.2 Premonitory seismicity patterns and prediction
algorithm

We consider the earthquake precursors called premonitory
seismicity patterns. These are the features of an earthquake
sequence that indicate the approach of a major earthquake. Such
patterns emerge only after sufficient averaging of seismicity,
overcoming its high complexity. To use them for prediction, we
have to give them an unambiguous definition, quantitative and
reproducible. Different patterns considered here are defined in
a uniform way.

Predicted event—_ ® _« Failure to predict

>

Time

\/

Confirmed alarm False alarms

Figure 3. Outcomes of prediction.
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(1) An earthquake sequence is described by a time function,
F(1), representing one of the robust averaged features of the
sequence. Specific examples of such functions are given below.

(2) The emergence of a premonitory pattern is recognized by
the condition

F()=Cp. 2

The threshold Cr is an adjustable parameter. It is usually
defined to be a specified percentile of the function F.

The algorithm for prediction based on a single pattern is
formulated as follows. An alarm is declared for a time period
Ar whenever F(t)> Cr. The alarm is terminated after a major
earthquake occurs or the time Ay expires, whichever comes
first. The former case is called a confirmed prediction (‘success’),
while the latter is called a false alarm. A failure to predict
emerges when a major earthquake occurs outside an alarm
period (Fig. 3). In many prediction algorithms, an alarm is
declared when certain combinations of premonitory patterns
emerge (Keilis-Borok 1996; Gabrielov et al. 1986; Keilis-Borok
& Shebalin 1999).

3 PERFORMANCE OF SINGLE
PRECURSORS

We look for precursors in the same synthetic earthquake
sequence, produced by the CC model described in the Appendices,
as was analysed in Gabrielov et al. (2000). The sequence was
generated by the model with seven levels, with the upper four
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shown in Fig. 1. The numerical parameters used are given in
Table 1. The complete sequence is shown in Fig. 2, while the
Gutenberg—Richter relation for this sequence is given in Fig. 4.

The targets of prediction are 25 major earthquakes with magni-
tude m =7, the strongest possible in the model. Premonitory
patterns are formed by earthquakes with smaller magnitudes,
ranging from 6 down to 1.

We consider here three basic types of premonitory patterns.
They reflect a premonitory increase of the following integral
characteristics of seismicity:

(1) clustering of earthquakes in space and time (see
Section 3.1);

(2) overall intensity of the sequence of earthquake flow (see
Section 3.2); and

(3) correlation distances between the earthquakes (see
Section 3.3).

Patterns of the first two types were established mainly by the
analysis of observations and are used in the intermediate-term
earthquake prediction algorithms [see Keilis-Borok (1999) and
Keilis-Borok & Shebalin (1999) and references therein]. They
precede a strong earthquake by a few years.

Patterns of the third type have been found just recently in
the CC model (see Gabrielov et al. 2000), although they were
hypothesized in Keilis-Borok (1994, 1996). They have yet to be
validated by observations. Each pattern was defined separately

Table 1. Values of the parameters used in the computations.

y a C q s g A L n

0.2 27.2 0.9 1.096 1.03 0.1 3.0 3.4 2

for different magnitude ranges. Altogether, we analyse a set of
17 precursors related to the three characteristics of seismicity
mentioned above as well as to different magnitude ranges.

Each precursor was used for prediction according to the
scheme described above. An alarm was declared for Ap=10
time units, the same for all precursors.

3.1 Premonitory clustering

3.1.1 Definition

Premonitory clustering is depicted by the precursor B, also
called a ‘burst of aftershocks’ (Keilis-Borok ez al. 1980). It is
defined as a main shock with a large number of aftershocks, i.e.

B, (tk|s)=Cs,

where we have introduced the subscript m to indicate the
magnitude of the main shock. We consider this precursor
separately for individual values of m from 3 to 6.

In predicting real earthquakes, only the immediate after-
shocks are counted in B, with s=2 days, while the whole
aftershocks sequence may be much longer—a year or more.
This is the first premonitory seismicity pattern for which
statistical significance was established (Molchan er al. 1990;
Keilis-Borok 1999).

Prediction by this pattern is illustrated in Fig. 5. Panel (a)
shows the fragment of the earthquake sequence in the dimension-
less time interval from 700 to 850. It contains one major earth-
quake, i.e. m=7, and nine main shocks with m=35. Panel (b)
shows the values Bs(#;]0.05). Taking Cz=4, we obtain four
alarms indicated by shaded intervals of the standard duration
Ap=10. One of them, the darkest one, is a confirmed alarm,

All events
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Figure 4. Energy distribution function, log;o N=a—bm, where N is the number of events with magnitude m. Note that the magnitude is given

discrete integer values from 1 to 7.
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Figure 5. Emergence of premonitory patterns: a case history. This figure shows the time interval 700-850 preceding a major earthquake, m=7.
The shaded time intervals correspond to alarms. The darkest interval is a confirmed alarm. Arrows indicate the time when a strong earthquake
occurred. (a) The earthquake sequence; (b) the function Bs(#;, 0.05); (c) the function X¢(z, 2).

during which a major earthquake occurred, while the other
three are false alarms. The quality of a prediction algorithm,
that is, the success-to-failure score, depends on the threshold Cp.

3.1.2  Error diagram

Figs 5(a) and (b) show the trade-off between confirmed pre-
dictions and errors. This trade-off depends on the adjustable
parameters of a prediction algorithm. In this case, by raising Cy
we would reduce the number of alarms but increase the number
of failures to predict. On the other hand, by raising A we will
increase the duration of alarms but may reduce the number of
failures to predict, etc.

A prediction method and the evaluation of its performance
make sense only if the success and error scores are insensitive to
the variation of adjustable parameters such as Cr, A, the total
duration of alarms, etc. That brings us to the error diagram—a
pivotal element of any prediction algorithm—that was intro-
duced to earthquake prediction research by Molchan (1990).
The diagram shows the relative scores of successes and errors
for different choices of adjustable parameters. Such a diagram
for the pattern Bs is shown in Fig. 6(a), which we now explain.

Prediction relates to a specified time interval 7. During that
time interval, N strong events occurred and N; of them were
not predicted. The number of declared alarms is 4, with 4 of
them being false alarms, and the total duration of alarms is D.
Empty time intervals between the cycles—that is, time intervals
lacking seismicity—are not counted in 7. The right-hand plot
shows the trade-off between the relative duration of alarms,
t=DIT, and the rate of failures to predict, n=N;/N. The
diagonal, n+7=1 (the bold line), corresponds to a random
binomial prediction—at each step in time the alarm is declared

© 2000 RAS, GJI 143, 427-437

with some probability p and not declared with probability
g=1—p. The left-hand plot shows the trade-off between the rate
of false alarms, f=A¢/A, and n. Different points correspond to
different thresholds Cp, varying from 3 at the lowest point to 9 at
the highest point.

It is seen that, with the highest threshold in Fig. 6(a), the
total duration of alarms, 7, is only 1 per cent of the time con-
sidered but there are 24 failures to predict (n =24/25=0.96) and
about 65 per cent are false alarms. With the lowest threshold,
we have 7=20 per cent but no failures to predict and 70 per cent
false alarms. Prediction with the other values of m from 3 to 6
gives similar results. Choosing for prediction a threshold in the
middle range (4 to 5), we have T=10-15 per cent, n=10-40 per
cent and f=60-65 per cent. For advance prediction of real
earthquakes, the typical score is close to n=1 =30 or 40 per cent,
so that a diagram such as Fig. 6(a) would be quite satisfactory.
Variation of other adjustable parameters, say A or s, may be
explored in the same way but this is beyond the scope of the
present study.

3.2 Premonitory rise of seismic activity

This phenomenon is depicted by the following two functions
defined in a sliding time window (¢—s, £): N,,(t|s), which is the
number of main shocks of magnitude m, and

Zm([‘é‘) = Z S,’([|S) .

Here S; is the area of the ith earthquake source; the summation
is taken over all earthquakes with magnitudes from 1 to m.
Note that the value of each function is attributed to the end
of the window so we do not use information from the future.
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Figure 6. Error diagrams for (a) Bs(7/0.05), (b) N»(#]2), (c) Zs(t]2),
(d) R(2]0.1, 2) and (e) A(¢). See text for explanation.

In the analysis of observations, S; is coarsely estimated from
the earthquake magnitude. For synthetic seismicity, we assume
that S;=3""""" where 7 is the index of the top level (see Fig. 1)
and m is the magnitude of the ith earthquake.

Precursors N,,, were defined separately for each magnitude m
from 1 to 6. Precursors X, were defined for events of magni-
tudes within the range [1, m], with m varying from 2 to 6.
As above, the premonitory patterns are defined by conditions
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N>Cy and £ > Cs. Error diagrams for prediction with these
patterns are given in Figs 6(b) and (c). Comparing panels
(b) and (c), we see that precursor X,, gives a slightly better
prediction.

Fig. 5 reveals an intriguing correlation between precursors Bs,
depicting clustering, and X, depicting activity. Fig. 5(c) shows
the function X4(¢]2) and alarms obtained with the threshold
Cs=0.4. The observed increase in X corresponds to main
shocks of middle magnitude 5 by definition. However, the fact
that the heights of the peaks are strongly correlated with the
number of immediate aftershocks is surprising. As a con-
sequence, we observe in the interval shown that three alarms
produced by pattern X4 nearly coincide with three out of the
four alarms produced by pattern Bs. A similar correlation
was established by analysis of observed patterns B and X in
California and several regions of the world (Keilis-Borok et al.
1980).

3.3 Premonitory rise of correlation distance in space

This phenomenon was first identified in the CC model
(Gabrielov et al. 2000), although it was hypothesized previously
in Keilis-Borok (1999) and Bowman et al. (1998). Importantly,
Turcotte et al. (2000) and Bowman et al. (1998), more qualita-
tively, proposed the analogy between seismicity prior to a large
earthquake and critical phase transitions studied in statistical
physics, where the correlation length reaches the system size as
the system approaches criticality (Wilson 1979). It is depicted
by two functions described below.

3.3.1 Pattern ROC (‘range of correlation’)

This precursor was defined in Gabrielov et al. (2000) on
the synthetic sequence of events of magnitude 2. Let r be the
pairwise (ultrametric) distance between elements of the model,
counted along the tree’s branches. [The word ‘ultrametric’
(Rammal et al. 1986) has now emerged in physics and math-
ematics to describe distances measured in a given tree and has
some special mathematical properties. In particular, distance is
determined by counting the number of nodes encountered in
making a connection between any two points.] For elements of
the second level in the seven-level model, » may assume an
integer value from 0 to 5. We consider the function R(?|9, s)—
the number of pairs of main shocks that occurred within a
time interval § from each other and at the maximal distance
r=35 between them. The pairs are counted within a sliding
window of length s>J in order to produce a modest degree
of averaging. The pattern ROC is defined by the condition
R>Cg. Error diagrams for prediction with this pattern are
given in Fig. 6(d).

3.3.2  Pattern Accord

Let us determine the function X4(t|s) separately for the three
major branches of the model that descend from the elements of
the second highest level, m=6. We define A(¢) as the number
of branches where these functions simultaneously exceed a
common threshold C4. Accord describes a state of heightened
activity in several adjoining branches. An elevated value of

© 2000 RAS, GJI 143, 427-437



¥, on the other hand, could be due to major activity in a single
branch or more moderate activity distributed over several
branches. Accord represents our coarse measure of correlation
between seismicity in these branches. Obviously, A(z) may
assume the integer values from 0 to 3. The premonitory pattern
Accord is defined by the condition A4 >2.

Error diagrams for prediction with this pattern are given in
Fig. 6(e). There is a clear similarity with the diagram for ROC.
This supports our hypothesis that both patterns reflect the
same underlying phenomenon, the increase of the correlation
distance between earthquakes.

3.4 Relation to definitions used in analysis of
observations

The functions B,,, ¥,, and N,, are defined here in the same way
as in the intermediate-term prediction algorithms developed by
analysis of observations [see Keilis-Borok (1999) and Gabrielov
et al. (1986) and references therein]. They were used in com-
bination with other functions, while X and B were also used
independently of the others. Premonitory patterns based on
these functions have been validated by statistically significant
earthquake prediction (Molchan et al. 1990; Kossobokov et al.
1999; Vorobieva 1999).

The pattern ROC is close to that introduced by Prozoroff
(1975) for a long-term prediction of the location at which a
strong earthquake is expected. The function A was first intro-
duced in Gabrielov et al. (2000) in the analysis of the CC model.
The scheme of the prediction algorithm is the same as for
observed seismicity (see Section 2.2).
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4 COLLECTIVE PERFORMANCE OF
PRECURSORS

In the previous section, we considered predictions based
on individual premonitory patterns, taken one at a time. Each
pattern was applied independently in different magnitude
ranges. In Figs 7, 8 and 9 we juxtapose the predictions by all 17
precursors considered. They are naturally divided into four
groups: B, N, X and R. The names of the first three groups are
self-explanatory; group R consists of the patterns ROC and
Accord.

Figs 7 and 8 demonstrate the collective performance of
all precursors. The top panels show, in separate boxes, the
emergence of precursors before each of 25 major earthquakes
in the synthetic sequence. The right edge of each box is the
onset of a major earthquake. A time interval of three units is
shown in each box.

The bottom panels in Figs 7 and 8 show the alarms deter-
mined during the time periods when strong earthquakes did
not occur; those are the false alarms. Vertical lines show the
moments of events with magnitude m=6. Evidently, m=6
events are associated with most of the false alarms.

Each row in Figs 7 and 8 shows the track record of a single
precursor. Shaded areas show the alarms determined by the
precursor. Values of m indj¢dtetflrenc pgactudemsange in which a
precursor is determined. Recall that precursors of the group N
are determined separately for each magnitude m from 1 to 6.
Precursors of the group X are determined separately for each
magnitude interval [1, 2], [1, 3], B for
each magnitude m of the main shocks from 3 to 6.
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Figure 7. Collective performance of single premonitory patterns prior to major events 1-12. The figure juxtaposes alarms generated by all
17 precursors considered. The top panel shows confirmed alarms within the time interval of three units prior to strong earthquakes. The bottom

panel shows false alarms. Details are given in the text.
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Figure 8. Collective performance of single premonitory patterns prior to major events 13-25. See caption to Fig. 7 for details.

It is seen that precursors B,, produce many false alarms.
This fact is reflected in the error diagram shown in Fig. 6(a).
The rate of false alarms for the precursor Bs is about 60 per
cent for all the variants considered.

Fig. 9 demonstrates the collective performance of each
group of precursors. The top panel indicates whether a group
predicts an event or not. We regard an event as predicted by a
group if it is predicted by two or more single precursors from
this group. Shaded boxes indicate events predicted by this rule.
The bottom panel shows false alarms. Again, they are strongly
associated with events of magnitude 6, shown by vertical lines.

The following inferences seem to deserve special attention.

(1) The emergence of precursors is highly correlated: almost
all alarms are clearly grouped and act simultaneously. As
seen from Figs 7 and 8, an isolated single alarm is a rare event.
The lead times between the start of an alarm and a major event
are correlated too. All the lead times prior to some major
events, e.g. the eighth or 15th, are long, and they all are short
prior to the other events, e.g. first or 19th. The correlation
persists even for precursors reflecting such different phenomena
as the clustering and the rise of activity. This correlation is
emphasized by the similarity of the error diagrams (Fig. 6).

(2) Although the emergence of the major earthquakes
follows a very simple ‘seismic cycle’ scenario, predictions are
not trivial. For example, we have the following persisting errors:
the failure to predict the major earthquakes 9, 11, 16 and 24,
and the false alarms at times =660, 2340, 3010 and 3710
(see Figs 7 and 8).

(3) Comparing these inferences with Fig. 2, we observe the
following:

(1) failures to predict are characteristic for the first major
earthquake in a cyclic regime of the sequence (major events 9,
11, 16 and 24);

(i) the last major earthquake in a cyclic regime is preceded
by most of the precursors, and the lead times in this case are
unusually high (events 8, 15 and 23); and

(iii) false alarms usually occur at the end of cyclical regimes—
they cover the interval where the next strong earthquake would
occur unless the seismicity switched to a non-cyclical regime.

5 DISCUSSION

(1) The colliding cascade model is, we believe, the first model
where such a broad set of precursors is reproduced.

(2) The data-adaptive design of the model alone guarantees
good performance of the precursors N and Z, while the perfor-
mance of the precursors Accord and ROC can be qualitatively
explained by that design. However, the success of the bursts
of aftershocks, i.e. precursor B, and its correlation with X is
not pre-determined as a consequence of our definition, which
further supports the relevance of the model.

(3) This study suggests two new precursors, ROC and
Accord, that depict an increase of the range of correlation in
space for earthquake sequences. It seems worthwhile to explore
their efficacy in real seismicity. A more general realization
of the same phenomenon might be the spreading of the area
manifesting premonitory patterns of seismicity. These pre-
cursors may be used in parallel with others, or they may help to
identify false alarms obtained with other precursors.

(4) In nature, the occurrence of patterns of different types is
observed to be correlated [Keilis-Borok et al. (1980) and Keilis-
Borok & Shebalin (1999) and references therein]. Our model
strongly reproduces that correlation. This hints at the possible
existence of an underlying phenomenon—which may be not
observable directly—that controls the model as a whole.
Understanding this phenomenon is important for the further
development of prediction algorithms.
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Figure 9. Collective performance of four types of premonitory patterns. The figure juxtaposes alarms generated by four different types of
premonitory patterns. The top panel indicates whether the strong earthquake was predicted or not. The bottom panel shows false alarms. Details

are given in the text.

(5) Many possibilities opened by the CC model remain
untapped. These include:

(1) exploration of the three additional types of premonitory
phenomena that have been previously hypothesized in Keilis-
Borok (1996)—irregularity of sequences of earthquakes, response
to excitation and decrease of dimensionality; and

(i) more compact definition of the precursors set. Other
possibilities of this kind are discussed in our previous paper
(Gabrielov et al. 2000).

(6) Colliding cascades are not specific to seismicity, nor even
to a more general phenomenon of the multiple fracturing in
solids. The CC model probably exhibits regularities that are
common in a wide class of complex hierarchical systems. It
appears worthwhile to explore the application of this model to
such systems.
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APPENDIX A:
MODEL

STRUCTURE OF THE

We consider a dynamical system acting on a ternary tree shown
in Fig. 1. The nodes of the tree are called the elements of the
system, and each element has its own index, consisting of two
numbers, i=(m|g). Here, m is the level where an element is
situated and is enumerated from the bottom to the top of the
hierarchy. The second integer, g, identifies the position of an
element within its level m, counting from left to right, i.e. from
1 to 3™~ where 17 identifies the top level in the hierarchy. The
indexing of elements is illustrated in Fig. 1. It is convenient
to describe the taxonomy of this system using the imagery of a
family tree. The top element (s2/1) has three ‘children’—the
elements (m—1|1), (m—1|2) and (#i—1|3). They are referred
to as ‘siblings’, while the element (777]1) identifies their ‘parent’.
For example, the elements (17 —2(4), (1 —2|5) and (i1 —2|6) are
the children of the parent element (72— 1|2) and the siblings
of each other. Conceptually, this structure is similar to that of
a wavelet, where the complementary dimensions, crudely the
position and (the logarithm of) the wavelength, have a direct
physical meaning and significance.

APPENDIX B:
MODEL

DYNAMICS OF THE

The behavior of an arbitrary element i is described by two
functions, namely a continuous positive-valued function, a;(?),
and a Boolean function, f;(z). We think of ¢;(¢) as the ‘load’
supported by an element and of f;(¢) as its ‘state’. An element i
is ‘whole’ or intact when f;(#) =0, and ‘broken’ or failed when
fi(t)=1. The direct cascade of loading is described by the set of
functions {o;(¢)}, while the inverse cascade of fracturing is
described by the set of functions { f;(¢)}. The dynamics of the
system is described by interaction of direct and inverse cascades.
The functions o;(?) satisfy a system of ordinary differential
equations with the right sides depending upon the functions
{f;(t)}. The functions f;(#) change their values according
to certain logical rules or conditions that depend upon o;(¢)
and {f;(7)}. Like almost all models of seismicity (Gabrielov &
Newman 1994), this model is non-Markovian since the changes
made to the states of each of its elements depend on the history
of the system.

B1 Loading

The loading of elements is determined by the following system
of ordinary differential equations:

6i()=Ui()— Wi(1). (B1)
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Here
Boi(t) P
f i =0
win=] 0=atn "I
aoi(f), if fi()=1
and

1-C 1-C
Ui(t) = CWo(0)+ —5— Wa()+ —5— Wald, 0<C<I,

for all i except the top element
U top([) =v.

The parameters f, 0, o, C are positive. The subscript p refers to
the parent of the ith element, while subscripts s1 and s2 refer
to its two siblings. The load supported by an intact element can
never exceed the critical threshold 0. In the stationary case,
when the time derivatives in eq. (B1) vanish, we have the
steady-state solutions

Ov
W= B2
T 01 (B2
for a whole element i, and
=" (B3)

for a broken one. We assume that at time =0 all elements
are intact, i.e. f{(0)=0, and support no load, i.e. (0)=0. As
given by eq. (B1), the load is added to the hierarchical system
through the top element and is subsequently redistributed among
all other elements in the tree. Since all dynamical equations are
symmetric with respect to the siblings’ indices (i, s1, s2), all of
the elements on any level retain the same load until at least one
element fails.

B2 Failure

A whole element i # (s]1) fails when the following condition is
satisfied:

ai(t) >0 q*[fcl(f)ffcz(f)#fcs(l)] s [0 +/@)] , g=1, s>1. (B4

Here, the subscripts cl, ¢2 and ¢3 refer to the three children of
the ith element, while s1 and s2 refer to its two siblings. The
exponents of ¢ and of s indicate the number of broken children

© 2000 RAS, GJI 143, 427-437

Colliding cascades model 437

and siblings respectively. If all children and siblings of the ith
element are intact then this condition reduces to

ai(t)=0.

If some of the siblings or children are broken, the ith element
is weakened, that is, the threshold for failure is reduced.
The parameters ¢ and s in eq. (B4) quantitatively determine
this weakening. Eq. (B4), which describes the top element,
reduces to

Trop(t) =0 g~ Va0 +fe®+/a0]

due to the absence of siblings. As we have mentioned above, the
load applied to an intact element can never exceed 0. Therefore,
an element cannot fail until at least one of its siblings or
children fails. Accordingly, the failures propagate upwards
and thereby form an inverse cascade. At the bottom level of
the tree, where the elements have no children, we introduce
random failures with a rate proportional to the intensity of the
direct cascade. This mimics ‘juvenile cracking’ in earthquake
phenomenology. Let 7, be the time when the load of an element
rises close to the stationary value, o{f) >0} —¢, for & small
and positive. This element fails at a later time, 75+ y, where y is
a random variable, distributed exponentially with a decay time
/. This randomness ensures that the dynamics of our model
shows a degree of inhomogeneity in spite of the symmetry
mentioned above.

B3 Healing

In order to ensure the perpetual operation of our system, we
introduce the effect of ‘healing’, that is, the restoration to an
unbroken state of a previously broken element. Otherwise, the
system will cease to function once all elements have failed. We
assume that a broken element heals when the following two
conditions hold during the ensuing exponentially distributed
time interval with a decay time L. At least  children of the ith
element are intact, and

6i(1) < 0 g~ VaOH®+0) ¢~ UaO+fa0] (B5)

Finally, at the bottom level we replace (B5) by

ai(t) < 0. (B6)
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