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Abstract

For a class of one-dimensional Schrödinger operators with polyno-
mial potentials that includes Hermitian and PT -symmetric operators,
we show that the zeros of scaled eigenfunctions have a limit distribu-
tion in the complex plane as the eigenvalues tend to infinity. This limit
distribution depends only on the degree of the polynomial potential
and on the boundary conditions.
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1. Introduction

We begin with an eigenvalue problem of the form

−y′′ + P (x)y = λy, y(−∞) = y(∞) = 0, (1)

where P (x) = xd + . . . is a real monic polynomial of even degree d. The
boundary condition is equivalent to y ∈ L2(R). It is well-known that the
spectrum of this problem is discrete, all eigenvalues are real and simple, and
they can be arranged into an increasing sequence λ0 < λ1 < . . . → +∞.
Moreover,

λn ∼
(

πdn

2B(3/2, 1/d)

) 2d
d+2

=

(√
πΓ(3/2 + 1/d)n

Γ(1 + 1/d)

) 2d
d+2

, n→∞,
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where B and Γ are the Euler’s functions. A general reference for these facts
is [17].

Eigenfunctions yn are entire functions of order (d+2)/2, and in this paper
we study the distribution of their zeros in the complex plane when n is large.
When d = 2 and P is even, we have yn(x) = Hn(x) exp(−x2/2), where Hn

are the Hermite polynomials, and asymptotic distribution of zeros is known
in this case in great detail [16]. The case d = 4, which is called sometimes
an anharmonic oscillator or a double well potential, was studied much, but
most attention was payed to the properties of eigenvalues, rather than the
properties of eigenfunctions.

In [3], we proved that for d = 4 and even P , all zeros of all eigenfunctions
belong to the union of the real and imaginary axis. The main result of the
present paper implies that after an appropriate rescaling of the independent
variable, zeros of eigenfunctions have a limit distribution in the plane, which
depends only on d. This will be derived from the asymptotics of log |Yn| as
n→∞, where Yn is a properly rescaled eigenfunction.

Let us consider real zeros first. According to the Sturm–Liouville theory,
yn has exactly n real zeros, all of them simple. A classical argument shows
that all these real zeros belong to the interval (a−n , a

+
n ) where a−n and a+

n

are the smallest and the largest roots of the equation P (x) − λn = 0. The
asymptotics

|a±n | ∼ λ1/d
n

suggests to define the rescaling:

Yn(z) = yn(λ1/d
n z). (2)

Now we denote by νn the counting measure of the roots of Yn (for every
set X ⊂ C, νn(X) is the number of roots on Yn in E). Our main result,
Theorem 2 below, has the following corollary:

νn|R
n
→ cd

√
1− xd dx, −1 ≤ x ≤ 1,

where νn|R are the restrictions of the measures on the real line, and the
convergence is the usual weak convergence of measures: µn → µ means that∫
φdµn →

∫
φdµ for each continuous function with compact support. The

normalizing constant is

cd =
2

d
B(3/2, 1/d).

2



For d = 2 the limit distribution is the “semi-circle law”, the well-known
asymptotic distribution of zeros of Hermite’s polynomials.

A theorem of Hille [9, Theorem 11.3.3] implies that for every r ∈ (0, 1)
there exists n0(r) > 0 such that for all n > n0, all zeros of Yn in the disc
{z : |z| ≤ r} are real.

Zelditch [18] studies Laplace–Beltrami eigenfunctions on real analytic
manifolds. Under certain conditions on the manifold, he extends the eigen-
functions to a complex neighborhood of the manifold and obtains a limit
distribution of their zeros. Asymptotics in the complex domain help to study
the distribution of real zeros. The same happens in our case.

Passing to the consideration of complex zeros, we make the same rescaling
(2), and consider the rescaled counting measures

µn = νn/n (3)

of zeros of Yn in the complex plane.
Our main result will imply that these measures µ converge weakly to an

explicitly described limit measure, which depends only on d.
Our results also apply to the so-called PT -symmetric Schrödinger op-

erators which were intensively studied in the recent years [2, 13]. Let P
be a complex polynomial of degree d with the property P (−z) = P (z).
Schrödinger operators with such potential P are called PT -symmetric. Ev-
ery PT -symmetric potential can be written as P (z) = P1(iz), where P1 is a
polynomial with real coefficients. A real potential P is PT -symmetric if and
only if P is even.

Following K. Shin [13], we consider the generalized eigenvalue problem
which contains both self-adjoint and PT -symmetric cases.

−y′′ + Py = λy, (4)

with

P (z) = (−1)`(iz)d +
d−1∑
k=1

akz
k,

where the coefficients ak are arbitrary complex numbers, and the boundary
condition is

y(reiθ)→ 0, r →∞ for θ = −π
2
± (`+ 1)π

d+ 2
, (5)
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where 1 ≤ ` ≤ d − 1. The self-adjoint problem (1) corresponds to the case
that d is even, ` = d/2, and ak are real. The usual boundary condition
imposed on a PT -symmetric potential corresponds to ` = 1 [1, 2].

The following result belongs to Sibuya [14] and K. Shin [13].

Theorem A. The spectrum of the problem (4), (5) is discrete, and to each
eigenvalue corresponds a one-dimensional space of eigenfunctions. Eigenval-
ues satisfy

λn ∼
( √

πΓ(3/2 + 1/d)n

sin(`π/d)Γ(1 + 1/d)

) 2d
d+2

, n→∞. (6)

So we see from the asymptotics that the eigenvalues are “asymptotically real”
in the sense that their arguments tend to zero. Shin proved that in the PT -
symmetric case (that is when ak = (ibk)

k with real bk), all eigenvalues but
finitely many are actually real.

Our main result, will imply that zeros of eigenfunctions yn of the problem
(4), (5), when properly rescaled as in (2) have a limit distribution that de-
pends only on d and `. The support of the limit distribution consists of some
Stokes lines (which we later define precisely), and our result can be consid-
ered as a rigorous confirmation of the results of numerical computations of
Bender, Boettcher and Savage [1].

Functions Yn satisfy the differential equations of the form

Y ′′n = λ2/d
n (P (λ1/d

n z)− λn)Yn = k2
n((−1)`(iz)d − 1 + o(1))Yn, (7)

where kn = λ(d+2)/(2d)
n → ∞, as n → ∞. Here we choose the branch of

λ(d+2)/(2d) which is positive on the positive ray.
It is well-known (see, for example [4, 7]) that the asymptotic behavior, as

n→∞, of solutions of such differential equations depends on the quadratic
differential

Qd,`(z)dz
2 = ((−1)`(iz)d − 1)dz2. (8)

We recall the terminology and some known facts about such quadratic differ-
entials. For the general theory of quadratic differentials we refer to [11, 15],
and for applications to differential equations to [4, 5].

Let Q be an arbitrary polynomial. The zeros of Q are called the turning
points. The curves on which Q(z)dz2 < 0 are called the (vertical) trajectories.
Each branch of the integral

∫ √
Qdz maps trajectories into vertical lines. The

trajectories make a foliation of the plane with the singularities at the turning
points. The leaves of this foliation are maximal smooth open curves on which

4



Q(z)dz2 < 0 holds. Each leaf is homeomorphic to an open interval, and each
end of a leaf is either at infinity or at a turning point. Those leaves which
have at least one end at a turning point are called the Stokes lines. A Stokes
line whose both ends are turning points is called short. At each simple zero
of Q exactly three Stokes lines converge, and they make equal angles of 2π/3
between them.

The components of the complement of the union of turning points and
Stokes lines will be called the Stokes regions. These regions are unbounded
and simply connected. The closure of each Stokes region (in C) is homeo-
morphic either to a closed half-plane or to a closed strip. We say that these
regions are of the half-plane type or of the strip type, respectively.

Turning points, Stokes lines and Stokes regions make a decomposition of
the plane which we call the Stokes complex.

Our first result is the topological description of the Stokes complex1 cor-
responding to the differential (8).

Theorem 1. The Stokes complex of Qd,`dz
2 is symmetric with respect to the

imaginary axis and has the following property: Every turning point v which
does not lie on the imaginary axis is connected by a short Stokes line with
the turning point −v symmetric to v with respect to the imaginary axis.

It is easy to see that this theorem yields a complete topological description
of the Stokes complex. The turning points are the roots of the equation
(−1)`(iz)d = 1. All these roots are simple, so three Stokes lines meet at each
turning point.

If v is a turning point in the (open) right half-plane, then there is one
short Stokes line from v to −v. The other two Stokes lines originating at v go
to infinity. Indeed, if one of those two were short, we would obtain a bounded
Stokes region which is impossible. These two Stokes lines are contained in the
right half-plane (otherwise they would intersect the symmetric Stokes lines
originating at −v which is impossible.) The picture in the left half-plane is
symmetric to the picture in the right half-plane.

If v belongs to the imaginary axis, that is v = ±i, then all three Stokes
lines originating from v are unbounded. One of them coincides with a ray of
the imaginary axis (±i,±i∞) and the other two are symmetric with respect
to the imaginary axis.

1Explicit equations of the Stokes lines can be written in terms of hypergeometric func-
tions, but it is easier to study the topology of our Stokes complex by qualitative methods.
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See Figures 1–9 where the Stokes complexes of Qd,`dz
2 for d = 2, 3, 4 and

6 and various values of ` are represented.

+-

Fig. 1. d = 2, ` = 1.

+-

Fig. 2. d = 3, ` = 1.
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+-

Fig. 3. d = 4, ` = 1.

+-

Fig. 4. d = 4, ` = 2.

+-

Fig. 5. d = 4, ` = 3.
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-
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8 +

Fig. 6. d = 6, ` = 1.

- +

Fig. 7. d = 6, ` = 2.

+-

Fig. 8. d = 6, ` = 3.
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- +

Fig. 9. d = 6, ` = 4.

It is easy to see that each Stokes complex has exactly d+2 Stokes regions
of the half-plane type. These regions are asymptotic to the sectors which are
bounded by the Stokes directions

{eiθ : Re
∫ exp(iθ)

0

√
(−1)`(it)ddt = 0} that is θ = −π

2
+
π(l + 2k)

d+ 2
.

The bisectors of the angles between adjacent Stokes directions are called the
anti-Stokes directions. Each of the d+2 anti-Stokes directions approximately
bisects some Stokes region of the half-plane type. Thus the boundary con-
dition (5) indicates that y(z) → 0 as z → ∞ on two anti-Stokes directions
symmetric with respect to the imaginary axis. This boundary condition sin-
gles out two Stokes regions of the type of half-plane: the right region ω+ and
the left region ω−, so that the eigenfunction tends to zero along the bisectors
of ω− and ω+. In Figures 1–9 the regions ω+ and ω− are marked by + and
− signs, respectively. Figures 1, 4 and 8 correspond to self-adjoint problems.

It follows from the topological description of the Stokes complex of Qd,`dz
2

above that the closures of ω+ and ω− are disjoint.
To state our main result, we need to define certain Stokes lines in the

Stokes complex of Qd,`dz
2 which we call exceptional. There will be exactly

one exceptional Stokes line originating at each turning point.
Let v+ and v− be the turning points on the boundaries of ω+ and ω−,

respectively. Then v+ and v− do not belong to the imaginary axis, so Theo-
rem 1 implies that there is a short Stokes line E0 from v− to v+. This short
Stokes line is exceptional. For example, for the self-adjoint problem (1) we
have E0 = (−1, 1).
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If v = i or v = −i is a turning point, then the Stokes line (i,+∞i) or
(−i,−∞i) is exceptional.

For the rest of turning points, exceptional Stokes lines are defined as
follows. The complement of the set ω+ ∪ ω− ∪ E0, where the bar stands
for the closure, consists of two components, we call these components D+

(containing the positive imaginary ray) and D− (containing the negative
imaginary ray). Let v be a turning point in D+ and not on the imaginary
axis. Let L′ and L′′ be the two unbounded Stokes lines originating at v. Of
these two Stokes lines we choose that one which lies between the other one
and the positive imaginary axis, and call this chosen line exceptional. (Any
family of disjoint curves tending to infinity in D+ can be linearly ordered,
for example anticlockwise; we used the word “between” in the sense of this
order). Similarly, if v is a turning point in D− and not on the imaginary axis,
then of the two unbounded Stokes lines originating from v, the exceptional
one is that which lies between the other one and the negative imaginary axis.

Exceptional Stokes lines are shown as bold lines in our figures.
Let E be the union of all exceptional Stokes lines and all turning points.

We call E the exceptional set and denote

Ω = C\E.

Then Ω is a doubly connected region, and
√

(−1)`(iz)d − 1 has two single-
valued holomorphic branches in Ω. Consider the harmonic function in Ω

u(z) = Re
∫ z

0

√
(−1)`(it)d − 1dt = Re

∫ z

0

√
Qd,`(t)dt. (9)

Here we choose the branch of the
√
Qd,` in such a way that u(z) → −∞ as

z → ∞ along the anti-Stokes directions in ω+ and ω−. (The normalization
(5) and the top coefficient of the potential P in (4) are chosen to make the

choice of such branch of
√
Qd,` possible.)

The integral in the definition of u has one period corresponding to loops
in Ω around the short Stokes line E0 = (v−, v+), but this period is pure
imaginary, because Qd,`dz

2 < 0 on E0, thus the real part of this integral is a
well defined harmonic function in Ω. In fact u is continuous and subharmonic
in the whole plane (that the jumps of the integral on the exceptional Stokes
lines are pure imaginary can be seen from the very definition of the Stokes
lines). Now we can state our main result.
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Theorem 2. Let yn be an eigenfunction of the problem (4), (5) corresponding
to the eigenvalue λn, and normalized so that |yn(0)|+|y′n(0)| = 1. Put Yn(z) =
yn(λ1/d

n z). Then
1

n
log |Yn| → cd,`u(z), n→∞,

uniformly on compact subsets of Ω, and also in the sense of Schwartz distri-
butions D′ in C. Here u is the function defined in (9), and

cd,` =

√
πΓ(3/2 + 1/d)

sin(`π/d)Γ(1 + 1/d)
.

Uniform convergence implies that the functions Yn have no zeros on com-
pact subsets K ⊂ Ω when n > n0(K). This can be made more precise by
replacing a compact set by an unbounded subset of Ω which we describe
below as an “admissible set”. Each compact subset of Ω is contained in some
admissible set.

The Laplace operator is continuous in D′, and the Riesz measure µ =
(2π)−1∆u can be easily explicitly computed:

Corollary. The normalized counting measures µn = νn/n of the zeros of Yn
converge weakly to the measure

µ = cd,`
√
|Qd,`(z)| |dz|,

supported on E.

In particular, in the self-adjoint case (1) the limit density on (−1, 1)
is given by the formula cd

√
1− xd, as advertised. Paper [1] contains nice

pictures showing the zeros of the rescaled eigenfunctions of PT -symmetric
operators clustering around E0.

2. Proofs

Proof of Theorem 1. It is convenient to make the change of the indepen-
dent variable z 7→ iz which reduces our quadratic differential to the form
(±zd + 1)dz2. It is clear that the Stokes complex of this new differential is
symmetric with respect to the real line. All we have to prove is that there is
a short Stokes line from every turning point in the upper half-plane to the
complex conjugate turning point. The proof is performed in several steps.
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Step 1. Let P (z) = zd + 1. We prove that the Stokes complex of P (z)dz2

contains a short Stokes line between the turning points v1 = eiπ/d and v−1 =
v1 = e−iπ/d. To find the directions of the Stokes lines originating at v1, we
write P (z) = dvd−1

1 (z − v1) + o(z − v1), and∫ z

v1

√
P (t)dt =

2

3

√
dv

(d−1)/2
1 (z − v1)3/2 + o(z − v1)3/2.

So on the tangents to the Stokes lines meeting at v1 we have (z−v1)3vd−1
1 < 0.

Since vd−1
1 = −1/v1, this is equivalent to

(z − v1)3 ∈ v1R+. (10)

Consider the sector S bounded by the segments [0, 1], [0, v1] and the arc of
the unit circle [1, v1]. Our polynomial P maps S into the first quadrant, thus
for z ∈ S, we have arg(zd + 1) ∈ (0, π/2). This means that the direction φ
of the vertical foliation P (z)dz2 < 0 in S satisfies

π/4 < φ+ πk < π/2. (11)

There is one Stokes line originating at v1 with the direction in this interval.
According to (10), its direction at v1 is π/(3d)− 2π/3. Because of the lim-
itations (11) on the direction of this line in S, it can leave S only through
the interval (0, 1). On this interval it has to meet the symmetric Stokes line
from v−1. Thus v1 and v−1 are connected with a short Stokes line.

Step 2. The vertical foliation of the differential Pθ(z)dz
2 = e−2iθP (e−iθz)dz2

is obtained from the vertical foliation of P (z)dz2 by counterclockwise rota-
tion by θ. In particular, the Stokes complex of Pθ(z)dz

2 contains a short
Stokes line between the adjacent turning points ei(θ±π/d).

Step 3. We prove that every turning point vk = eπi(2k−1)/d of P (z)dz2 in
the (open) first quadrant is connected to the symmetric turning point vk by a
short Stokes line. This we prove by induction in k. For k = 1 the statement
was proved in Step 1. Suppose it holds for k ≤ m − 1, and let Lm−1 be the
Stokes line from vm−1 to its conjugate.

The tangents to the Stokes lines originating at vm satisfy the equation
(z − vm)3 ∈ vmR+ similar to (10). In particular there is one Stokes line
Lm starting at vm in the direction φm = π(2m − 1)/(3d) − 2π/3, so that
−2π/3 < φm < −π/2.
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From Step 2 applied with θ = 2πm/d, there is a Stokes line Um for the
differential Pθdz

2 connecting vm and vm−1. Its tangent at vm has direction

ψm = φ1 + θ = π/(3d)− 2π/3 + 2π(m− 1)/d > φd.

We are going to show that Lm never intersects Um in the open unit disc.
Proving this by contradiction, we suppose that z is a point of intersection,
and denote by L′m and U ′m the pieces of Lm and Um from vm to z. Then the
integrals ∫

L′m

√
P (z)dz and

∫
U ′m

√
Pθ(z)dz

are both non-zero (because the imaginary part of such integral is monotone
along a Stokes line) and both pure imaginary. But Pθ = e−4πi(m−1)/dP for
our choice of θ, so we conclude that∫

L′m

√
P (z)dz 6=

∫
U ′m

√
P (z)dz,

as these integrals have different arguments and are non-zero. This is impos-
sible because the integral of

√
Pdz should be zero over any closed curve in

the unit disc. Thus Lm and Um do not intersect in the open unit disc.
For all z in the unit disc, the direction of the vertical foliation of P (z)dz2

belongs to the interval π/4 < φ + πk < 3π/4. Hence Lm cannot leave the
upper half of the unit disc through the arc [vm,−1] of the unit circle.

Moreover, Lm cannot intersect the Stokes line Lm−1 which exists by the
induction assumption.

This leaves only one possibility that Lm leaves the upper half of the unit
disc through the real axis. Then, by symmetry, it should continue to v−m.

Step 4. Now we prove the same for the differential P−(z)dz2 = (−zd +
1)dz2, namely that every turning point in the first quadrant is connected by
a short Stokes line with its conjugate. First we prove that the Stokes line
L1 starting at the turning point z1 = e2πi/d in the direction 2π/(3d)− 2π/3
cannot intersect the Stokes line of Pπ/ddz

2 = e−2π/dP (z)dz2 connecting z1

with 1, hence the only possibility for L1 to leave the upper half of the unit
disc is through the real line, so it should proceed to z1 by the symmetry.
Then we proceed by induction on m to prove that there are Stokes lines
for P−dz

2 connecting the turning points zm in the first quadrant with their
complex conjugates. The induction step is similar to the one in Step 3 and
we leave it to the reader.
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Step 5. That every turning point in the left half-plane is connected by a
short Stokes line with its complex conjugate is proved by the change of the
independent variable z 7→ −z.

This completes the proof of Theorem 1.

Proceeding to the proof of Theorem 2 we begin with some rough esti-
mates.

Lemma 1. Consider a normalized solution of the differential equation

y′′ = h2Qy, y(0) = y0, y′(0) = y1,

where h > 0 and Q is a holomorphic function satisfying |Q(z)| ≤ M for
|z| ≤ R. Then we have

|y(z)| ≤ max{|y0|, |y1|} exp(hMR), |z| < R.

Proof. We put w1 = hy and w2 = y′, to obtain a matrix equation

w′(z) = A(z)w(z),

where

w =

(
w1

w2

)
and A =

(
0 h
hQ 0

)
.

This implies

‖w(z)‖ ≤ ‖w(0)‖+
∫ z

0
‖A(t)‖‖w(t)‖dt,

where we use the sup-norms

‖w‖ = max{|w1|, |w2|},

and
‖A‖ = max{|a11|+ |a12|, |a21|+ |a22|} ≤ hM.

Applying Gronwall’s lemma [9, Thm. 1.6.6], we obtain the result.

Applying this result to the equation (7), and taking into account the
asymptotics of the eigenvalues from Theorem A, we conclude that if the
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sequences (1/n) log |Yn(z0)| and (1/n) log |Y ′n(z0)| are bounded at some point
z0 ∈ C, then in every disc |z| < R the family of subharmonic functions

un =
1

n
log |Yn| (12)

is uniformly bounded from above. By a well-known theorem (see, for ex-
ample, [10, Theorem 4.1.9]) it follows that from every sequence of these
functions one can select a subsequence which either converges uniformly on
every disc to −∞, or converges in D′(C) (or in L1

loc(C) which is equivalent
for such families of subharmonic functions). Convergence to −∞ is excluded
by normalization of our eigenfunctions.

Thus the limit functions of our family are subharmonic, and the same the-
orem [10, Theorem 4.1.9] says that the Riesz measures of un weakly converge
to the Riesz measures of u.

Thus all we need to do is to identify the possible limit functions u, and
to show that there is only one. This will be done by proving the uniform
convergence part of Theorem 2. Notice that subharmonic functions are upper
semi-continuous, so the restriction of u on Ω defines u uniquely in the whole
plane.

To prove the uniform convergence in Theorem 2, we need a finite open
covering of Ω with the so-called canonical regions [4].

Consider a quadratic differential Q(z)dz2 with arbitrary polynomial Q.
The multi-valued function

ζ(z) =
∫ z√

Q(t)dt (13)

has holomorphic branches in each Stokes region. These branches are defined
up to post-composition with a transformation z 7→ ±z + c, where c is an
arbitrary constant. Each such branch maps its Stokes region univalently
onto some right or left half-plane, or onto a vertical strip, depending on the
type of the region [4, 5].

A region D, which is a union of Stokes regions and Stokes lines is called
a canonical region if there is a holomorphic branch of ζ in D that maps D
onto the plane with finitely many slits along some vertical rays.

It is clear that a canonical region contains exactly two distinct Stokes
regions of the half-plane type. It is easy to state a criterion for a pair of
Stokes regions of the half-plane type to belong to some canonical region:
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Stokes regions D1 and D2 belong to a canonical region if and only if there
is a curve from D1 to D2 that does not pass through the turning points,
intersects the Stokes lines transversally, and intersects each component of
the 1-skeleton of the Stokes complex at most once.

For example, in Figure 6 there is a canonical region containing the Stokes
regions −, 5, 6, another one containing −, 5, 4, 1 and so on, but there is no
canonical region containing − and +.

It is easy to conclude from Theorem 1 that in the case that Q = Qd,`, for
each Stokes region D, other than ω−, there is a canonical region containing
ω+ and D. Similar statement holds with ω− and ω+ interchanged. Moreover,
for Q = Qd,`, canonical regions containing ω+ cover Ω, and canonical regions
containing ω− cover Ω as well. So the statement about uniform convergence
in Theorem 2 is enough to prove for all canonical regions containing ω+ or ω−.

Let Q(z)dz2 be a quadratic differential with a polynomial Q, and let a
number s > 0 be given. A smooth curve γ : (−1, 1) → C will be called
s-admissible if it has the following properties:

(i) γ(t)→∞, as |t| → 1,

(ii) For every t ∈ (−1, 1), the (smaller) angle between γ′(t) and the vertical
trajectory at γ(t) is at least s.

(iii) For every t ∈ (−1, 1), the distance from γ(t) to the set of turning points
is at least s.

A subset K ⊂ Ω, will be called s-admissible, if K is a union of s-admissible
curves.

A subset K ⊂ Ω or a curve γ in Ω will be called simply admissible if it
is s-admissible for some s > 0. It is easy to see that interiors of admissible
subsets of canonical regions containing ω+ or ω− cover Ω. Two Stokes regions
of the half-plane type belong to some canonical region if and only if there is
an admissible curve passing through these two Stokes regions.

Now we have to study the behavior of the Stokes complex under small
perturbations of the quadratic differential. For our purposes the following
lemma will be sufficient.

Lemma 2. Let Q(z, h) be a polynomial of degree d with respect to z whose
coefficients are continuous functions of h, for h in a neighborhood of 0, and
suppose that degz Q(z, 0) = d, and that K is an admissible subset of some
canonical region of Q(z, 0)dz2. Then there exists h0 > 0, such that for
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|h| < h0, the differential Q(z, h)dz2 has a canonical region in which K is
admissible.

Proof. Let γ be an admissible curve for Q(z, 0)dz2. This means that γ
does not pass through the zeros of Q(z, 0) and that the angles between the
tangent lines to γ and the vertical trajectories of Q(z, 0)dz2 are bounded
from below by some s > 0. It is clear that for every compact piece of γ
these conditions persist for the vertical trajectories of Q(z, h)dz2 for small h.
Thus one only has to consider a neighborhood of∞. Suppose that Q(z, h) =
a(h)zd + . . .. Then there exist h0 > 0 and R > 0 such that

| argQ(z, h)− d arg z − arg a(0)| < s/2,

whenever |z| > R and |h| < h0. The angle between γ′ and the vertical
direction is

arg γ′ − π

2
+

argQ

2
+ πk.

so if this angle is at least s for h = 0, then it is at least s/2 for |h| < h0 and
|z| > R. This proves the lemma.

The following lemma is essentially well-known, though we could not find
a convenient reference in the literature, so we include a proof. This lemma
constitutes the essence of the Liouville method, which is known to physicists
as the WKB method (see [7, 12] for the general discussion of the method,
including history). The closest statement to ours is the one in [4], but our
proof is different, and it is based on Liouville’s transformation.2

Lemma 3. Let Q be an arbitrary polynomial, and consider the differential
equation

−y′′ + h2Q(z)y = 0, (14)

where h > 0 is a parameter. Let D be a canonical region for Q(z)dz2, con-
taining a Stokes region D1 of the half-plane type. Let ζ = Φ(z) be a branch
of ∫ z

z0

√
Q(w)dw

which maps D onto the plane with vertical slits, and such that D1 corresponds
to a left half-plane, and let K ⊂ D be an s-admissible set. Then, for each

2We do not share the opinion of Fedoryuk [5, Ch. II, §1, sect. 6] that the Liouville’s
transformation is “less convenient” for complex functions than for the real ones.
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h > h0(s,Q), there exists a solution y∗h(z) of the differential equation (14),
which satisfies

y∗h(z) = Q−1/4(z) exp(hΦ(z))(1 + ε(z, h)), (15)

where

|ε(z, h)| ≤ h0

h− h0

, z ∈ K. (16)

Moreover, one can take

h0(s,Q) = sup
∫
γ

∣∣∣∣∣ 5

16

Q′2

Q3
− Q′′

4Q2

∣∣∣∣∣ |dζ |, (17)

where the sup is over all s-admissible curves in K, and derivatives in (17)
are with respect to z.

Remark. It is easy to see that the integral in (17) is absolutely convergent.
Assuming that the leading coefficient ofQ has absolute value 1 and all roots of
Q belong to the disc |z| < 2, we estimate this integral in terms of s. We have

|dζ | =
√
|Q||dz|, and thus the integrand is at most A(s)(|ζ | + 1)−(d+4)/(d+2)

on any s-admissible curve. Now, an s-admissible curve can be parametrized
as Φ−1(ξ + if(ξ)) : −∞ < ξ < ∞, where f is a function whose derivative
satisfies |f ′(ξ)| ≤ C(s). So the integral does not exceed

A(s)
∫ ∞
−∞

(|ξ|+ 1)−(d+4)/(d+2)
√

1 + C2(s)dξ.

So, the sup of these integrals defining h0 is bounded by a constant which
depends only on s, for all Q in a neighborhood of Qd,`.

Proof of Lemma 3. We use the change of the variables which is due to
Liouville (see, for example, [7]):

w(ζ) = Q1/4(Φ−1(ζ))y(z(ζ)),

Then the differential equation (14) becomes

w′′ = hw + gw, (18)

where

g(ζ) =

(
− 5

16

Q′2

Q3
+

Q′′

4Q2

)
◦ Φ−1(ζ),
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where the prime stands for the differentiation with respect to z.
Now we consider the integral equation

w(ζ) = ehζ +
1

2h

∫ ζ

−∞
(eh(ζ−t) − eh(−ζ+t))g(t)w(t)dt, (19)

where the path of integration γ is a part of the Φ-image of an s-admissible
curve in D. It is easy to verify directly that every analytic solution of this
integral equation satisfies (18). (To derive this integral equation one “solves”
(18) by the method of variation of constants, considering gw as a given
function, see [7]).

Putting in (19) w = ehζW , we obtain

W (ζ) = 1 +
1

2h

∫ ζ

−∞
(1− e2h(t−ζ))g(t)W (t)dt. (20)

This we solve by the method of successive approximation: set W0 = 0 and
define Wn+1 = 1 +F (Wn), where F is the integral operator in the right hand
side of (20). Then we have for the sup-norms on γ:

‖Wn+1 −Wn‖γ ≤
1

2h
max
t∈γ

(1 + |e2h(t−ζ)|) ‖Wn −Wn−1‖γ
∫
γ
|g(t)| |dt|.

Property (ii) of admissible curves implies that γ intersects every vertical line
at most once, so Re (t− ζ) ≤ 0 on γ, and

|1 + e2h(t−ζ)| ≤ 2,

Thus for h > h0, the Wn’s converge geometrically, uniformly on Φ(K) to a
solution W of the integral equation (20). We have

W = W1 + (W2 −W1) + (W3 −W2) + . . . = 1 + ε,

where ε satisfies (16). This proves the lemma.

Completion of the proof of Theorem 2. It remains to prove the statement
about the uniform convergence. As admissible subsets of canonical regions
cover Ω, it is enough to prove that the uniform convergence holds on each
admissible subset. Let K be an s-admissible subset of a canonical region D

containing ω+ or ω−. Our functions Yn satisfy differential equations (7). For
every sufficiently large n, we set hn = |kn| and

Q∗n(z) = exp(2i arg kn)(P (λ1/d
n z)− λn),

19



so that
Y ′′n = h2

nQ
∗
nYn. (21)

In view of (7) and arg kn → 0, we conclude that Q∗n → Qd,` as n → ∞
and all conditions of Lemma 2 are satisfied. When n is large enough, we
apply Lemma 2 to Q∗n and conclude that there exists a canonical region for
Q∗ndz

2 which contains K. According to the Remark after Lemma 3, there is
a bound for h0 in Lemma 3 that is independent of n. Applying Lemma 3
to this canonical region and equation (21), we obtain a solution y∗n of the
equation (21) which satisfies (15) with h = hn and some branch Φn of∫ z√

Q∗n(t)dt.

In particular, this solution y∗n tends to zero on the anti-Stokes direction in
ω+ or ω−. Thus it is proportional to the eigenfunction. Our normalization
of the eigenfunction implies that the coefficient of proportionality satisfies
log |cn| = O(n). So we obtain that

1

hn
log |Yn| → u(z) + c,

uniformly on K, where c may depend on K. As the limit function exists and
is continuous in the whole plane, and u is single-valued, we conclude that
this last relation holds in the whole plane in the sense of D′ with the same
constant c. Comparing the values near 0 we conclude that c = 0.

This completes the proof.

Remark. When we were completing this paper, a preprint of Hezari was
published [8] where similar methods are used to study the self-adjoint eigen-
value problem

y′′ = λ2q(x)y,

with a real polynomial q, q(x)→ +∞ as |x| → ∞ and with the usual bound-
ary conditions on the real axis. Hezari shows that possible limit distributions
of zeros of eigenfunctions yn are supported by some lines similar to our “ex-
ceptional set”. However, in his setting, a single limit distribution as n → 0
might not exist, as he shows by an example.

The main reason why the limit distribution exists in our case is Theo-
rem 1, which describes the topology of a very special Stokes complex, while
in Hezari’s work an arbitrary Stokes complex symmetric with respect to the
real line is involved.
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