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Abstract. The multiplicity µ of a zero of a restriction of an analytic function P in Cn to
a trajectory of a vector field ξ with analytic coefficients is equal to the sum of the Euler
characteristics of Milnor fibers associated with a deformation of P . When P is a polynomial
of degree p and ξ is a vector field with polynomial coefficients of degree q, this allows one to
compute µ in purely algebraic terms, and to give an upper bound for µ in terms of n, p, q,
single exponential in n and polynomial in p, q. This implies a single exponential in n bound
on degree of nonholonomy of a system of polynomial vector fields in Cn.

Introduction

Let P (x) be a germ at the origin of an analytic function in Cn, where x = (x1, . . . , xn),
and let ξ = ξ1(x)∂/∂x1 + · · ·+ ξn(x)∂/∂xn be a germ at the origin of an analytic vector
field. Suppose that ξ(0) 6= 0, and let γ be a trajectory of ξ through the origin. Suppose
that P |γ 6≡ 0, and let µ(P |γ) be the multiplicity of a zero of P |γ at the origin. Let
ξP = ξ1∂P/∂x1 + · · ·+ ξn∂P/∂xn be derivative of P in the direction of ξ, and let ξkP be
the kth iteration of this derivative.

We show (Theorem 1) that µ(P |γ) is a sum of the Euler characteristics of “Milnor

fibers” Xk = {P̃ = ξP̃ = · · · = ξk−1P̃ = 0} associated with a deformation P̃ of P . For
a polynomial P of degree p and a vector field ξ with polynomial coefficients of degree q,
Xk are (semi-)algebraic sets. This allows one to compute µ(P |γ) in purely algebraic terms
(Theorem 3), and to give an upper bound (Theorem 2) for µ(P |γ) in terms of n, p, q,
single exponential in n and polynomial in p and q. This estimate improves previous results
[9, 1] which were double exponential in n.

For a system Ξ = {ξi} of vector fields in Rn with polynomial coefficients of degree
not exceeding q, this implies a single exponential in n and polynomial in q estimate for
the degree of nonholonomy of Ξ, i.e., for the minimal order of brackets of ξi necessary to

This research was partially supported by NSF Grant # DMS-9704745. Part of this work was done during
a visit of the author to the Fields Institute for Research in Mathematical Sciences, Toronto, Canada. The
author thanks A. Khovanskii for fruitful discussions.

Typeset by AMS-TEX

1



2 ANDREI GABRIELOV

generate a subspace of maximal possible dimension at each point of Rn. This improves an
estimate in [1], which was double exponential in n.

For n = 2, our estimate coincides with the estimate for the multiplicity of a Pfaffian
intersection [5, 2]. In case n = 3, a similar estimate was obtained in [3].

The main result of this paper can be reformulated as follows. Let x(t) : Ct,0 → Cnx,0 be
a germ of an analytic vector-function satisfying a system of nonlinear algebraic differential
equations Si(x(t), t)dxi/dt = Qi(x(t), t) where Si and Qi are polynomial in (x, t) of degree
q, and Si(0, 0) 6= 0. Let p(t) = P (x(t), t) where P is a polynomial in (x, t) of degree p.
Suppose that p(t) 6≡ 0. Then the multiplicity of a zero of p(t) at t = 0 can be computed in
purely algebraic terms, and there is an estimate for this multiplicity in terms of n, p, q,
single exponential in n and polynomial in p and q.

1. The main result

Definition 1. A germ P̃ (x, ε) of an analytic function at the origin in Cn+1 is called a

deformation of P if P̃ (x, 0) = P (x). For a fixed ε, we write P̃ ε(x) for the function P̃ (x, ε)
considered as a function of x.

For a real positive δ, let Bδ be a closed ball in Cn of radius δ centered at the origin.

Proposition 1. Let P(x) =
(
P1(x), . . . , Pk(x)

)
be a k-tuple of germs of analytic functions

at the origin in Cn, and let P̃(x, ε) =
(
P̃1(x, ε), . . . , P̃k(x, ε)

)
be a deformation of P(x).

Then, for a small positive δ and for a nonzero ε ∈ C much smaller than δ, the homotopy
type of the set {P̃ε = 0} ∩Bδ does not depend on δ and ε, and on the choice of metrics in

Cn. This set is called the Milnor fiber of P̃.

Proof. This follows from Lê Dũng Tráng’s generalization of Milnor’s fibration theorem [7].

One has to consider fibration of an analytic set X = {P̃ = 0} ∩ Bδ ⊂ Cn+1 by nonzero
level sets of the function ε : X → C.

Definition 2. Let ε : X → C be an analytic function on an analytic set X, such that
Xε = X ∩ {ε = const} is nonsingular for small ε 6= 0. Let Z be an analytic subset of X0,
and let {Zα} be a Whitney stratification of Z, where Zα are nonsingular analytic manifolds
and their closures are analytic subsets of X. It is called Thom’s Aε stratification, if the
following holds:

Let xν be a sequence of points in X converging to x0 ∈ Zα, such that tangent spaces
to Xε(xν) at xν have a limit T as ν →∞. Then T contains the tangent space to Zα at x0.

According to [6], a stratification with this property always exists.

Definition 3. Let P(x) =
(
P1(x), . . . , Pk(x)

)
, and let P̃(x, ε) be a deformation of P(x).

Suppose that, for small ε 6= 0, the Milnor fiber Xε of P̃ is nonsingular.
Let X be the closure of

⋃
ε6=0X

ε, and let Z = X ∩ {ε = 0}. Let {Zα} be a Thom’s Aε
stratification of Z \ 0.

Let l(x) be an analytic function in Cn such that the set Γε of critical points of l|Xε , for
small ε 6= 0, is finite. Let ν be the number of these points, counted with their multiplicities,
converging to the origin as ε→ 0. The closure Γ of

⋃
ε6=0 Γε is called the polar curve of P̃

relative to l, and ν is the multiplicity of Γ.
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Proposition 2. Let P(x) =
(
P1(x), . . . , Pk(x)

)
, and let P̃(x, ε) be a deformation of P(x).

Suppose that, for small ε 6= 0, the Milnor fiber Xε of P̃ is nonsingular. Let X be the
closure of

⋃
ε6=0 X

ε, and let Z = X ∩ {ε = 0}. Let {Zα} be an Aε stratification of Z \ 0.

Let l(x) be an analytic function in Cn such that {l(x) = 0} is transversal to all Zα. Let

Γ be the polar curve of P̃ relative to l, and let ν be the multiplicity of Γ.
Then the Milnor fiber of P̃ can be obtained from the Milnor fiber of (P̃, l) by attaching

ν cells of dimension n− k.

Proof. This follows from the proof of the “generic hyperplane section” theorem in [7].

Theorem 1. Let P (x) be a germ at 0 ∈ Cn of an analytic function, and let P̃ (x, ε) be a
deformation of P (x). Let ξ be a germ at 0 ∈ Cn of an analytic vector field. Suppose that
ξ(0) 6= 0, and let γ be a trajectory of ξ through 0. Suppose that P |γ 6≡ 0, and let µ be the

multiplicity of a zero of P |γ at 0. Let Xk be the Milnor fiber of P̃k = (P̃ , ξP̃ , . . . , ξk−1P̃ ).
Suppose that Xk is a nonsingular (n− k)-dimensional set, for k = 1, . . . , n, and let χ(Xk)
be the Euler characteristic of Xk. Then

(1) µ = χ(X1) + · · ·+ χ(Xn).

The proof of this theorem will be given in the next section. A. Khovanskii suggested an
alternative proof, valid also when the Milnor fibers Xk are singular. In fact, the following
holds:

Theorem 1′. Let P, P̃ , ξ, γ, µ, and Xk be the same as in Theorem 1, without any
non-singularity conditions on Xk. Then

(2) µ =

µ∑
k=1

χ(Xk).

Proof. (See [4].) Let y = (y1, . . . , yn) be a system of coordinates in Cn where ξ = ∂/∂y1,
let y′ = (y2, . . . , yn), and let π be projection Cny → Cn−1

y′ along y1-axis. Let us choose a

metric in Cn so that a small ball Bn in Cn is a product of a small ball Bn−1 in Cn−1 and
a small disk D in C, where Bn−1 and D are chosen so that {P = 0} ∩ (Bn−1 × ∂D) = ∅.
Then each fiber of the projection π : {P = 0} ∩ Bn → Bn−1 consists of exactly µ points

(counting multiplicities). For small enough ε, the same is true for P̃ ε instead of P .

The set Xk consists of those points y where the multiplicity of a zero of P̃ ε restricted
to {y′ = const} is at least k. In particular, Xk = ∅ for k > µ. For 1 ≤ k ≤ µ, let
ζk(y′) = χ(Xk ∩ π−1y′). Since each set π−1y′ ∩Xk is finite, its Euler characteristic equals
to the number of points in it, not counting multiplicities. Hence

µ∑
k=1

ζk(y′) ≡ µ.

Fubini theorem for the integral over Euler characteristic [11] implies∫
Bn−1

ζkdχ =

∫
Bn

1Xkdχ = χ(Xk).
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Here 1Xk is the characteristic function of the set Xk. At the same time,

∫
Bn−1

(
µ∑
k=1

ζk

)
dχ =

∫
Bn−1

µdχ = µχ(Bn−1) = µ.

Theorem 1′ follows from these two equalities.

Remark. Theorem 1 follows from Theorem 1′: when Xk, for k = 1, . . . n, are nonsingular,
we can modify P̃ so that topology of Xk remains unchanged for k = 1, . . . n, and Xk = ∅
for k > n.

Lemma 1. Let l(x) be a germ of an analytic function such that ξl(0) 6= 0. Let δ be a small
positive number. For c = (c1, . . . , cn) ∈ Cn, let Pc(x) = P (x)+c1+c2l(x)+· · ·+cnln−1(x).
Let Xk,c = {Pc = ξPc = · · · = ξk−1Pc = 0} ∩Bnδ .

(i) For a generic c, the set Xk,c is nonsingular (n− k)-dimensional, for k = 1, . . . , n.

(ii) For a generic c, the deformation P̃ (x, ε) = Pεc(x) satisfies conditions of Theorem 1.

Proof. For a small positive δ, we can choose a coordinate system (y1, . . . , yn) in Bnδ so that
y1 = l(x) and trajectories of ξ are defined by y2 = const, . . . , yn = const. This means that,
in the new coordinates, ξ = u(y)∂/∂l where u(0) 6= 0. Accordingly,

Xk,c = {y ∈ Bδ, Pc(y) =
∂

∂l
Pc(y) = · · · = ∂k−1

∂lk−1
Pc(y) = 0}.

Let Q(y, c) be Pc(y) considered as a function of 2n variables y and c. Let

Zk = ∪xXk,c = {y ∈ Bδ, c ∈ Cn, Q(y, c) =
∂

∂l
Q(y, c) = · · · = ∂k−1

∂lk−1
Q(y, c) = 0}.

For k = 1, . . . , n, the set Zk is nonsingular (2n − k)-dimensional, because differentials of
∂iQ(y, c)/∂li are independent near y = 0:

∂

∂cj

∂i−1

∂li−1
Q(0, c) = (i− 1)!δij for 1 ≤ i, j ≤ n.

Let π : Zk → Cnc be a natural projection. The set Xk,c is nonsingular if and only if c is
not a critical value of π. Due to Sard’s theorem, this holds for a general c. This proves (i).

To prove (ii), note that, for P̃ (x, ε) = Pεc(x), the Milnor fiber of (P̃ , ξP̃ , . . . , ξk−1P̃ )
coincides with Xk,εc, for small nonzero ε. Consider the set Wk ⊂ Zk of critical points
of π. For c 6= 0, let Lc denote a linear subspace in Cn generated by c. For a generic c,
the intersection of Wk with π−1(Lc \ 0) is zero-dimensional (or empty). Otherwise, this
intersection would be at least one-dimensional, and π(Wk) would be n-dimensional, in
contradiction to Sard’s theorem. This implies that, for a generic c and small enough ε, the
set Xk,εc is nonsingular.
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2. Proof of Theorem 1

Let us choose a coordinate system y = (y1, . . . , yn) in a neighborhood of the origin in
Cn so that ξ = ∂/∂y1 in this coordinate system. In particular, trajectory γ of ξ through
the origin becomes y1-axis, and µ equals to the multiplicity of a zero of P (y1, 0, . . . , 0)

at the origin. Let P̃ (y, ε) be a deformation of P satisfying conditions of Theorem 1, i.e.,

the Milnor fiber Xk of P̃k = (P̃ , ξP̃ , . . . , ξk−1P̃ ) is nonsingular (n − k)-dimensional, for
k = 1, . . . , n.

We proceed by induction on n. For n = 1 the statement is obvious. Suppose that it
holds for n − 1. We want to apply it to the subspace {yn = 0} of Cn. Let P̃ ′ = P̃ |yn=0,

and let P̃′k = (P̃ ′, ξP̃ ′, . . . , ξk−1P̃ ′), for k = 1, . . . , n− 1.

First of all, to satisfy conditions of Theorem 1, the Milnor fiber X ′k of P̃′k should be
nonsingular. Singularities of X ′k coincide with zero critical values of yn restricted to Xk.
Consider these critical values as functions of ε. For large enough N , none of these critical
values equals εN identically. Let us replace P̃ (y, ε) by P̃ (y1, . . . , yn−1, yn − εN , ε). If N is
large enough, this does not change topology of Xk, and makes X ′k nonsingular.

Due to inductive hypothesis,

(3) µ = χ(X ′1) + · · ·+ χ(X ′n−1).

Next, we want to apply Proposition 2 to l = yn. Let us show that, for a generic choice of
yn, conditions of Proposition 2 are satisfied.

Let X be the closure of {P̃k(y, ε) = 0, ε 6= 0}, and let X0 = X ∩{ε = 0}. Let {Zα} be a
Thom’s Aε stratification of X0\0. As P |γ 6≡ 0, none of Zα contains y1-axis. Hence a generic
linear hyperplane H containing y1-axis is transversal to all Zα. To satisfy conditions of
Proposition 2, we can choose yn so that H = {yn = 0}.

Due to Proposition 2, Xk can be obtained from X ′k by attaching νk cells of dimension
n− k, where νk is the number of critical points of yn|Xk counted with their multiplicities.
In particular,

(4) χ(X ′k) = χ(Xk)− (−1)n−kνk.

The critical points of yn|Xk are defined by linear dependence at the points of Xk of the
following 1-forms:

d(P̃ ε), d(ξP̃ ε), . . . d(ξk−1P̃ ε), dyn.

In other words, rank of the following k × (n− 1)-matrix Ak should be less than k:

Ak =


∂
∂y1

P̃ ε ∂
∂y2

P̃ ε . . . ∂
∂yn−1

P̃ ε

∂
∂y1

ξP̃ ε ∂
∂y2

ξP̃ ε . . . ∂
∂yn−1

ξP̃ ε

...
...

. . .
...

∂
∂y1

ξk−1P̃ ε ∂
∂y2

ξk−1P̃ ε . . . ∂
∂yn−1

ξk−1P̃ ε

 .
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Taking into account that ξ = ∂/∂y1, we find that, at the points of Xk, all the entries in

the first column of the matrix Ak are zero, except for the last entry which is ξkP̃ ε:

Ak =



0 ∂
∂y2

P̃ ε . . . ∂
∂yn−1

P̃ ε

0 ∂
∂y2

ξP̃ ε . . . ∂
∂yn−1

ξP̃ ε

...
...

. . .
...

0 ∂
∂y2

ξk−2P̃ ε . . . ∂
∂yn−1

ξk−2P̃ ε

ξkP̃ ε ∂
∂y2

ξk−1P̃ ε . . . ∂
∂yn−1

ξk−1P̃ ε

 .

Let Bk be the matrix Ak with the first column removed, and let Ck be the matrix Ak with
the first column and the last row removed. For k = 1, . . . , n− 2, we have

Bk = Ck+1 =


∂
∂y2

P̃ ε . . . ∂
∂yn−1

P̃ ε

∂
∂y2

ξP̃ ε . . . ∂
∂yn−1

ξP̃ ε

...
. . .

...
∂
∂y2

ξk−1P̃ ε . . . ∂
∂yn−1

ξk−1P̃ ε

 .

For k = 1, . . . , n− 1, rank of Ak is less than k if either ξkP̃ ε = 0 and rank of Bk is less
than k, or if ξkP̃ ε 6= 0 and rank of Ck is less than k − 1. Geometrically, first of these two
conditions defines those points of Xk+1 where Xk is not transversal to (n−2)-dimensional
space L = (y1 = const, yn = const), and the second condition defines those points in Xk

where Xk−1 is not transversal to L. (For k = 1, the second condition is empty.)
For a generic choice of coordinates y1 and yn, L is a generic (n− 2)-dimensional linear

subspace in Cn. From Thom’s transversality theorem, the set of points where Xk−1 is not
transversal to L is one-dimensional and does not intersect Xk+1, which has codimension
two in Xk−1.

This means that, for generic coordinates y, the set of critical points of yn|Xk is a union

of two disjoint sets: Xk ∩{ξkP̃ ε = 0}∩ {rankBk < k} and Xk ∩{rankCk < k− 1}. Hence
νk = ν′k + ν′′k , where ν′k and ν′′k are the numbers of critical points of yn|Xk in these two
sets, counted with their multiplicities.

Taking into account that Bk = Ck+1 and Xk ∩{ξkP̃ ε = 0} = Xk+1, we have ν′k = ν′′k+1,
for k = 1, . . . , n− 2. For k = 1, we have ν1 = ν′1. For k = n− 1, we have ν′n−1 = χ(Xn),
the number of points in the set Xn.

Replacing νk in (4) by ν′k + ν′′k and substituting (4) into (3), we see that all the values
ν′k and ν′′k cancel out, except ν′n−1, and (3) implies (1).

3. Algebraic case

Theorem 2. Let P be a polynomial in Cn of degree not exceeding p ≥ n − 1, and let ξ
be a vector field with polynomial coefficients of degree not exceeding q ≥ 1. Suppose that
ξ(0) 6= 0, and let γ be a trajectory of ξ through 0.

(i) Let P |γ 6≡ 0, and let µ be the multiplicity of a zero of P |γ at 0. Then µ is less than

(5) 22n−1
n∑
k=1

[p+ (k − 1)(q − 1)]2n.
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(ii) Let P |γ ≡ 0, and let Pν be any sequence of polynomials of degree not exceeding p
converging to P as ν →∞. Then the number of isolated zeros of Pν |γ converging to the
origin as ν →∞ is less than (5).

Proof. (i) From Lemma 1, there exists a deformation P̃ of P satisfying conditions of

Theorem 1, such that P ε is a polynomial of degree not exceeding p. Hence degree of ξiP̃ ε

does not exceed p+ i(q− 1). Thus the Milnor fiber Xk of (P̃ , ξP̃ , . . . , ξk−1P̃ ) is defined by
polynomial equations of degree not exceeding d = p + (k − 1)(q − 1). From [8], the sum
of Betti numbers of Xk does not exceed d(2d− 1)2n−1, which is less than 22n−1d2n. The
estimate (5) follows now from Theorem 1.

(ii) The statement follows from (i) and the results of [12]. An alternative argument
was suggested by Khovanskii. Let L denote the linear space of all polynomials of degree
not exceeding p modulo polynomials identically vanishing on γ. Let Pν be a sequence
of polynomials Pν converging to P such that M zeros of Pν |γ converge to the origin as
ν → ∞. These polynomials define a sequence of points Qν in L. Note that the zeros of
Pν |γ depend only on Qν , and do not change when we multiply Qν by a constant. If we
define any norm in L, we obtain a sequence of points Qν/|Qν| in L that has a non-zero
limit point Q0. Let P0 be a polynomial of degree not exceeding p such that its image in L
is Q0. Obviously, P0|γ has a zero of the multiplicity M at 0. Hence M is less than (5).

We want to show that, for a polynomial P and a vector field ξ with polynomial coef-
ficients, the value of µ in (1) can be computed in purely algebraic terms. First, we need
another expression for µ, valid also for non-algebraic P and ξ.

Theorem 3. Let P (x) be a germ at 0 ∈ Cn of an analytic function, and let ξ be a germ
at 0 ∈ Cn of an analytic vector field. Suppose that ξ(0) 6= 0, and let γ be a trajectory of
ξ through 0. Suppose that P |γ 6≡ 0, and let µ be the multiplicity of a zero of Pγ at 0. Let

P̃ (x, ε) be a deformation of P (x) satisfying conditions of Theorem 1, and let P̃ ε be P̃ (x, ε)
considered as a function of x, for a fixed nonzero ε. Let l1(x), . . . , ln−1(x) be generic linear
forms in Cn. For a small positive δ and a small nonzero ε� δ, let

Xi,k = {x ∈ Bnδ , P̃ ε(x) = ξP̃ ε(x) = · · · = ξk−1P̃ ε(x) = l1(x) = · · · = ln−k−i(x) = 0},

for k = 1, . . . , n and i = 0, . . . , n− k. Let ν0,k be the number of points in X0,k converging
to the origin as ε → 0. For i = 1, . . . , n− k, let νi,k be the multiplicity of the polar curve

of (P̃ , ξP̃ , . . . , ξk−1P̃ , l1, . . . , ln−k−i) relative to ln−k−i+1, i.e., the number of critical points
of ln−k−i+1|Xi,k converging to the origin as ε→ 0. Then

(6) µ =
n∑
k=1

n−k∑
i=0

(−1)iνi,k.

Proof. Let Xk be the Milnor fiber of the deformation P̃k = (P̃ , ξP̃ , . . . , ξk−1P̃ ). Then
Xi,k is the intersection of Xk with a generic linear (k + i)-dimensional subspace Lk+i =
{l1 = · · · = ln−k−i = 0}. In particular, Xn−k,k = Xk. We suppose Xk to be nonsingular
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(n−k)-dimensional, hence Xi,k is a nonsingular i-dimensional set, and, for a generic linear
form ln−k−i+1, all critical points of ln−k−i+1|Xi,k are non-degenerate.

In particular, X0,k is zero-dimensional, and χ(X0,k) = ν0,k. From Proposition 2, for
k = 1, . . . , n and i = 1, . . . , k, we have

χ(Xi,k)− χ(Xi−1,k) = (−1)iνi,k.

Hence

χ(Xk) =
n−k∑
i=0

(−1)iνi,k.

From Theorem 1, µ =
∑n
k=1 χ(Xk) =

∑n
k=1

∑n−k
i=0 (−1)iνi,k.

Corollary. For a polynomial P in Cn of degree not exceeding p, and for a vector field ξ
in Cn with polynomial coefficients of degree not exceeding q, the value of µ in (6) can be
computed as the number of solutions of a finite system of algebraic equations and inequal-
ities. The number of equations and inequalities in this system, and their degrees, can be
estimated in terms of n, p, and q.

Proof. For polynomial P and ξ, the sets Xi,k in Theorem 3 are semi-algebraic, and each
number νi,k in (6) is defined as the number of solutions of a system of algebraic equations
and inequalities, with an estimate for the number of equations and inequalities and for
their degrees in terms of n, p, and q.

4. Degree of nonholonomy

Definition 4. Let Ξ = {ξi} be a system of vector fields in Cn or Rn. Let Lx be a vector
space spanned by the values of ξi, and of their brackets of all orders, at a point x. Here
ξi themselves are considered as brackets of order one, [ξi, ξj] as brackets of order two,
[ξi, [ξj, ξk]] as brackets of order three, and so on. Degree of nonholonomy of Ξ at x is the
minimal number Nx such that the values at x of ξi, and of their brackets of order not
exceeding Nx, generate Lx.

Theorem 4. Let Ξ = {ξi} be a system of vector fields in Cn or Rn with polynomial
coefficients of degree not exceeding β ≥ 1. Let d be dimension of the vector space Lx spanned
by the values at x of ξi and their brackets of all orders. Then degree of nonholonomy of Ξ
at x is less than

(7) 2d−2

(
1 + 22n(d−2)−2β2n

n∑
k=1

(k + 3)2n

)
for d > 2,

(8) 1 + 22n−1β2n
n∑
k=1

(k + 1)2n, for d = 2.

Proof. According to Proposition 1 of [1], there exist vector fields χ0, χ1, . . . , χd−1 with
polynomial coefficients, such that
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(i) χ0 and χ1 are some of ξi, and χ0(x) 6= 0;
(ii) for j > 1, χj is either one of ξi or a linear combination of brackets [χµ, fχν ] where

µ, ν < j and f is a linear function;
(iii) for a generic c = (c1, . . . , cd−2), χ0 ∧ · · ·∧χd−1 does not vanish identically at the points

of a trajectory γ of χc = χ0 + c1χ1 + · · ·+ cd−2χd−2 through x.

In particular, each χj is a vector field with polynomial coefficients of degree not exceeding
max(1, 2j−1)β. Let Q = χ0 ∧ · · · ∧ χd−1. We have

Q =
∑

i1,...,id

Qi1...id
∂

∂xi1
∧ · · · ∧ ∂

∂xid
,

where Qi1...id are polynomials of degree not exceeding p = 2d−1β. Due to (iii), some of
these polynomials do not vanish identically on a trajectory γ through x of a vector field χc
with polynomial coefficients of degree not exceeding q = max(1, 2d−3)β. Due to Theorem
2, the multiplicity µ of a zero of such a polynomial restricted to γ is less than

(9) 22n−1
n∑
k=1

[p+ (k − 1)(q − 1)]2n < 22n−1β2n
n∑
k=1

[2d−1 + (k − 1) max(1, 2d−3)]2n.

Each derivation of Q along χc decreases this multiplicity by 1. Hence the result of µ
consecutive derivations of Q along χc does not vanish at x. From (ii), χj are linear
combinations, with polynomial coefficients, of brackets of ξi of order not exceeding 2d−2,
and χc is a combination of brackets of ξi of order not exceeding max(1, 2d−3). Taking into
account a formula for a derivation along χc:

∂χc(χ0 ∧ · · · ∧ χd−1) =
d−1∑
i=0

χ0 ∧ · · · ∧ [χc, χi] ∧ . . . ∧ χd−1,

we see that the result of µ derivations of Q along χc is a linear combination, with poly-
nomial coefficients, of wedge-products of vector fields which are brackets of ξi of order not
exceeding

(10) 2d−2 + max(1, 2d−3)µ.

From (9), this order is less than (7) for d > 2, and (8) for d = 2. Since the result of µ
derivations of Q along χc does not vanish at x, there exist d brackets of ξi of order not
exceeding (10) which are linearly independent at x, hence generate Lx.

5. Noetherian functions

Definition 5. (Khovanskii, unpublished; see [10].) A Noetherian chain of order m and
degree α is a system f(x) = (f1(x), . . . , fm(x)) of germs of analytic functions at the origin
0 of a complex or real n-dimensional space, satisfying

(11)
∂fi
∂xj

= gij(x, f(x)), for i = 1, . . . ,m and j = 1, . . . , n,
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where gij are polynomials in x and f of degree not exceeding α ≥ 1. A function φ(x) =
P (x, f(x)), where P is a polynomial in x and f of degree not exceeding p, is called a
Noetherian function of degree p, with the Noetherian chain f .

The following two theorems can be reduced to Theorems 2 and 4 by adding m new
variables corresponding to m functions of a Noetherian chain (see [1]).

Theorem 5. Let f = (f1, . . . , fm) be a Noetherian chain of order m and degree α, and let
ξ =

∑
j φj(x)∂/∂xj be a vector field with the coefficients φj Noetherian of degree q, with

the Noetherian chain f . Let ψ be a Noetherian function of degree p, with the Noetherian
chain f . Suppose that ξ(0) 6= 0 and that ψ does not vanish identically on the trajectory γ
of ξ through 0. Then the multiplicity of the zero of ψ|γ at 0 is less than

(12) 22(n+m)−1
n+m∑
k=1

[p+ (k − 1)(q + α− 1))]2(n+m).

Theorem 6. Let f = (f1, . . . , fm) be a Noetherian chain in Cn or Rn of order m and
degree α ≥ 1. Let Ξ = {ξi} be a set of vector fields with Noetherian coefficients:

ξi =
∑
j

Qij(x, f(x))
∂

∂xj

with Qij polynomial in x and f of degree not exceeding β ≥ 1. Let d be dimension of the
vector space spanned by the values of the vector fields ξi and their brackets of all orders at
a point x. Then degree of nonholonomy of Ξ at x is less than

(13) 2d−2

(
1 + 22(n+m)(d−2)−2(α+ β)2(n+m)

n+m∑
k=1

(k + 3)2(n+m)

)
for d > 2,

(14) 1 + 22(n+m)−1(α+ β)2(n+m)
n+m∑
k=1

(k + 1)2(n+m), for d = 2.

Remark. The “integration over Euler characteristic” arguments allow one to obtain an
effective estimate on the multiplicity of an isolated intersection defined by Noetherian
functions of degree p in n variables, with a Noetherian chain of order m and degree α, in
terms of n, m, α, and p. The proof is given in a joint paper of A. Khovanskii and the
author [4].

References

[1] A. Gabrielov, Multiplicities of zeros of polynomials on trajectories of polynomial vector fields and
bounds on degree of nonholonomy, Math. Research Letters 2 (1995), 437–451.

[2] A. Gabrielov, Multiplicities of Pfaffian Intersections and the Lojasiewicz Inequality, Selecta Mathe-
matica, New Series 1 (1995), 113–127.



MULTIPLICITY OF A ZERO ON A TRAJECTORY OF A VECTOR FIELD 11

[3] A. Gabrielov, F. Jean, J.-J. Risler, Multiplicity of polynomials on trajectories of polynomial vector
fields in C3, Singularities Symposium—Lojasiewicz 70, Banach Center Publ., vol. 44, 1998, pp. 109–
121.

[4] A. Gabrielov, A. Khovanskii, Multiplicities of Noetherian intersections, Geometry of Differential
Equations, (Khovanskii et al, eds.), Amer. Math. Soc. Translations (2), vol. 186, 1998, pp. 119–130.

[5] A. Gabrielov, J.-M. Lion, R. Moussu, Ordre de contact de courbes intégrales du plan, CR Acad. Sci.
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