MULTIPLICITY OF A ZERO OF AN ANALYTIC FUNCTION ON A TRAJECTORY OF A VECTOR FIELD

Andrei Gabrielov
December 2, 1997
To Vladimir Igorevich Arnol'd on his 60th birthday

Abstract

The multiplicity μ of a zero of a restriction of an analytic function P in \mathbb{C}^{n} to a trajectory of a vector field ξ with analytic coefficients is equal to the sum of the Euler characteristics of Milnor fibers associated with a deformation of P. When P is a polynomial of degree p and ξ is a vector field with polynomial coefficients of degree q, this allows one to compute μ in purely algebraic terms, and to give an upper bound for μ in terms of n, p, q, single exponential in n and polynomial in p, q. This implies a single exponential in n bound on degree of nonholonomy of a system of polynomial vector fields in \mathbb{C}^{n}.

Introduction

Let $P(x)$ be a germ at the origin of an analytic function in \mathbb{C}^{n}, where $x=\left(x_{1}, \ldots, x_{n}\right)$, and let $\xi=\xi_{1}(x) \partial / \partial x_{1}+\cdots+\xi_{n}(x) \partial / \partial x_{n}$ be a germ at the origin of an analytic vector field. Suppose that $\xi(0) \neq 0$, and let γ be a trajectory of ξ through the origin. Suppose that $\left.P\right|_{\gamma} \not \equiv 0$, and let $\mu\left(\left.P\right|_{\gamma}\right)$ be the multiplicity of a zero of $\left.P\right|_{\gamma}$ at the origin. Let $\xi P=\xi_{1} \partial P / \partial x_{1}+\cdots+\xi_{n} \partial P / \partial x_{n}$ be derivative of P in the direction of ξ, and let $\xi^{k} P$ be the k th iteration of this derivative.

We show (Theorem 1) that $\mu\left(\left.P\right|_{\gamma}\right)$ is a sum of the Euler characteristics of "Milnor fibers" $X_{k}=\left\{\tilde{P}=\xi \tilde{P}=\cdots=\xi^{k-1} \tilde{P}=0\right\}$ associated with a deformation \tilde{P} of P. For a polynomial P of degree p and a vector field ξ with polynomial coefficients of degree q, X_{k} are (semi-)algebraic sets. This allows one to compute $\mu\left(\left.P\right|_{\gamma}\right)$ in purely algebraic terms (Theorem 3), and to give an upper bound (Theorem 2) for $\mu\left(\left.P\right|_{\gamma}\right)$ in terms of n, p, q, single exponential in n and polynomial in p and q. This estimate improves previous results $[9,1]$ which were double exponential in n.

For a system $\Xi=\left\{\xi_{i}\right\}$ of vector fields in \mathbb{R}^{n} with polynomial coefficients of degree not exceeding q, this implies a single exponential in n and polynomial in q estimate for the degree of nonholonomy of Ξ, i.e., for the minimal order of brackets of ξ_{i} necessary to

[^0]generate a subspace of maximal possible dimension at each point of \mathbb{R}^{n}. This improves an estimate in [1], which was double exponential in n.

For $n=2$, our estimate coincides with the estimate for the multiplicity of a Pfaffian intersection [5, 2]. In case $n=3$, a similar estimate was obtained in [3].

The main result of this paper can be reformulated as follows. Let $x(t): \mathbb{C}_{t, 0} \rightarrow \mathbb{C}_{x, 0}^{n}$ be a germ of an analytic vector-function satisfying a system of nonlinear algebraic differential equations $S_{i}(x(t), t) d x_{i} / d t=Q_{i}(x(t), t)$ where S_{i} and Q_{i} are polynomial in (x, t) of degree q, and $S_{i}(0,0) \neq 0$. Let $p(t)=P(x(t), t)$ where P is a polynomial in (x, t) of degree p. Suppose that $p(t) \not \equiv 0$. Then the multiplicity of a zero of $p(t)$ at $t=0$ can be computed in purely algebraic terms, and there is an estimate for this multiplicity in terms of n, p, q, single exponential in n and polynomial in p and q.

1. The main result

Definition 1. A germ $\tilde{P}(x, \epsilon)$ of an analytic function at the origin in \mathbb{C}^{n+1} is called a deformation of P if $\tilde{P}(x, 0)=P(x)$. For a fixed ϵ, we write $\tilde{P}^{\epsilon}(x)$ for the function $\tilde{P}(x, \epsilon)$ considered as a function of x.

For a real positive δ, let B_{δ} be a closed ball in \mathbb{C}^{n} of radius δ centered at the origin.
Proposition 1. Let $\mathbf{P}(x)=\left(P_{1}(x), \ldots, P_{k}(x)\right)$ be a k-tuple of germs of analytic functions at the origin in \mathbb{C}^{n}, and let $\tilde{\mathbf{P}}(x, \epsilon)=\left(\tilde{P}_{1}(x, \epsilon), \ldots, \tilde{P}_{k}(x, \epsilon)\right)$ be a deformation of $\mathbf{P}(x)$. Then, for a small positive δ and for a nonzero $\epsilon \in \mathbb{C}$ much smaller than δ, the homotopy type of the set $\left\{\tilde{\mathbf{P}}^{\epsilon}=0\right\} \cap B_{\delta}$ does not depend on δ and ϵ, and on the choice of metrics in \mathbb{C}^{n}. This set is called the Milnor fiber of $\tilde{\mathbf{P}}$.

Proof. This follows from Lê Dũng Tráng's generalization of Milnor's fibration theorem [7]. One has to consider fibration of an analytic set $X=\{\tilde{\mathbf{P}}=0\} \cap B_{\delta} \subset \mathbb{C}^{n+1}$ by nonzero level sets of the function $\epsilon: X \rightarrow \mathbb{C}$.

Definition 2. Let $\epsilon: X \rightarrow \mathbb{C}$ be an analytic function on an analytic set X, such that $X^{\epsilon}=X \cap\{\epsilon=$ const $\}$ is nonsingular for small $\epsilon \neq 0$. Let Z be an analytic subset of X^{0}, and let $\left\{Z_{\alpha}\right\}$ be a Whitney stratification of Z, where Z_{α} are nonsingular analytic manifolds and their closures are analytic subsets of X. It is called Thom's A_{ϵ} stratification, if the following holds:

Let x_{ν} be a sequence of points in X converging to $x^{0} \in Z_{\alpha}$, such that tangent spaces to $X^{\epsilon\left(x_{\nu}\right)}$ at x_{ν} have a limit T as $\nu \rightarrow \infty$. Then T contains the tangent space to Z_{α} at x^{0}.

According to [6], a stratification with this property always exists.
Definition 3. Let $\mathbf{P}(x)=\left(P_{1}(x), \ldots, P_{k}(x)\right)$, and let $\tilde{\mathbf{P}}(x, \epsilon)$ be a deformation of $\mathbf{P}(x)$. Suppose that, for small $\epsilon \neq 0$, the Milnor fiber X^{ϵ} of $\tilde{\mathbf{P}}$ is nonsingular.

Let X be the closure of $\bigcup_{\epsilon \neq 0} X^{\epsilon}$, and let $Z=X \cap\{\epsilon=0\}$. Let $\left\{Z_{\alpha}\right\}$ be a Thom's A_{ϵ} stratification of $Z \backslash 0$.

Let $l(x)$ be an analytic function in \mathbb{C}^{n} such that the set Γ^{ϵ} of critical points of $\left.l\right|_{X^{\epsilon}}$, for small $\epsilon \neq 0$, is finite. Let ν be the number of these points, counted with their multiplicities, converging to the origin as $\epsilon \rightarrow 0$. The closure Γ of $\bigcup_{\epsilon \neq 0} \Gamma^{\epsilon}$ is called the polar curve of $\tilde{\mathbf{P}}$ relative to l, and ν is the multiplicity of Γ.

Proposition 2. Let $\mathbf{P}(x)=\left(P_{1}(x), \ldots, P_{k}(x)\right)$, and let $\tilde{\mathbf{P}}(x, \epsilon)$ be a deformation of $\mathbf{P}(x)$. Suppose that, for small $\epsilon \neq 0$, the Milnor fiber X^{ϵ} of $\tilde{\mathbf{P}}$ is nonsingular. Let X be the closure of $\bigcup_{\epsilon \neq 0} X^{\epsilon}$, and let $Z=X \cap\{\epsilon=0\}$. Let $\left\{Z_{\alpha}\right\}$ be an A_{ϵ} stratification of $Z \backslash 0$.

Let $l(x)$ be an analytic function in \mathbb{C}^{n} such that $\{l(x)=0\}$ is transversal to all Z_{α}. Let Γ be the polar curve of $\tilde{\mathbf{P}}$ relative to l, and let ν be the multiplicity of Γ.

Then the Milnor fiber of $\tilde{\mathbf{P}}$ can be obtained from the Milnor fiber of $(\tilde{\mathbf{P}}, l)$ by attaching ν cells of dimension $n-k$.

Proof. This follows from the proof of the "generic hyperplane section" theorem in [7].
Theorem 1. Let $P(x)$ be a germ at $0 \in \mathbb{C}^{n}$ of an analytic function, and let $\tilde{P}(x, \epsilon)$ be a deformation of $P(x)$. Let ξ be a germ at $0 \in \mathbb{C}^{n}$ of an analytic vector field. Suppose that $\xi(0) \neq 0$, and let γ be a trajectory of ξ through 0 . Suppose that $\left.P\right|_{\gamma} \not \equiv 0$, and let μ be the multiplicity of a zero of $\left.P\right|_{\gamma}$ at 0 . Let X_{k} be the Milnor fiber of $\tilde{\mathbf{P}}_{k}=\left(\tilde{P}, \xi \tilde{P}, \ldots, \xi^{k-1} \tilde{P}\right)$. Suppose that X_{k} is a nonsingular $(n-k)$-dimensional set, for $k=1, \ldots, n$, and let $\chi\left(X_{k}\right)$ be the Euler characteristic of X_{k}. Then

$$
\begin{equation*}
\mu=\chi\left(X_{1}\right)+\cdots+\chi\left(X_{n}\right) \tag{1}
\end{equation*}
$$

The proof of this theorem will be given in the next section. A. Khovanskii suggested an alternative proof, valid also when the Milnor fibers X_{k} are singular. In fact, the following holds:
Theorem 1'. Let $P, \tilde{P}, \xi, \gamma, \mu$, and X_{k} be the same as in Theorem 1, without any non-singularity conditions on X_{k}. Then

$$
\begin{equation*}
\mu=\sum_{k=1}^{\mu} \chi\left(X_{k}\right) \tag{2}
\end{equation*}
$$

Proof. (See [4].) Let $y=\left(y_{1}, \ldots, y_{n}\right)$ be a system of coordinates in \mathbb{C}^{n} where $\xi=\partial / \partial y_{1}$, let $y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)$, and let π be projection $\mathbb{C}_{y}^{n} \rightarrow \mathbb{C}_{y^{\prime}}^{n-1}$ along y_{1}-axis. Let us choose a metric in \mathbb{C}^{n} so that a small ball B^{n} in \mathbb{C}^{n} is a product of a small ball B^{n-1} in \mathbb{C}^{n-1} and a small disk D in \mathbb{C}, where B^{n-1} and D are chosen so that $\{P=0\} \cap\left(B^{n-1} \times \partial D\right)=\emptyset$. Then each fiber of the projection $\pi:\{P=0\} \cap B^{n} \rightarrow B^{n-1}$ consists of exactly μ points (counting multiplicities). For small enough ϵ, the same is true for \tilde{P}^{ϵ} instead of P.

The set X_{k} consists of those points y where the multiplicity of a zero of \tilde{P}^{ϵ} restricted to $\left\{y^{\prime}=\right.$ const $\}$ is at least k. In particular, $X_{k}=\emptyset$ for $k>\mu$. For $1 \leq k \leq \mu$, let $\zeta_{k}\left(y^{\prime}\right)=\chi\left(X_{k} \cap \pi^{-1} y^{\prime}\right)$. Since each set $\pi^{-1} y^{\prime} \cap X_{k}$ is finite, its Euler characteristic equals to the number of points in it, not counting multiplicities. Hence

$$
\sum_{k=1}^{\mu} \zeta_{k}\left(y^{\prime}\right) \equiv \mu
$$

Fubini theorem for the integral over Euler characteristic [11] implies

$$
\int_{B^{n-1}} \zeta_{k} d \chi=\int_{B^{n}} \mathbf{1}_{X_{k}} d \chi=\chi\left(X_{k}\right)
$$

Here $\mathbf{1}_{X_{k}}$ is the characteristic function of the set X_{k}. At the same time,

$$
\int_{B^{n-1}}\left(\sum_{k=1}^{\mu} \zeta_{k}\right) d \chi=\int_{B^{n-1}} \mu d \chi=\mu \chi\left(B^{n-1}\right)=\mu
$$

Theorem 1^{\prime} follows from these two equalities.
Remark. Theorem 1 follows from Theorem 1': when X_{k}, for $k=1, \ldots n$, are nonsingular, we can modify \tilde{P} so that topology of X_{k} remains unchanged for $k=1, \ldots n$, and $X_{k}=\emptyset$ for $k>n$.

Lemma 1. Let $l(x)$ be a germ of an analytic function such that $\xi l(0) \neq 0$. Let δ be a small positive number. For $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}$, let $P_{c}(x)=P(x)+c_{1}+c_{2} l(x)+\cdots+c_{n} l^{n-1}(x)$. Let $X_{k, c}=\left\{P_{c}=\xi P_{c}=\cdots=\xi^{k-1} P_{c}=0\right\} \cap B_{\delta}^{n}$.
(i) For a generic c, the set $X_{k, c}$ is nonsingular $(n-k)$-dimensional, for $k=1, \ldots, n$.
(ii) For a generic c, the deformation $\tilde{P}(x, \epsilon)=P_{\epsilon c}(x)$ satisfies conditions of Theorem 1.

Proof. For a small positive δ, we can choose a coordinate system $\left(y_{1}, \ldots, y_{n}\right)$ in B_{δ}^{n} so that $y_{1}=l(x)$ and trajectories of ξ are defined by $y_{2}=$ const, $\ldots, y_{n}=$ const. This means that, in the new coordinates, $\xi=u(y) \partial / \partial l$ where $u(0) \neq 0$. Accordingly,

$$
X_{k, c}=\left\{y \in B_{\delta}, P_{c}(y)=\frac{\partial}{\partial l} P_{c}(y)=\cdots=\frac{\partial^{k-1}}{\partial l^{k-1}} P_{c}(y)=0\right\}
$$

Let $Q(y, c)$ be $P_{c}(y)$ considered as a function of $2 n$ variables y and c. Let

$$
Z_{k}=\cup_{x} X_{k, c}=\left\{y \in B_{\delta}, c \in \mathbb{C}^{n}, Q(y, c)=\frac{\partial}{\partial l} Q(y, c)=\cdots=\frac{\partial^{k-1}}{\partial l^{k-1}} Q(y, c)=0\right\} .
$$

For $k=1, \ldots, n$, the set Z_{k} is nonsingular $(2 n-k)$-dimensional, because differentials of $\partial^{i} Q(y, c) / \partial l^{i}$ are independent near $y=0$:

$$
\frac{\partial}{\partial c_{j}} \frac{\partial^{i-1}}{\partial l^{i-1}} Q(0, c)=(i-1)!\delta_{i j} \quad \text { for } 1 \leq i, j \leq n
$$

Let $\pi: Z_{k} \rightarrow \mathbb{C}_{c}^{n}$ be a natural projection. The set $X_{k, c}$ is nonsingular if and only if c is not a critical value of π. Due to Sard's theorem, this holds for a general c. This proves (i).

To prove (ii), note that, for $\tilde{P}(x, \epsilon)=P_{\epsilon c}(x)$, the Milnor fiber of $\left(\tilde{P}, \xi \tilde{P}, \ldots, \xi^{k-1} \tilde{P}\right)$ coincides with $X_{k, \epsilon c}$, for small nonzero ϵ. Consider the set $W_{k} \subset Z_{k}$ of critical points of π. For $c \neq 0$, let L_{c} denote a linear subspace in \mathbb{C}^{n} generated by c. For a generic c, the intersection of W_{k} with $\pi^{-1}\left(L_{c} \backslash 0\right)$ is zero-dimensional (or empty). Otherwise, this intersection would be at least one-dimensional, and $\pi\left(W_{k}\right)$ would be n-dimensional, in contradiction to Sard's theorem. This implies that, for a generic c and small enough ϵ, the set $X_{k, \epsilon c}$ is nonsingular.

2. Proof of Theorem 1

Let us choose a coordinate system $y=\left(y_{1}, \ldots, y_{n}\right)$ in a neighborhood of the origin in \mathbb{C}^{n} so that $\xi=\partial / \partial y_{1}$ in this coordinate system. In particular, trajectory γ of ξ through the origin becomes y_{1}-axis, and μ equals to the multiplicity of a zero of $P\left(y_{1}, 0, \ldots, 0\right)$ at the origin. Let $\tilde{P}(y, \epsilon)$ be a deformation of P satisfying conditions of Theorem 1, i.e., the Milnor fiber X_{k} of $\tilde{\mathbf{P}}_{k}=\left(\tilde{P}, \xi \tilde{P}, \ldots, \xi^{k-1} \tilde{P}\right)$ is nonsingular $(n-k)$-dimensional, for $k=1, \ldots, n$.

We proceed by induction on n. For $n=1$ the statement is obvious. Suppose that it holds for $n-1$. We want to apply it to the subspace $\left\{y_{n}=0\right\}$ of \mathbb{C}^{n}. Let $\tilde{P}^{\prime}=\left.\tilde{P}\right|_{y_{n}=0}$, and let $\tilde{\mathbf{P}}_{k}^{\prime}=\left(\tilde{P}^{\prime}, \xi \tilde{P}^{\prime}, \ldots, \xi^{k-1} \tilde{P}^{\prime}\right)$, for $k=1, \ldots, n-1$.

First of all, to satisfy conditions of Theorem 1, the Milnor fiber X_{k}^{\prime} of $\tilde{\mathbf{P}}_{k}^{\prime}$ should be nonsingular. Singularities of X_{k}^{\prime} coincide with zero critical values of y_{n} restricted to X_{k}. Consider these critical values as functions of ϵ. For large enough N, none of these critical values equals ϵ^{N} identically. Let us replace $\tilde{P}(y, \epsilon)$ by $\tilde{P}\left(y_{1}, \ldots, y_{n-1}, y_{n}-\epsilon^{N}, \epsilon\right)$. If N is large enough, this does not change topology of X_{k}, and makes X_{k}^{\prime} nonsingular.

Due to inductive hypothesis,

$$
\begin{equation*}
\mu=\chi\left(X_{1}^{\prime}\right)+\cdots+\chi\left(X_{n-1}^{\prime}\right) \tag{3}
\end{equation*}
$$

Next, we want to apply Proposition 2 to $l=y_{n}$. Let us show that, for a generic choice of y_{n}, conditions of Proposition 2 are satisfied.

Let X be the closure of $\left\{\tilde{\mathbf{P}}_{k}(y, \epsilon)=0, \epsilon \neq 0\right\}$, and let $X_{0}=X \cap\{\epsilon=0\}$. Let $\left\{Z_{\alpha}\right\}$ be a Thom's A_{ϵ} stratification of $X_{0} \backslash 0$. As $\left.P\right|_{\gamma} \not \equiv 0$, none of Z_{α} contains y_{1}-axis. Hence a generic linear hyperplane H containing y_{1}-axis is transversal to all Z_{α}. To satisfy conditions of Proposition 2, we can choose y_{n} so that $H=\left\{y_{n}=0\right\}$.

Due to Proposition 2, X_{k} can be obtained from X_{k}^{\prime} by attaching ν_{k} cells of dimension $n-k$, where ν_{k} is the number of critical points of $\left.y_{n}\right|_{X_{k}}$ counted with their multiplicities. In particular,

$$
\begin{equation*}
\chi\left(X_{k}^{\prime}\right)=\chi\left(X_{k}\right)-(-1)^{n-k} \nu_{k} \tag{4}
\end{equation*}
$$

The critical points of $\left.y_{n}\right|_{X_{k}}$ are defined by linear dependence at the points of X_{k} of the following 1-forms:

$$
d\left(\tilde{P}^{\epsilon}\right), d\left(\xi \tilde{P}^{\epsilon}\right), \ldots d\left(\xi^{k-1} \tilde{P}^{\epsilon}\right), d y_{n}
$$

In other words, rank of the following $k \times(n-1)$-matrix A_{k} should be less than k :

$$
A_{k}=\left(\begin{array}{cccc}
\frac{\partial}{\partial y_{1}} \tilde{P}^{\epsilon} & \frac{\partial}{\partial y_{2}} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \tilde{P}^{\epsilon} \\
\frac{\partial}{\partial y_{1}} \xi \tilde{P}^{\epsilon} & \frac{\partial}{\partial y_{2}} \xi \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi \tilde{P}^{\epsilon} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial y_{1}} \xi^{k-1} \tilde{P}^{\epsilon} & \frac{\partial}{\partial y_{2}} \xi^{k-1} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi^{k-1} \tilde{P}^{\epsilon}
\end{array}\right)
$$

Taking into account that $\xi=\partial / \partial y_{1}$, we find that, at the points of X_{k}, all the entries in the first column of the matrix A_{k} are zero, except for the last entry which is $\xi^{k} \tilde{P}^{\epsilon}$:

$$
A_{k}=\left(\begin{array}{cccc}
0 & \frac{\partial}{\partial y_{2}} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \tilde{P}^{\epsilon} \\
0 & \frac{\partial}{\partial y_{2}} \xi \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi \tilde{P}^{\epsilon} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \frac{\partial}{\partial y_{2}} \xi^{k-2} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi^{k-2} \tilde{P}^{\epsilon} \\
\xi^{k} \tilde{P}^{\epsilon} & \frac{\partial}{\partial y_{2}} \xi^{k-1} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi^{k-1} \tilde{P}^{\epsilon}
\end{array}\right) .
$$

Let B_{k} be the matrix A_{k} with the first column removed, and let C_{k} be the matrix A_{k} with the first column and the last row removed. For $k=1, \ldots, n-2$, we have

$$
B_{k}=C_{k+1}=\left(\begin{array}{ccc}
\frac{\partial}{\partial y_{2}} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \tilde{P}^{\epsilon} \\
\frac{\partial}{\partial y_{2}} \xi \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi \tilde{P}^{\epsilon} \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial y_{2}} \xi^{k-1} \tilde{P}^{\epsilon} & \cdots & \frac{\partial}{\partial y_{n-1}} \xi^{k-1} \tilde{P}^{\epsilon}
\end{array}\right)
$$

For $k=1, \ldots, n-1$, rank of A_{k} is less than k if either $\xi^{k} \tilde{P}^{\epsilon}=0$ and rank of B_{k} is less than k, or if $\xi^{k} \tilde{P}^{\epsilon} \neq 0$ and rank of C_{k} is less than $k-1$. Geometrically, first of these two conditions defines those points of X_{k+1} where X_{k} is not transversal to ($n-2$)-dimensional space $L=\left(y_{1}=\right.$ const, $y_{n}=$ const $)$, and the second condition defines those points in X_{k} where X_{k-1} is not transversal to L. (For $k=1$, the second condition is empty.)

For a generic choice of coordinates y_{1} and y_{n}, L is a generic ($n-2$)-dimensional linear subspace in \mathbb{C}^{n}. From Thom's transversality theorem, the set of points where X_{k-1} is not transversal to L is one-dimensional and does not intersect X_{k+1}, which has codimension two in X_{k-1}.

This means that, for generic coordinates y, the set of critical points of $\left.y_{n}\right|_{X_{k}}$ is a union of two disjoint sets: $X_{k} \cap\left\{\xi^{k} \tilde{P}^{\epsilon}=0\right\} \cap\left\{\operatorname{rank} B_{k}<k\right\}$ and $X_{k} \cap\left\{\operatorname{rank} C_{k}<k-1\right\}$. Hence $\nu_{k}=\nu_{k}^{\prime}+\nu_{k}^{\prime \prime}$, where ν_{k}^{\prime} and $\nu_{k}^{\prime \prime}$ are the numbers of critical points of $\left.y_{n}\right|_{X_{k}}$ in these two sets, counted with their multiplicities.

Taking into account that $B_{k}=C_{k+1}$ and $X_{k} \cap\left\{\xi^{k} \tilde{P}^{\epsilon}=0\right\}=X_{k+1}$, we have $\nu_{k}^{\prime}=\nu_{k+1}^{\prime \prime}$, for $k=1, \ldots, n-2$. For $k=1$, we have $\nu_{1}=\nu_{1}^{\prime}$. For $k=n-1$, we have $\nu_{n-1}^{\prime}=\chi\left(X_{n}\right)$, the number of points in the set X_{n}.

Replacing ν_{k} in (4) by $\nu_{k}^{\prime}+\nu_{k}^{\prime \prime}$ and substituting (4) into (3), we see that all the values ν_{k}^{\prime} and $\nu_{k}^{\prime \prime}$ cancel out, except ν_{n-1}^{\prime}, and (3) implies (1).

3. Algebraic case

Theorem 2. Let P be a polynomial in \mathbb{C}^{n} of degree not exceeding $p \geq n-1$, and let ξ be a vector field with polynomial coefficients of degree not exceeding $q \geq 1$. Suppose that $\xi(0) \neq 0$, and let γ be a trajectory of ξ through 0 .
(i) Let $\left.P\right|_{\gamma} \not \equiv 0$, and let μ be the multiplicity of a zero of $\left.P\right|_{\gamma}$ at 0 . Then μ is less than

$$
\begin{equation*}
2^{2 n-1} \sum_{k=1}^{n}[p+(k-1)(q-1)]^{2 n} . \tag{5}
\end{equation*}
$$

(ii) Let $\left.P\right|_{\gamma} \equiv 0$, and let P_{ν} be any sequence of polynomials of degree not exceeding p converging to P as $\nu \rightarrow \infty$. Then the number of isolated zeros of $\left.P_{\nu}\right|_{\gamma}$ converging to the origin as $\nu \rightarrow \infty$ is less than (5).
Proof. (i) From Lemma 1, there exists a deformation \tilde{P} of P satisfying conditions of Theorem 1, such that P^{ϵ} is a polynomial of degree not exceeding p. Hence degree of $\xi^{i} \tilde{P}^{\epsilon}$ does not exceed $p+i(q-1)$. Thus the Milnor fiber X_{k} of $\left(\tilde{P}, \xi \tilde{P}, \ldots, \xi^{k-1} \tilde{P}\right)$ is defined by polynomial equations of degree not exceeding $d=p+(k-1)(q-1)$. From [8], the sum of Betti numbers of X_{k} does not exceed $d(2 d-1)^{2 n-1}$, which is less than $2^{2 n-1} d^{2 n}$. The estimate (5) follows now from Theorem 1.
(ii) The statement follows from (i) and the results of [12]. An alternative argument was suggested by Khovanskii. Let \mathcal{L} denote the linear space of all polynomials of degree not exceeding p modulo polynomials identically vanishing on γ. Let P_{ν} be a sequence of polynomials P_{ν} converging to P such that M zeros of $\left.P_{\nu}\right|_{\gamma}$ converge to the origin as $\nu \rightarrow \infty$. These polynomials define a sequence of points Q_{ν} in \mathcal{L}. Note that the zeros of $\left.P_{\nu}\right|_{\gamma}$ depend only on Q_{ν}, and do not change when we multiply Q_{ν} by a constant. If we define any norm in \mathcal{L}, we obtain a sequence of points $Q_{\nu} /\left|Q_{\nu}\right|$ in \mathcal{L} that has a non-zero limit point Q_{0}. Let P_{0} be a polynomial of degree not exceeding p such that its image in \mathcal{L} is Q_{0}. Obviously, $\left.P_{0}\right|_{\gamma}$ has a zero of the multiplicity M at 0 . Hence M is less than (5).

We want to show that, for a polynomial P and a vector field ξ with polynomial coefficients, the value of μ in (1) can be computed in purely algebraic terms. First, we need another expression for μ, valid also for non-algebraic P and ξ.

Theorem 3. Let $P(x)$ be a germ at $0 \in \mathbb{C}^{n}$ of an analytic function, and let ξ be a germ at $0 \in \mathbb{C}^{n}$ of an analytic vector field. Suppose that $\xi(0) \neq 0$, and let γ be a trajectory of ξ through 0 . Suppose that $\left.P\right|_{\gamma} \not \equiv 0$, and let μ be the multiplicity of a zero of P_{γ} at 0 . Let $\tilde{P}(x, \epsilon)$ be a deformation of $P(x)$ satisfying conditions of Theorem 1 , and let \tilde{P}^{ϵ} be $\tilde{P}(x, \epsilon)$ considered as a function of x, for a fixed nonzero ϵ. Let $l_{1}(x), \ldots, l_{n-1}(x)$ be generic linear forms in \mathbb{C}^{n}. For a small positive δ and a small nonzero $\epsilon \ll \delta$, let

$$
X_{i, k}=\left\{x \in B_{\delta}^{n}, \quad \tilde{P}^{\epsilon}(x)=\xi \tilde{P}^{\epsilon}(x)=\cdots=\xi^{k-1} \tilde{P}^{\epsilon}(x)=l_{1}(x)=\cdots=l_{n-k-i}(x)=0\right\}
$$

for $k=1, \ldots, n$ and $i=0, \ldots, n-k$. Let $\nu_{0, k}$ be the number of points in $X_{0, k}$ converging to the origin as $\epsilon \rightarrow 0$. For $i=1, \ldots, n-k$, let $\nu_{i, k}$ be the multiplicity of the polar curve of ($\left.\tilde{P}, \xi \tilde{P}, \ldots, \xi^{k-1} \tilde{P}, l_{1}, \ldots, l_{n-k-i}\right)$ relative to $l_{n-k-i+1}$, i.e., the number of critical points of $\left.l_{n-k-i+1}\right|_{X_{i, k}}$ converging to the origin as $\epsilon \rightarrow 0$. Then

$$
\begin{equation*}
\mu=\sum_{k=1}^{n} \sum_{i=0}^{n-k}(-1)^{i} \nu_{i, k} \tag{6}
\end{equation*}
$$

Proof. Let X_{k} be the Milnor fiber of the deformation $\tilde{\mathbf{P}}_{k}=\left(\tilde{P}, \xi \tilde{P}, \ldots, \xi^{k-1} \tilde{P}\right)$. Then $X_{i, k}$ is the intersection of X_{k} with a generic linear $(k+i)$-dimensional subspace $L^{k+i}=$ $\left\{l_{1}=\cdots=l_{n-k-i}=0\right\}$. In particular, $X_{n-k, k}=X_{k}$. We suppose X_{k} to be nonsingular
($n-k$)-dimensional, hence $X_{i, k}$ is a nonsingular i-dimensional set, and, for a generic linear form $l_{n-k-i+1}$, all critical points of $\left.l_{n-k-i+1}\right|_{X_{i, k}}$ are non-degenerate.

In particular, $X_{0, k}$ is zero-dimensional, and $\chi\left(X_{0, k}\right)=\nu_{0, k}$. From Proposition 2, for $k=1, \ldots, n$ and $i=1, \ldots, k$, we have

$$
\chi\left(X_{i, k}\right)-\chi\left(X_{i-1, k}\right)=(-1)^{i} \nu_{i, k} .
$$

Hence

$$
\chi\left(X_{k}\right)=\sum_{i=0}^{n-k}(-1)^{i} \nu_{i, k}
$$

From Theorem 1, $\mu=\sum_{k=1}^{n} \chi\left(X_{k}\right)=\sum_{k=1}^{n} \sum_{i=0}^{n-k}(-1)^{i} \nu_{i, k}$.
Corollary. For a polynomial P in \mathbb{C}^{n} of degree not exceeding p, and for a vector field ξ in \mathbb{C}^{n} with polynomial coefficients of degree not exceeding q, the value of μ in (6) can be computed as the number of solutions of a finite system of algebraic equations and inequalities. The number of equations and inequalities in this system, and their degrees, can be estimated in terms of n, p, and q.
Proof. For polynomial P and ξ, the sets $X_{i, k}$ in Theorem 3 are semi-algebraic, and each number $\nu_{i, k}$ in (6) is defined as the number of solutions of a system of algebraic equations and inequalities, with an estimate for the number of equations and inequalities and for their degrees in terms of n, p, and q.

4. Degree of nonholonomy

Definition 4. Let $\Xi=\left\{\xi_{i}\right\}$ be a system of vector fields in \mathbb{C}^{n} or \mathbb{R}^{n}. Let L_{x} be a vector space spanned by the values of ξ_{i}, and of their brackets of all orders, at a point x. Here ξ_{i} themselves are considered as brackets of order one, $\left[\xi_{i}, \xi_{j}\right]$ as brackets of order two, $\left[\xi_{i},\left[\xi_{j}, \xi_{k}\right]\right]$ as brackets of order three, and so on. Degree of nonholonomy of Ξ at x is the minimal number N_{x} such that the values at x of ξ_{i}, and of their brackets of order not exceeding N_{x}, generate L_{x}.
Theorem 4. Let $\Xi=\left\{\xi_{i}\right\}$ be a system of vector fields in \mathbb{C}^{n} or \mathbb{R}^{n} with polynomial coefficients of degree not exceeding $\beta \geq 1$. Let d be dimension of the vector space L_{x} spanned by the values at x of ξ_{i} and their brackets of all orders. Then degree of nonholonomy of Ξ at x is less than

$$
\begin{equation*}
2^{d-2}\left(1+2^{2 n(d-2)-2} \beta^{2 n} \sum_{k=1}^{n}(k+3)^{2 n}\right) \quad \text { for } d>2 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
1+2^{2 n-1} \beta^{2 n} \sum_{k=1}^{n}(k+1)^{2 n}, \quad \text { for } d=2 \tag{8}
\end{equation*}
$$

Proof. According to Proposition 1 of [1], there exist vector fields $\chi_{0}, \chi_{1}, \ldots, \chi_{d-1}$ with polynomial coefficients, such that
(i) χ_{0} and χ_{1} are some of ξ_{i}, and $\chi_{0}(x) \neq 0$;
(ii) for $j>1, \chi_{j}$ is either one of ξ_{i} or a linear combination of brackets $\left[\chi_{\mu}, f \chi_{\nu}\right]$ where $\mu, \nu<j$ and f is a linear function;
(iii) for a generic $c=\left(c_{1}, \ldots, c_{d-2}\right), \chi_{0} \wedge \cdots \wedge \chi_{d-1}$ does not vanish identically at the points of a trajectory γ of $\chi_{c}=\chi_{0}+c_{1} \chi_{1}+\cdots+c_{d-2} \chi_{d-2}$ through x.

In particular, each χ_{j} is a vector field with polynomial coefficients of degree not exceeding $\max \left(1,2^{j-1}\right) \beta$. Let $Q=\chi_{0} \wedge \cdots \wedge \chi_{d-1}$. We have

$$
Q=\sum_{i_{1}, \ldots, i_{d}} Q_{i_{1} \ldots i_{d}} \frac{\partial}{\partial x_{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x_{i_{d}}}
$$

where $Q_{i_{1} \ldots i_{d}}$ are polynomials of degree not exceeding $p=2^{d-1} \beta$. Due to (iii), some of these polynomials do not vanish identically on a trajectory γ through x of a vector field χ_{c} with polynomial coefficients of degree not exceeding $q=\max \left(1,2^{d-3}\right) \beta$. Due to Theorem 2 , the multiplicity μ of a zero of such a polynomial restricted to γ is less than

$$
\begin{equation*}
2^{2 n-1} \sum_{k=1}^{n}[p+(k-1)(q-1)]^{2 n}<2^{2 n-1} \beta^{2 n} \sum_{k=1}^{n}\left[2^{d-1}+(k-1) \max \left(1,2^{d-3}\right)\right]^{2 n} \tag{9}
\end{equation*}
$$

Each derivation of Q along χ_{c} decreases this multiplicity by 1. Hence the result of μ consecutive derivations of Q along χ_{c} does not vanish at x. From (ii), χ_{j} are linear combinations, with polynomial coefficients, of brackets of ξ_{i} of order not exceeding 2^{d-2}, and χ_{c} is a combination of brackets of ξ_{i} of order not exceeding $\max \left(1,2^{d-3}\right)$. Taking into account a formula for a derivation along χ_{c} :

$$
\partial_{\chi_{c}}\left(\chi_{0} \wedge \cdots \wedge \chi_{d-1}\right)=\sum_{i=0}^{d-1} \chi_{0} \wedge \cdots \wedge\left[\chi_{c}, \chi_{i}\right] \wedge \ldots \wedge \chi_{d-1}
$$

we see that the result of μ derivations of Q along χ_{c} is a linear combination, with polynomial coefficients, of wedge-products of vector fields which are brackets of ξ_{i} of order not exceeding

$$
\begin{equation*}
2^{d-2}+\max \left(1,2^{d-3}\right) \mu \tag{10}
\end{equation*}
$$

From (9), this order is less than (7) for $d>2$, and (8) for $d=2$. Since the result of μ derivations of Q along χ_{c} does not vanish at x, there exist d brackets of ξ_{i} of order not exceeding (10) which are linearly independent at x, hence generate L_{x}.

5. Noetherian functions

Definition 5. (Khovanskii, unpublished; see [10].) A Noetherian chain of order m and degree α is a system $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ of germs of analytic functions at the origin $\mathbf{0}$ of a complex or real n-dimensional space, satisfying

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial x_{j}}=g_{i j}(x, f(x)), \text { for } i=1, \ldots, m \text { and } j=1, \ldots, n \tag{11}
\end{equation*}
$$

where $g_{i j}$ are polynomials in x and f of degree not exceeding $\alpha \geq 1$. A function $\phi(x)=$ $P(x, f(x))$, where P is a polynomial in x and f of degree not exceeding p, is called a Noetherian function of degree p, with the Noetherian chain f.

The following two theorems can be reduced to Theorems 2 and 4 by adding m new variables corresponding to m functions of a Noetherian chain (see [1]).

Theorem 5. Let $f=\left(f_{1}, \ldots, f_{m}\right)$ be a Noetherian chain of order m and degree α, and let $\xi=\sum_{j} \phi_{j}(x) \partial / \partial x_{j}$ be a vector field with the coefficients ϕ_{j} Noetherian of degree q, with the Noetherian chain f. Let ψ be a Noetherian function of degree p, with the Noetherian chain f. Suppose that $\xi(0) \neq 0$ and that ψ does not vanish identically on the trajectory γ of ξ through 0 . Then the multiplicity of the zero of $\left.\psi\right|_{\gamma}$ at 0 is less than

$$
\begin{equation*}
\left.2^{2(n+m)-1} \sum_{k=1}^{n+m}[p+(k-1)(q+\alpha-1))\right]^{2(n+m)} \tag{12}
\end{equation*}
$$

Theorem 6. Let $f=\left(f_{1}, \ldots, f_{m}\right)$ be a Noetherian chain in \mathbb{C}^{n} or \mathbb{R}^{n} of order m and degree $\alpha \geq 1$. Let $\Xi=\left\{\xi_{i}\right\}$ be a set of vector fields with Noetherian coefficients:

$$
\xi_{i}=\sum_{j} Q_{i j}(x, f(x)) \frac{\partial}{\partial x_{j}}
$$

with $Q_{i j}$ polynomial in x and f of degree not exceeding $\beta \geq 1$. Let d be dimension of the vector space spanned by the values of the vector fields ξ_{i} and their brackets of all orders at a point x. Then degree of nonholonomy of Ξ at x is less than

$$
\begin{equation*}
2^{d-2}\left(1+2^{2(n+m)(d-2)-2}(\alpha+\beta)^{2(n+m)} \sum_{k=1}^{n+m}(k+3)^{2(n+m)}\right) \quad \text { for } d>2 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
1+2^{2(n+m)-1}(\alpha+\beta)^{2(n+m)} \sum_{k=1}^{n+m}(k+1)^{2(n+m)}, \quad \text { for } d=2 . \tag{14}
\end{equation*}
$$

Remark. The "integration over Euler characteristic" arguments allow one to obtain an effective estimate on the multiplicity of an isolated intersection defined by Noetherian functions of degree p in n variables, with a Noetherian chain of order m and degree α, in terms of n, m, α, and p. The proof is given in a joint paper of A. Khovanskii and the author [4].

References

[1] A. Gabrielov, Multiplicities of zeros of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Math. Research Letters 2 (1995), 437-451.
[2] A. Gabrielov, Multiplicities of Pfaffian Intersections and the Lojasiewicz Inequality, Selecta Mathematica, New Series 1 (1995), 113-127.
[3] A. Gabrielov, F. Jean, J.-J. Risler, Multiplicity of polynomials on trajectories of polynomial vector fields in \mathbb{C}^{3}, Singularities Symposium—Lojasiewicz 70, Banach Center Publ., vol. 44, 1998, pp. 109121.
[4] A. Gabrielov, A. Khovanskii, Multiplicities of Noetherian intersections, Geometry of Differential Equations, (Khovanskii et al, eds.), Amer. Math. Soc. Translations (2), vol. 186, 1998, pp. 119-130.
[5] A. Gabrielov, J.-M. Lion, R. Moussu, Ordre de contact de courbes intégrales du plan, CR Acad. Sci. Paris 319 (1994), 219-221.
[6] H. Hironaka, Stratification and flatness, Real and Complex Singularities, Oslo 1976 (P. Holm, ed.), Sijthoff \& Noordhoff International Publishers, 1977, pp. 199-265.
[7] Lê Dũng Tráng, Some Remarks on Relative Monodromy, Real and Complex Singularities, Oslo 1976 (P. Holm, ed.), Sijthoff \& Noordhoff International Publishers, 1977, pp. 397-403.
[8] J. Milnor, On the Betti Numbers of Real Varieties, Proc. AMS 15 (1964), 275-280.
[9] Y.V. Nesterenko, Estimates for the number of zeros of certain functions, New Advances in Transcendence Theory (A. Baker, ed.), Proc. Conf. Durham 1986, Cambridge Univ. Press, 1988, pp. 263-269.
[10] J.-C. Tougeron,, Algèbres analytiques topologiquement noethériennes, Théorie de Hovanskii, Ann. Inst. Fourier 41 (1991), 823-840.
[11] O. Viro, Some integral calculus based on Euler characteristic, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin-New York, 1988, pp. 127-138.
[12] Y. Yomdin, Oscillation of analytic curves, Proc. AMS 126 (1998), 357-364..
Department of Mathematics, Purdue University, W. Lafayette, IN 47907-1395, USA
E-mail address: agabriel@math.purdue.edu

[^0]: This research was partially supported by NSF Grant \# DMS-9704745. Part of this work was done during a visit of the author to the Fields Institute for Research in Mathematical Sciences, Toronto, Canada. The author thanks A. Khovanskii for fruitful discussions.

