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Abstract

This is a complement to our paper arXiv:0802.1461. We study irre-
ducibility of spectral determinants of some one-parametric eigenvalue
problems in dimension one with polynomial potentials.

We consider eigenvalue problems of the type

−y′′ + P (α, z)y = λy,

with the boundary condition that y(z) → 0 along appropriately chosen paths
in the complex plane (for example, at ±∞ on the real line). The potential
P is a polynomial in the independent variable z, depending on a complex
parameter α. The problems we consider have discrete spectra for all complex
α. The dependence of the eigenvalues on α is described by the equation

F (α, λ) = 0,

where F is an entire function of two variables which is called the spectral
determinant. We study irreducibility of the spectral determinant for certain
eigenvalue problems that occur in quantum mechanics.

Problems of this type were considered for the first time in [11, 12] for the
case of Mathieu equation with the boundary conditions on a finite interval.
We refer to [17, 6, 7, 8] for further development.

Our research was stimulated by the paper of Bender and Wu who dis-
covered in [3] that the spectral determinant of the even quartic oscillator
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†Supported by NSF grant DMS-0801050.
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has exactly two irreducible components. In our paper [9] we gave a com-
plete rigorous proof of this fact. It was mentioned in [9] that our method
applies to several other one-parametric families of eigenvalue problems, and
the purpose of the present paper is to give some details of these applications.

We begin with a sketch of the main result of [9] referring to that paper
for complete details.

Even quartic oscillator

1. in [9] we considered the eigenvalue problem for the even quartic oscil-
lator:

−y′′ + (z4 + αz2)y = λy, (1)

y(±∞) = 0 on the real line, (2)

where α is a complex parameter. For real α the problem is self-adjoint. The
spectrum is discrete, infinite and simple. The set

Z = {(α, λ) ∈ C2 : λ is an eigenvalue of (1), (2)}

is an analytic subset of C2.

Theorem 1 The set Z consists of two irreducible components: one for even
eigenfunctions, another for odd ones. These irreducible components are also
connected components. Moreover, the set Z is non-singular.

2. Parametrization of the set Z.
Let G be the set of all odd meromorphic functions f such that f(z) → 0

as z → ±∞ on the real line, and the Schwarzian

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

is a polynomial of degree 4 with leading coefficient −2:

−1

2
Sf (z) = z4 + αz2 − λ.

We have a map Φ : G→ C2, f 7→ (α, λ).
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Proposition 1 Φ maps G to Z surjectively.

Remark 1 If we define the equivalence relation by f1 ∼ f2 if f1 = cf2 then
Φ̃ : G/∼ → Z is a biholomorphic parametrization.

3. Sketch of the proof. We have f = y/y1 where y is an eigenfunction
(it is always even or odd), and y1 a linearly independent solution of (1) of
opposite parity. In the opposite direction: y1 = 1/

√
f ′, y = fy1. Now we

have the equivalencies:

f(z) → 0, |z| → ∞ on the real axis

⇐⇒ y is subdominant in S0, S3

⇐⇒ y is an eigenfunction

⇐⇒ λ is an eigenvalue.
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Fig 1. Stokes sectors

4. Deformation of functions in G.
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Every function f ∈ G has no critical points: f ′ = (y′y1−yy′1)/y2
1 so f ′(z) 6= 0,

and the poles are simple. Now f has 6 asymptotic tracts corresponding to
the Stokes sectors: f(z) → wj in Sj . Thus

f : C\f−1({w0, . . . , w5}) → C\{w0, . . . , w5}

is an unramified covering.

Proposition 2 Let f0 ∈ G, and let wj(t) be a centrally symmetric deforma-
tion of the asymptotic values such that

wj(0) 6= wk(0) =⇒ wj(t) 6= wk(t), t ∈ [0, 1].

Then there exists a deformation ft ∈ G for t ∈ [0, 1] such that ft(z) → wj(t)
in Sj.

5. Sketch of the proof. Let ψt : C → C be odd diffeomorphisms,
ψt(wj(0)) = wj(t). Then there exist odd diffeomorphisms φt : C → C such
that gt = ψt ◦ f0 ◦ φt are meromorphic functions in C [14]. These functions
have no critical points and 6 asymptotic tracts with asymptotic values wj(t).

For every meromorphic function with no critical points and q asymptotic
tracts, the Schwarzian Sf is a polynomial of degree q − 2 [13]. Putting
ft(z) = g(ctz) we make −(1/2)Sf monic; it is even because f is odd.

6. We may assume that

(w0, w1, w2, w3, w4, w5) = (0, i, 1, 0,−i,−1).

How to describe all f ∈ G with such asymptotic values?
Let Ψf = f−1(Ψ0), where Ψ0 is the following cell decomposition of the

Riemann sphere:
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Fig 2. Cell decomposition Ψ0.

The next figure shows how the preimage of Ψ0 may look.
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Fig 3. Cell decomposition Ψf .

Faces of Ψf are labeled by asymptotic values. Removing loops and re-
placing multiple edges of Ψf by simple edges, we obtain a tree T . This tree
has 6 faces and faces labeled 0 cannot have a common boundary edge. It is
possible to classify all such trees.
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Fig 4. Classification of trees: Ak : k ≥ 0, Dk,l : k ≥ 0, l ≥ 1,
Ek,l : k ≥ 1, l ≥ 0.
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Fig 5. Additional patterns that occur if the cyclic order of the loops of Φ0

is opposite to the cyclic order of asymptotic tracts in C.
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Propoisition 2 implies that we can continuously deform the asymptotic
values of a function in G. We consider such deformations that the configu-
ration of 5 asymptotic values describes a closed loop in the space of 5-point
configurations symmetric with respect to the origin, and the asymptotic val-
ues i and −i are interchanged. Then we compute the action of these defor-
mations on our cell decompositions of the plane, and conclude that there are
exactly two orbits.
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Fig 6. Paths s0 and s∞ used in the deformation of Ψ0.
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Fig 7. Action of s0 on Ψ0. The new loops are expressed in terms of the old
ones by the formulas

γ̂i = (γ1)
−1γiγ1, γ̂1 = γ1,

γ̂−i = (γ−1)
−1γ−iγ−1, γ̂−1 = γ−1.
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Fig 8. Action of s∞ on Ψ0. The new loops are expressed by the formulas

γ̂i = γi, γ̂1 = (γ−i)
−1γ1γ−i,

γ̂−i = γ−i, γ̂−1 = (γi)
−1γ−1γi.

11



0

0

0 0

i

-i

1

-1

0 0

i

-i1

-1

0 0

i

-i1

-1

i

1

-i

-1

0 0

i1

-i -1

’

^

G

G

T

T

G’

Fig 9. Example. Transformation of A1 to Q1,0 by the action of s0.

12



H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

HH H

H H H

H HH

H

H

H

H

H

H

A0

Q
0,0

A1 A2 A3 A4

Q
0,0

D
2,2

Q
0,2

Q
0,4

Q
1,0

Q
2,0 Q

3,0

Q
1,2

Q
2,2

Q
3,2

D
1,2

Q
1,2

D
3,2

D
1,4

D
2,4

D
3,4

Q
1,4

Q
2,4

Q
1,0

Q
2,0 Q

3,0

Q
0,2

D
1,2

Q
2,2

D
3,2

D
2,2

Q
3,2

D
0,4

D
2,4 D

3,4

Q
0,4 Q

1,4 Q
2,4

E
1,2

E
2,2

E
2,2

E
1,4

E
1,4

E
1,4

E
1,0

E
2,2

E
2,2

E
1,0

E
1,2

E
1,4

_

_

_
_

_

_ _

_

_

_

_

_

_

_

_

_

_

_ _

_ _

_ _

D
0,2

D
0,2

D
0,4

D
1,4

E
1,0

_

E
2,0

_

E
2,0

_
E

1,2

_

E
1,0

E
2,0
’

2,0 E
1,2

_

_

E

’

’

’

’

’

’

’

’

’

0

4
s

s
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This proof can be generalized to several other eigenvalue problems with
polynomial potentials depending on one parameter.

Meromorphic functions in the plane of finite order, without critical points
are called Nevanlinna functions.

This class of functions coincides with solutions of Schwarz differential
equations

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= P,

where P is a polynomial. The order of growth of f equals (degP )/2+1, and
f has exactly (degP ) + 2 asymptotic tracts.

The general solution of the Schwarz differential equation is a ratio of two
linearly independent solutions of the linear differential equation

y′′ +
1

2
Py = 0.

A Nevanlinna function is determined, up to an affine change of the inde-
pendent variable, by its asymptotic values and by certain combinatorial
information—topology of the cell decomposition of the plane obtained as
the preimage of a cell decomposition of the Riemann sphere each of whose
faces contains one asymptotic value. Two cell decompositions of the plane
are equivalent if they can be obtained one from another by a homeomorphism
of the plane preserving orientation.

Our proofs in all cases follow the same pattern. We parametrize the zero
locus of the spectral determinant by a class of Nevanlinna functions. To study
the irreducible components of this class, we move their asymptotic values to
a convenient position. Then we describe all Nevanlinna functions of our class
with these asymptotic values by some cell decompositions of the plane. All
possible cell decompositions arising in a given problem can be classified by
using some related trees. Then we study the monodromy action on the set
of these trees.
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Quasi-Exactly Solvable sextics (Turbiner-Ushveridze [15])

−y′′ + (z6 + 2αz4 + {α2 − (4m+ 2p+ 3)} z2) y = λy (3)

y(±∞) = 0 on the real line, m ≥ 0, p ∈ {0, 1}. (4)

The problem is self-adjoint for real α. There are m+ 1 “elementary” eigen-
functions

Q(z) exp(−z4/4− αz2/2),

where Q is a polynomial of degree 2m+ p.
Consider the set Zm,p of pairs (α, λ) such that λ is an eigenvalue corre-

sponding to an elementary eigenfunction of (3), (4).

Theorem 2 For each m and p the zet Zm,p is irreducible.
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Fig S1. Stokes sectors for the sextic potential

Elementary eigenfunctions are distinguished by the propery that asymp-
totic values in S0, S2, S4, S6 are equal to zero. Thus we have 5 asymptotic val-
ues. Proposition 2 permits to move them to the points (0, i, 0, 1, 0,−i, 0,−1),
and we use the cell decomposition of the Riemann sphere shown in Fig. 2.
Applying the reduction procedure illustrated in Fig. 3, we obtain centrally
symmetric trees with 8 ends, in which even-numbered faces are labeled by 0,
and none of such two faces have a common boundary edge. Next we obtain
a classification of such trees.
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The set Zm,p is an algebraic curve in C2, and the next picture shows
the critical values of its projection onto the α-plane (=branch points of the
multi-valued function λ(α)). This is a computer generated picture, and com-
putation shows that these branch points are simple. The same applies to the
branch points of the function λ(α) generated by the even quartic considered
above. We don’t know any rigorous proof of these facts about branch points.

–10

–5

5

10

–4 –2 2 4

Fig S6. Branching points for a QES sextic with m = 10, p = 0
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Rescaling

When m→∞ in (3), the problem approximates in certain sense the even
quartic oscillator (1), (2) [16]. To see this we put n = 4m+2p+3. Then the
quasi-exactly solvable equation (3) is related to

−y′′(x) + [a2x6 + 2abx4 + (b2 − an)x2]y(x) = µy(x) (5)

by the scaling z = a1/4x, b = a1/2α, λ = a1/2µ. To approximate the quartic
potential 2x4 + βx2 by the rescaled quasi-exactly solvable sextic potentials
in (5) as m → ∞, let b = n1/3(1 + sn−2/3), a = n−1/3(1 + tn−2/3). Then
α = b/a1/2 = n1/2(1 + (s− t/2)n−2/3 +O(n−4/3). Substituting expression for
a and b into (5), we get the potential

n−2/3(1+O(n−2/3))x6+2(1+(s+t)n−2/3+stn−4/3)x4+((2s−t)+s2n−2/3)x2.

Hence β = 2s− t = 2(n−1/2α− 1)n2/3 +O(n−2/3).
Figure S7 shows location of the branch points of λ(α) for the rescaled

sextic, and Figure S8, which is taken from [4] shows the same for the quartic
oscillator.
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Fig S7. Branching points for rescaled QES sextics with m = 6-10, p = 0
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Fig S8. Branching points for the quartic oscillator (Delabaere–Pham).
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PT-symmetric cubic (Delabaere-Trinh [5])

Polynomial potential P (z) is PT -symmetric if P (−z̄) = P (z).
Eigenvalue problem

−y′′ + (iz3 + iαz) y = λy, (6)

y(±∞) = 0 on the real line, (7)

is PT -symmetric for real α.
Let Z be the set of all pairs (α, λ) such that λ is an eigenvalue of (6), (7).

Theorem 3 The set Z is irreducible.
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Fig C0. Stokes sectors for the cubic potential
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Line complexes

Let f be a Nevanlinna function with q asymptotic values. Consider a cell
decomposition of the sphere with two vertices which we denote by × and
◦, with q edges each connecting these two vertices, and such that each of
the faces contains exactly one asymptotic value. The f -preimage of such cell
decomposition is called a line complex (see [10]) All possible line complexes of
Nevanlinna functions can be simply characterized: they are bipartite graphs
embedded in the plane such that the degree of each vertex is q and all faces
have either two or infinitely many boundary edges. Replacing multiple edges
of a cell complex by single edges we obtain a tree. The line complex can be
recovered from this tree.

These properties make line complexes very convenient. The reason why
we used other cell decompositions of the sphere for quartics and sextics is
that there are no line complexes for these cases having all symmetries present
in the problems.

In the case of PT-symmetric cubic we can move the asymptotic values to
the following positions: (0, 1,−1, 0,∞) (listed counterclockwise starting from
S0. The line complex is the preimage of the following cell decomposition of
the Riemann sphere:

H

-1 10

Fig C1. Cell decomposition of the sphere for the cubic
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Quasi-Exactly Solvable quartics (Bender-Boettcher [1])

The problem

−y′′ + (−z4 − 2αz2 − 2imz) y = λz, m ≥ 1 (8)

y(r eiθ) → 0 as r →∞, θ ∈ {−π/6,−π + π/6} (9)

is PT -symmetric for real α.
There are m “elementary” eigenfunctions

P (z) exp(−iz3/3− ibz)

P polynomial of degree m− 1.
Let Zm be the set of all pairs (α, λ) such that λ is an eigenvalue of (8),

(9) corresponding to an elementarey eigenfunction.

Theorem 4 For each m, the set Zm is irreducible.

There are six Stokes sectors, with S0 = {−π/3 < arg z < 0} and the
asymptotic values can be placed at the points (0,−1, 0, 1, 0,∞), listed anti-
clockwise, starting from S0.
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Fig Q0. Stokes lines for the PT quartic.
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The cell decomposition of the Riemann sphere is the same as in Fig. C1,
and its preimage is a line complex. The associated trees have five ends, and
the faces labeled with 0 have disjoint boundaries. Such trees are classified
into types A, B and C. The deformation paths are the same as for the PT-
symmetric cubic, Fig. C10.
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Fig Q4. Monodromy action for the QES quartic, m = 2

When m→∞ in (8), the quasi-exactly solvable quartics approximate the
PT symmetric cubic (6), (7) in the same sense and the quasi-exactly solvable
sextics (3), (4) approximate the quartic (1), (2).

The authors thank Alexander Turbiner for inspiring discussion of these
problems.
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