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ABSTRACT. In this paper, we generalize a recent result of A. Eremenko
and A. Gabrielov on irreducibility of the spectral discriminant for the
Schrödinger equation with quartic potentials. We consider the eigen-
value problem with a complex-valued polynomial potential of arbitrary
degree d and show that the spectral determinant of this problem is con-
nected and irreducible. In other words, every eigenvalue can be reached
from any other by analytic continuation.

We also prove connectedness of the parameter spaces of the potentials
that admit eigenfunctions satisfying k > 2 boundary conditions, except
for the case d is even and k = d/2. In the latter case, connected compo-
nents of the parameter space are distinguished by the number of zeros of
the eigenfunctions.
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1. INTRODUCTION

In this paper we study analytic continuation of eigenvalues of the
Schröodinger operator with a complex-valued polynomial potential. In
other words, we are interested in the analytic continuation of eigenvalues
λ = λ(α) of the boundary value problem for the differential equation

−y′′ + Pα(z)y = λy,(1)

where

Pα(z) = zd + αd−1z
d−1 + · · ·+ α1z where α = (α1, α2, . . . , αd−1), d ≥ 2.

The boundrary conditions are given by either (2) or (3) below. Namely, set
n = d+ 2 and divide the plane into n disjoint open sectors of the form:

Sj = {z ∈ C \ {0} : | arg z − 2πj/n| < π/n}, j = 0, 1, 2, . . . , n− 1.

These sectors are called the Stokes sectors of the equation (1). It is well-
known that any solution y of (1) is either increasing or decreasing in each
open Stokes sector Sj , i.e. y(z) → 0 or y(z) → ∞ as z → ∞ along each
ray from the origin in Sj , see [Sib75]. In the first case, we say that y is sub-
dominant, and in the second case, dominant in Sj . We impose the boundary
conditions that for two non-adjacent sectors Sj and Sk, i.e. for j 6= k ± 1
mod n :

y is subdominant in Sj and Sk.(2)

For example, y(∞) = y(−∞) = 0 on the real axis, the boundary condi-
tions usually imposed in physics for even potentials, correspond to y being
subdominant in S0 and Sn/2. The existence of analytic continuation is a
classical fact, see e.g. references in [EG09a].

The main results of this paper are:

Theorem 1. For any eigenvalue λk(α) of equation (1) and boundary condition (2),
there is an analytic continuation in the α-plane to any other eigenvalue λm(α).

We also prove some stronger results in the case where y is subdominant
in more than two sectors:

Theorem 2. Given k < n/2 non-adjacent Stokes sectors Sj1 , . . . , Sjk , the set of
all (α, λ) ∈ Cd for which the equation −y′′ + (Pα − λ)y = 0 has a solution with

y subdominant in Sj1 , . . . , Sjk(3)

is connected.

Theorem 3. For n even and k = n/2, the set of all (α, λ) ∈ Cd for which
−y′′ + (Pα − λ)y = 0 has a solution with

y subdominant in S0, S2, . . . , Sn−2(4)

is disconnected. Additionally, the solutions to (1), (3) have finitely many zeros,
and the set of α corresponding to given number of zeros is a connected component
of the former set.

The method we use is based on the “Nevanlinna parameterization” of
the spectral locus introduced in [EG09a] (see also [EG09b] and [EG10]).
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1.1. Some previous results. In the foundational paper [BW69], C. Bender
and T. Wu studied analytic continuation of λ in the complex β-plane for the
problem

−y′′ + (βz4 + z2)y = λy, y(−∞) = y(∞) = 0.
Based on numerical computations, they conjectured for the first time the
connectivity of the sets of odd and even eigenvalues. This paper generated
considerable further research in both physics and mathematics literature.
See e.g. [Sim70] for early mathematically rigorous results in this direction.

In [EG09a], which is the motivation of the present paper, the even quartic
potential Pa(z) = z4 + az2 and the boundary value problem

−y′′ + (z4 + az2)y = λay, y(∞) = y(−∞) = 0

was considered. It is known that the problem has discrete real spectrum for
real a, with λ1 < λ2 < · · · → +∞. There are two families of eigenvalues,
those with even index and those with odd. The main result of [EG09a] is
that if λj and λk are two eigenvalues in the same family, then λk can be
obtained from λj by analytic continuation in the complex α-plane. Similar
results have been obtained for other potentials, such as the PT-symmetric
cubic, where Pα(z) = (iz3 + iαz), with y(z) → 0, as z → ±∞ on the real
line. See for example [EG09b].

Remark 4. After this project was finished, the authors found out that a result
similar to Theorem 2 was proved in a hardly ever quoted Ph.D thesis, [Hab52],
page 36. On the other hand, this result is formulated in the setting of Nevanlinna
theory, with no connection to properties of (1).

1.2. Acknowledgements. The second author was supported by NSF grant
DMS-0801050. Sincere thanks to Prof. A. Eremenko for pointing out the
potential relevance of [Hab52].

The first author would like to thank the Mathematics department at Pur-
due University, for their hospitality in Spring 2010, when this project was
carried out. Also, many thanks to Boris Shapiro for being a great advisor to
the first author.

2. PRELIMINARIES

First, we recall some basic notions from Nevanlinna theory.

Lemma 5 (see [Sib75]). Each solution y 6= 0 of (1) is an entire function, and the
ratio f = y/y1 of any two linearly independent solutions of (1) is a meromorphic
function, with the following properties:

(I) For any j, there is a solution y of (1) subdominant in the Stokes sector Sj .
This solution is unique, up to multiplication by a non-zero constant,

(II) For any Stokes sector Sj , we have f(z)→ w ∈ C̄ as z →∞ along any ray
in Sj . This value w is called the asymptotic value of f in Sj .

(III) For any j, the asymptotic values of f in Sj and Sj+1 (index taken modulo
n) are different. The function f has at least 3 distinct asymptotic values.

(IV) The asymptotic value of f is zero in Sj if and only if y is subdominant in
Sj . It is convenient to call such sector subdominant as well. Note that
the boundary conditions in (2) imply that the two sectors Sj and Sk are
subdominant for f when y is an eigenfunction of (1), (2).
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(V) f does not have critical points, hence f : C → C̄ is unramified outside the
asymptotic values.

(VI) The Schwartzian derivative Sf of f given by

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

equals −2(Pα − λ). Therefore one can recover Pα and λ from f .

From now on, f always denotes the ratio of two linearly independent so-
lutions of (1), with y being an eigenfunction of the boundary value problem
(1), with conditions (2), (3) or (4).

2.1. Cell decompositions. Set n = d + 2, d = degP where P is our poly-
nomial potential and assume that all non-zero asymptotic values of f are
distinct and finite. Let wj be the asymptotic values of f, ordered arbitrarily
with the only restriction that wj = 0 if and only if Sj is subdominant. For
example, one can denote by wj the asymptotic value in the Stokes sector
Sj . We will later need different orders of the non-zero asymptotic values,
see section 2.3.

Consider the cell decomposition Ψ0 of C̄w shown in Fig. 1a. It consists of
closed directed loops γj starting and ending at∞, where the index is con-
sidered mod n, and γj is defined only if wj 6= 0. The loops γj only intersect
at ∞ and have no self-intersection other than ∞. Each loop γj contains a
single non-zero asymptotic value wj of f. For example, the boundary con-
dition y → 0 as z → ±∞ for z ∈ R for even n implies that w0 = wn/2 = 0,
so there are no loops γ0 and γn/2. We have a natural cyclic order of the as-
ymptotic values, namely the order in which a small circle around∞ coun-
terclockwise intersects the associated loops γj , see Fig. 1a.

We use the same index for the asymptotic values and the loops, which
motivates the following notation:

j+ = j + k where k ∈ {1, 2} is the smallest integer such that wj+k 6= 0.

Thus, γj+ is the loop around the next to wj (in the cyclic order mod n)
non-zero asymptotic value. Similarly, γj− is the loop around the previous
non-zero asymptotic value.

2.2. From cell decompositions to graphs. We may simplify our work with
cell decompositions with the help of the following:

Lemma 6 (See Section 3 [EG09a]). Given Ψ0 as in Fig. 1a, one has the following
properties:
(a) The preimage Φ0 = f−1(Ψ0) gives a cell decomposition of the plane Cz. Its

vertices are the poles of f, and the edges are preimages of the loops γj . These
edges are labeled by j, and are called j-edges.

(b) The edges of Φ0 are directed, their orientation is induced from the orientation
of the loops γj . Removing all loops of Φ0, we obtain an infinite, directed planar
graph Γ, without loops.

(c) Vertices of Γ are poles of f, each bounded connected component of C \ Γ con-
tains one simple zero of f, and each zero of f belongs to one such bounded
connected component.
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Figure 1: Permuting wj and wj+ in Ψ0.
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Figure 2: The correspondence between Γ, TΓ and T ∗Γ .

(d) There are at most two edges of Γ connecting any two of its vertices. Replacing
each such pair of edges with a single undirected edge and making all other
edges undirected, we obtain an undirected graph TΓ.

(e) TΓ has no loops or multiple edges, and the transformation from Φ0 to TΓ can
be uniquely reversed.

An example of the transformation from Γ to TΓ is presented in Fig. 2.
A junction is a vertex of Γ (and of TΓ) at which the degree of TΓ is at least

3. From now on, Γ refers to both the directed graph without loops and the
associated cell decomposition Φ0.

2.3. The standard order. For a potential of degree d, the graph Γ has d+2 =
n infinite branches and n unbounded faces corresponding to the Stokes
sectors. We defined earlier the ordering w0, w1, . . . , wn−1 of the asymptotic
values of f.
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If each wj is the asymptotic value in the sector Sj , we say that the as-
ymptotic values have the standard order and the corresponding cell decom-
position Γ is a standard graph.

Lemma 7 (See Prop 6. [EG09a]). If a cell decomposition Γ is a standard graph,
the corresponding undirected graph TΓ is a tree.

This property is essential in the present paper, and we classify cell de-
compositions of this type by describing the associated trees.

Below we define the action of the braid group that permute non-zero
asymptotic values of Ψ0. This induces the corresponding action on graphs.
Each unbounded face of Γ (and TΓ) will be labeled by the asymptotic value
in the corresponding Stokes sector. For example, labeling an unbounded
face corresponding to Sk with wj or just with the index j, we indicate that
wj is the asymptotic value in Sk.

From the definition of the loops γj , a face corresponding to a dominant
sector has the same label as any edge bounding that face. The label in a face
corresponding to a subdominant sector Sk is always k, since the actions
defined below only permute non-zero asymptotic values. We say that an
unbounded face of Γ is (sub)dominant if the corresponding Stokes sector is
(sub)dominant.

For example, in Fig. 2, the Stokes sectors S0 and S3 are subdominant
since the corresponding faces have label 0. We do not have the standard
order for Γ, sincew2 is the asymptotic value for S4, andw4 is the asymptotic
value for S2. The associated graph TΓ is not a tree.

2.4. Properties of graphs and their face labeling.

Lemma 8 (see [EG09a]). The following holds:
(I) Two bounded faces of Γ cannot have a common edge, since a j-edge is always

at the boundary of an unbounded face labeled j.
(II) The edges of a bounded face of a graph Γ are directed clockwise, and their

labels increase in that order. Therefore, a bounded face of TΓ can only appear
if the order of wj is non-standard.

(As an example, the bounded face in Fig. 2 has the labels 1, 2, 4 (clockwise)
of its boundary edges.)

(III) Each label appears at most once in the boundary of any bounded face of Γ.
(IV) Unbounded faces of Γ adjacent to its junction u always have the labels cycli-

cally increasing counterclockwise around u.
(V) To each graph TΓ, we associate a tree by inserting a new vertex inside each

of its bounded faces, connecting it to the vertices of the bounded face and
removing the boundrary edges of the original face. Thus we may associate
a tree T ∗Γ with any cell decomposition, not necessarily with standard or-
der, as in Fig. 2(c). The order of wj above together with this tree uniquely
determines Γ. This is done using the two properties above.

(VI) The boundary of a dominant face labeled j consists of infinitely many di-
rected j-edges, oriented counterclockwise around the face.

(VII) If wj = 0 there are no j-edges.
(VIII) Each vertex of Γ has even degree, since each vertex in Φ0 = f−1(Ψ0) has

even degree, and removing loops to obtain Γ preserves this property.
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Following the direction of the j-edges, the first vertex that is connected to
an edge labeled j+ is the vertex where the j-edges and the j+-edges meet.
The last such vertex is where they separate. These vertices, if they exist,
must be junctions.

Definition 9. Let Γ be a standard graph, and let j ∈ Γ be a junction where the
j-edges and j+-edges separate. Such junction is called a j-junction.

There can be at most one j-junction in Γ, the existence of two or more
such junctions would violate property (III) of the face labeling. However,
the same junction can be a j-junction for different values of j.

There are three different types of j-junctions, see Fig. 3.
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(c) Y -structure.

Figure 3: Different types of j-junctions.

Case (a) only appears when wj+1 6= 0. Cases (b) and (c) can only ap-
pear when wj+1 = 0. In (c), the j-edges and j+-edges meet and separate at
different junctions, while in (b), this happens at the same junction.

Definition 10. Let Γ be a standard graph with a j-junction u. A structure at the
j-junction is the subgraph Ξ of Γ consisting of the following elements:

• The edges labeled j that appear before u following the j-edges.
• The edges labeled j+ that appear after u following the j+-edges.
• All vertices the above edges are connected to.

If u is as in Fig. 3a, Ξ is called an I-structure at the j-junction. If u is as in
Fig. 3b, Ξ is called a V -structure at the j-junction. If u is as in Fig. 3c, Ξ is
called a Y -structure at the j-junction.

Since there can be at most one j-junction, there can be at most one struc-
ture at the j-junction.

A graph Γ shown in Fig. 4 has one (dotted) I-structure at the 1-junction
v, one (dotted) I-structure at the 4-junction u, one (dashed) V -structure at
the 2-junction v and one (dotdashed) Y -structure at the 5-junction u.



8 P. ALEXANDERSSON AND A. GABRIELOV

u
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w1w2
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w4 w5

Figure 4: Graph Γ with (dotted) I-structures, a (dashed) Y -structure and a
(dotdashed) Y -structure.

Note that the Y -structure is the only kind of structure that contains an
additional junction. We refer to such junctions as Y -junctions. For example,
the junction marked y in Fig. 4 is a Y -junction.

2.5. Describing trees and junctions. Let Γ be a graph with n branches,
and Λ be the associated tree with all non-junction vertices removed. The
dual graph Λ̂ of Λ, is an n-gon where some non-intersecting chords are
present. The junctions of Λ is in one-to-one correspondence with faces of Λ̂
and vice versa. Two vertices are connected with an edge in Λ̂ if and only if
the corresponding faces are adjacent in Λ.

The extra condition that subdominant faces do not share an edge, implies
that there are no chords connecting vertices in Λ̂ corresponding to subdom-
inant faces. For trees without this condition, we have the following lemma:

Lemma 11. The number of n + 1-gons with non-intersecting chords is equal to
the number of bracketings of a string with n letters, such that each bracket pair
contains at least two symbols.

Proof. See Theorem 1 in [SS00]. �

The sequence s(n) of bracketings of a string with n+1 symbols are called
the small Schröder numbers, see [SS00]. The first entries are s(n)n≥0 =
1, 1, 3, 11, 45, 197, . . . .

The condition that chords should not connect vertices corresponding to
subdominant faces, translates into a condition on the first and last symbol
in some bracket pair.

3. ACTIONS ON GRAPHS

3.1. Definitions. Let us now return to the cell decomposition Ψ0 in Fig. 1a.
Let wj be a non-zero asymptotic value of f . Choose non-intersecting paths
βj(t) and βj+(t) in C̄w with βj(0) = wj , βj(1) = wj+ and βj+(0) = wj+ ,
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βj+(1) = wj so that they do not intersect γk for k 6= j, j+ and such that the
union of these paths is a simple contractible loop oriented counterclock-
wise. These paths define a continuous deformation of the loops γj and γj+
such that the two deformed loops contain βj(t) and βj+(t), respectively,
and do not intersect any other loops during the deformation (except at∞).
We denote the action on Ψ0 given by βj(t) and βj+(t) by Aj . Basic proper-
ties of the fundamental group of a punctured plane, allows one to express
the new loops in terms of the old ones:

Aj(γk) =


γjγj+γ

−1
j if k = j

γj if k = j+

γk otherwise
, A−1

j (γk) =


γj+ if k = j

γ−1
j+
γjγj+ if k = j+

γk otherwise

Let ft be a deformation of f . Since a continuous deformation does not
change the graph, the deformed graph corresponding to f−1

1 (Aj(Ψ0)) is the
same as Γ. Let Γ′ be this deformed graph with labels j and j+ exchanged.
Then the j-edges of Γ′ are f−1

1 (Aj(γj+)) = f−1
1 (γj), hence they are the same

as the j-edges of Aj(Γ). The j+-edges of Γ′ are f−1
1 (Aj(γj)). Since γj+ =

γ−1
j Aj(γj)γj , (reading left to right) this means that a j+-edge of Aj(Γ) is

obtained by moving backwards along a j-edge of Γ′, then along a j+-edge
of Γ′, followed by a j-edge of Γ′.

These actions, together with their inverses, generate the Hurwitz (or
sphere) braid group Hm, where m is the number of non-zero asymptotic
values. For a definition of this group, see [LZ04]. The action Aj on the
loops in Ψ0 is presented in Fig. 1b.

The property (V) of the eigenfunctions implies that each Aj induces a
monodromy transformation of the cell decomposition Φ0, and of the asso-
ciated directed graph Γ.

Reading the action right to left gives the new edges in terms of the old
ones, as follows:

Applying Aj to Γ can be realized by first interchanging the labels j and
j+. This gives an intermediate graph Γ′. A j-edge of Aj(Γ) starting at the
vertex v ends at a vertex obtained by moving from v following first the j-
edge of Γ′ backwards, then the j+-edge of Γ′, and finally the j-edge of Γ′.
If any of these edges does not exist, we just do not move. If we end up at
the same vertex v, there is no j-edge of Aj(Γ) starting at v. All k-edges of
Aj(Γ) for k 6= j are the same as k-edges of Γ′.

An example of the actionA1 is presented in Fig. 5. Note thatA2
j preserves

the standard cyclic order.

3.2. Properties of the actions.

Lemma 12. Let Γ be a standard graph with no j-junction. Then A2
j (Γ) = Γ.

Proof. Since we assume d > 2, lemma 8 implies that the boundaries of the
faces of Γ labeled j and j+ do not have a common vertex. From the defi-
nition of the actions in subsection 3, the graphs Γ and Aj(Γ) are the same,
except that the labels j and j+ are permuted. Applying the same argument
again gives A2

j (Γ) = Γ. �
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Figure 5: The action A1. All sectors are dominant.

Theorem 13. Let Γ be a standard graph with a j-junction u. Then A2
j (Γ) 6=

Γ, and the structure at the j-junction is moved one step in the direction of the
j-edges underA2

j . The inverse ofA2
j moves the structure at the j-junction one step

backwards along the j+-edges.

Proof. There are three cases to consider, namely I-structures, V -structures
and Y -structures resp.
Case 1: The structure at the j-junction is an I-structure and Γ is as in Fig. 6a.
The action Aj first permutes the asymptotic values wj and wj+ , then trans-
forms the new j- and j+-edges, as defined in subsection 3. The resulting
graph Aj(Γ) is shown in Fig. 6b. Applying Aj to Aj(Γ) yields the graph
shown in Fig. 6c.
Case 2: The structure at the j-junction is a V -structure and Γ is as in Fig. 7a.
The graphs Aj(Γ) and A2

j (Γ) are as in Fig. 7b and in Fig. 7c respectively.
Case 3: The structure at the j-junction is a Y -structure and Γ is as in Fig. 8a.
The graphs Aj(Γ) and A2

j (Γ) are as in Fig. 8b and in Fig. 8c respectively.
The statement for A−2

j is proved similarly. �

Examples of the actions are given in Appendix, Figs. 16, 17 and 18.

3.3. Contraction theorems.

Definition 14. Let Γ be a standard graph and let u0 be a junction of Γ. The u0-
metric of Γ, denoted |Γ|u0 is defined as

|Γ|u0 =
∑
v

(deg(v)− 2) |v − u0|

where the sum is taken over all vertices v of TΓ. Here deg(v) is the total degree of
the vertex v in TΓ and |v − u0| is the length of the shortest path from v to u0 in
TΓ. (Note that the sum in the right hand side is finite, since only junctions make
non-zero contributions.)

Definition 15. A standard graph Γ is in ivy form if Γ is the union of the struc-
tures connected to a junction u. Such junction is called a root junction.
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Figure 6: Case 1, moving an I-structure.

Lemma 16. The graph Γ is in ivy form if and only if all but one of its junctions
are Y -junctions.

Proof. This follows from the definitions of the structures. �

Theorem 17. Let Γ be a standard graph. Then there is a sequence of actions
A∗ = A±2

j1
, A±2

j2
, . . . , such that A∗(Γ) is in ivy form.

Proof. Assume that Γ is not in ivy form. Let U be the set of junctions in Γ
that are not Y -junctions. Since Γ is not in ivy form, |U | ≥ 2. Let u0 6= u1 be
two junctions in U such that |u0− u1| is maximal. Let p be the path from u0

to u1 in TΓ. It is unique since TΓ is a tree. Let v be the vertex immediately
preceeding u1 on the path p. The edge from v to u1 in TΓ is adjacent to at
least one dominant face with label j such thatwj 6= 0. Therefore, there exists
a j-edge between v and u1 in Γ. Suppose first that this j-edge is directed
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Figure 7: Case 2, moving a V -structure.

from u1 to v. Let us show that in this case u1 must be a j-junction, i.e., the
dominant face labeled j+ is adjacent to u1.

Since u1 is not a Y -junction, there is a dominant face adjacent to u1 with
a label k 6= j, j+. Hence no vertices of p, except possibly u1 may be adjacent
to j+-edges. If u1 is not a j-junction, there are no j+-edges adjacent to u1.
This implies that any vertex of Γ adjacent to a j+-edge is further away from
u0 that u1.

Let u2 be the closest to u1 vertex of Γ adjacent to a j+-edge. Then u2

should be a junction of TΓ, since there are two j+-edges adjacent to u2 in Γ
and at least one more vertex (on the path from u1 to u2) which is connected
to u2 by edges with labels other than j+. Since u2 is further away from u0

than u1 and the path p is maximal, u2 must be a Y -junction. If the j-edges
and j+-edges would meet at u2, u1 would be a j-junction. Otherwise, a
subdominant face labeled j + 1 would be adjacent to both u1 and u2, while
a subdominant face adjacent to a Y -junction cannot be adjacent to any other
junctions.

Hence u1 must be a j-junction. By Theorem 13, the action A2
j moves

the structure at the j-junction u1 one step closer to u0 along the path p,
decreasing |Γ|u0 at least by 1.
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Figure 8: Case 3, moving a Y -structure.

The case when the j-edge is directed from v to u1 is treated similarly. In
that case, u1 must be a j−-junction, and the action A−2

j− moves the structure
at the j−-junction u1 one step closer to u0 along the path p.

We have proved that if |U | > 1 then |Γ|u0 can be reduced. Since it is a
non-negative integer, after finitely many steps we must reach a stage where
|U | = 1, hence the graph is in ivy form. �
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Figure 9: Adjacent Y - and V -structures.

Remark 18. The outcome of the algorithm is in general non-unique, and might
yield different final values of |A∗(Γ)|u0 .

Lemma 19. Let Γ be a standard graph with a junction u0 such that u0 is both
a j−-junction and a j-junction. Assume that the corresponding structures are of
types Y and V , in any order. Then there is a sequence of actions from the set
{A2

j , A
2
j− , A

−2
j , A−2

j− } that interchanges the Y -structure and the V -structure.

Proof. We may assume that the Y - and V -structures are attached to u0 coun-
terclockwise around u0, as in Fig. 9, otherwise we reverse the actions. By
Theorem 13, the action A2k

j moves the V -structure k steps in the direction
of the j-edges. Choose k so that the V -structure is moved all the way to u1,
as in Fig. 10. Then u1 becomes both a j−-junction and j-junction, with two
V -structures attached. Proceed by applying A2k

j− to move the V -structure at
the j−-junction u1 up to u0, as in Fig. 11. �

Lemma 20. Let Γ be a standard graph with a junction u0, such that u0 is both a
j−-junction and a j-junction, with the corresponding structures of type I and Y,
in any order. Then there is a sequence of actions from the set {A2

j , A
2
j− , A

−2
j , A−2

j− }
converting the Y -structures to a V -structure.

Proof. We may assume that the I- and Y -structures are attached to u0 coun-
terclockwise around u0, as in Fig. 12, otherwise, we just reverse the actions.
By Theorem 13, we can apply A−2

j− several times to move the I-structure
down to u1. (For example, in Fig. 12, we need to do this twice. This gives the con-
figuration shown in Fig. 13.) Now u1 becomes a j−-junction and a j-structure,
with the I- and V -structures attached. Applying A2k

j , we can move the
V -structure at u1 up to u0. (In our example, this final configuration is presented
in Fig. 14.) Thus the Y -structure has been transformed to a V -structure. �
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Theorem 21. Let Γ be a standard graph with at least two adjacent dominant faces.
Then there exists a sequence of actions A∗ = A±2

j1
A±2
j2
. . . such that A∗(Γ) have

only one junction.

Proof. By Theorem 17 we may assume that Γ is a graph in ivy form with
the root junction u0. The existence of two adjacent dominant faces im-
plies the existence of an I-structure. If there are only I-structures and
V -structures, then u0 is the only junction of Γ. Assume that there is at least
one Y -structure. By Lemma 19, we may move a Y -structure so that it is
counterclockwise next to an I-structure. By Lemma 20, the Y -structure can
be transformed to a V -structure, and the Y -junction removed. This can be
repeated, eventually removing all junctions of Γ except u0. �
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Figure 14: Moving the V -structure to u0

Lemma 22. Let Γ be a standard graph with a junction u0, such that u0 is both
a j−-junction and a j-junction, with two adjacent Y -structures attached. Then
there is a sequence of actions from the set {A2

j , A
2
j− , A

−2
j , A−2

j− } converting one of
the Y -structures to a V -structure.

Proof. This can be proved by the arguments similar to those in the proof of
Theorem 21. �
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Theorem 23. Let Γ be a standard graph such that no two dominant faces are
adjacent. Then there exists a sequence of actions A∗ = A±2

j1
, A±2

j2
, . . . , such that

A∗(Γ) is in ivy form, with at most one Y -structure.

Proof. One may assume by Theorem 17 that Γ is in ivy form, with the root
junction u0. Since no two dominant faces are adjacent, there are only V -
and Y -structures attached to u0. If there are at least two Y -structures,
we may assume, by Lemma 19, that two Y -structures are adjacent. By
Lemma 22, two adjacent Y -structures can be converted to a V -structure
and a Y -structure. This can be repeated until at most one Y -structure re-
mains in Γ. �

Lemma 24. Let Γ be a standard graph such that no two dominant faces are adja-
cent. Then the number of bounded faces of Γ is finite and does not change after any
action A2

j .

Proof. The bounded faces of Γ correspond to the edges of TΓ separating
two dominant faces. Since no two dominant faces are adjacent, any two
dominant faces have a finite common boundary in TΓ. Hence the number
of bounded faces of Γ is finite. Lemma 12 and Theorem 13 imply that this
number does not change after any action A2

j . �

4. IRREDUCIBILITY AND CONNECTIVITY OF THE SPECTRAL LOCUS

In this section, we prove the main results stated in the introduction. We
start with the following statements.

Lemma 25. Let Σ be the space of all (α, λ) ∈ Cd such that equation (1) admits a
solution subdominant in non-adjacent Stokes sectors Sj1 , . . . , Sjk , k ≤ (d+ 2)/2.
Then Σ is a smooth complex analytic submanifold of Cd of the codimension k− 1.

Proof. Let f be a ratio of two linearly independent solutions of (1), and
let w = (w0, . . . , wd+1) be the set of asymptotic values of f in the Stokes
sectors S0, . . . , Sd+1. Then w belongs to the subset Z of C̄d+2 where the
values wj in adjacent Stokes sectors are distinct and there are at least three
distinct values among wj . The group G of fractional-linear transformations
of C̄ acts on Z diagonally, and the quotient Z/G is a (d − 1)-dimensional
complex manifold.

Theorem 7.2, [Bak77] implies that the mappingW : Cd → Z/G assigning
to (α, λ) the equivalence class of w is submersive. More precisely, W is
locally invertible on the subset {αd−1 = 0} of Cd and constant on the orbits
of the group C acting on Cd by translations of the independent variable z.
In particular, the preimage W−1(Y ) of any smooth submanifold Y ⊂ Z/G
is a smooth submanifold of Cd of the same codimension as Y .

The set Σ is the preimage of the set Y ⊂ Z/G defined by the k− 1 condi-
tions wj1 = · · · = wjk . Hence Σ is a smooth manifold of codimension k − 1
in Cd. �

Proposition 26. Let Σ be the space of all (α, λ) ∈ Cd such that equation (1)
admits a solution subdominant in the non-adjacent Stokes sectors Sj1 , . . . , Sjk . If
at least two remaining Stokes sectors are adjacent, then Σ is an irreducible complex
analytic manifold.
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Proof. Let Σ0 be the intersection of Σ with the subspace Cd−1 = {αd−1 =
0} ⊂ Cd. Then Σ has the structure of a product of Σ0 and C induced by
translation of the independent variable z. In particular, Σ is irreducible if
and only if Σ0 is irreducible.

Let us choose a point w = (w0, . . . , wd+1) so that wj1 = · · · = wjk =
0, with all other values wj distinct, non-zero and finite. Let Ψ0 be a cell
decomposition of C̄ \ {0} defined by the loops γj starting and ending at∞
and containing non-zero values wj , as in Section 2.1.

Nevanlinna theory (see [Nev32, Nev53]), implies that, for each standard
graph Γ with the properties listed in Lemma 8, there exists (α, λ) ∈ Cd

and a meromorphic function f(z) such that f is the ratio of two linearly
independent solutions of (1) with the asymptotic values wj in the Stokes
sectors Sj , and Γ is the graph corresponding to the cell decomposition
Φ0 = f−1(Ψ0). This function, and the corresponding point (α, λ) is defined
uniquely up to translation of the variable z. We can choose f uniquely if
we require that αd−1 = 0 in (α, λ). Conditions on the asymptotic values wj
imply then that (α, λ) ∈ Σ′. Let fΓ be this uniquely selected function, and
(αΓ, λΓ) the corresponding point of Σ′.

Let W : Σ′ → Y ⊂ Z/G be as in the proof of Lemma 25. Then Σ′ is an
unramified covering of Y . Its fiber over the equivalence class of w consists
of the points (αΓ, λΓ) for all standard graphs Γ. Each actionA2

j corresponds
to a closed loop in Y starting and ending at w. Since for a given list of
subdominant sectors a standard graph with one vertex is unique, Theorem
21 implies that the monodromy action is transitive. Hence Σ′ is irreducible
as a covering with a transitive monodromy group (see, e.g., [Kho04, §5]).

�

This immediately implies Theorem 2, and we may also state the follow-
ing corollary equivalent to Theorem 1:

Corollary 27. For every potential Pα of even degree, with degPα ≥ 4 and with
the boundary conditions y → 0 for z → ±∞, z ∈ R, there is an analytic contin-
uation from any eigenvalue λm to any other eigenvalue λn in the α-plane.

Proposition 28. Let Σ be the space of all (α, λ) ∈ Cd, for even d, such that
equation (1) admits a solution subdominant in the (d + 2)/2 Stokes sectors
S0, S2, . . . , Sd. Then irreducible components Σk, k = 0, 1, . . . of Σ, which are
also its connected components, are in one-to-one correspondence with the sets of
standard graphs with k bounded faces. The corresponding solution of (1) has k
zeros and can be represented as Q(z)eφ(z) where Q is a polynomial of degree k and
φ a polynomial of degree (d+ 2)/2.

Proof. Let us choose w and Ψ0 as in the proof of Proposition 26. Repeating
the arguments in the proof of Proposition 26, we obtain an unramified cov-
ering W : Σ′ → Y such that its fiber over w consists of the points (αΓ, λΓ)
for all standard graphs Γ with the properties listed in Lemma 8. Since we
have no adjacent dominant sectors, Theorem 23 implies that any standard
graph Γ can be transformed by the monodromy action to a graph Γ0 in ivy
form with at most one Y -structure attached at its j-junction, where j is any
index such that Sj is a dominant sector. Lemma 24 implies that Γ and Γ0
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have the same number k of bounded faces. If k = 0, the graph Γ0 is unique.
If k > 0, the graph Γ0 is completely determined by k and j. Hence for each
k = 0, 1, . . . there is a unique orbit of the monodromy group action on the
fiber ofW over w consisting of all standard graphs Γ with k bounded faces.
This implies that Σ′ (and Σ) has one irreducible component for each k.

Since Σ is smooth by Lemma 25, its irreducible components are also its
connected components.

Finally, let fΓ = y/y1 where y is a solution of (1) subdominant in the
Stokes sectors S0, S2, . . . , Sd. Then the zeros of f and y are the same, each
such zero belongs to a bounded domain of Γ, and each bounded domain
of Γ contains a single zero. Hence y has exactly k simple zeros. Let Q
be a polynomial of degree k with the same zeros as y. Then y/Q is an
entire function of finite order without zeros, hence y/Q = eφ where φ is a
polynomial. Since y/Q is subdominant in (d + 2)/2 sectors, deg φ = (d +
2)/2. �

The above propisition immediately implies Theorem 3.

5. ALTERNATIVE VIEWPOINT

In this section, we provide an example of the correspondence between
the actions on cell decompositions with some subdominant sectors and ac-
tions on cell decompositions with no subdominant sectors. This correspon-
dence can be used to simplify calculations with cell decompositions. We
will illustrate our results on a cell decomposition with 6 sectors, the gen-
eral case follows immediately.

Let C6 be the set of cell decompositions with 6 sectors, none of them sub-
dominant. Let C03

6 ⊂ C6 be the set of cell decompositions such that for any
Γ ∈ C03

6 , the sectors S0 and S3 do not share a common edge in the associ-
ated undirected graph TΓ. Define D03

6 to be the set of cell decompositions
with 6 sectors where S0 and S3 are subdominant.

Lemma 29. There is a bijection between C03
6 and D03

6 .

Proof. Let Γ ∈ C03
6 be a cell decomposition, and let TΓ be the associated

undirected graph, see section 2.2. Then consider TΓ as the (unique) undi-
rected graph associated with some cell decomposition ∆ ∈ D03

6 . This is
possible since the condition that the sectors 0 and 3 do not share a common
edge in Γ, ensures that the subdominant sectors in ∆ do not share a com-
mon edge. Let us denote this map π. Conversely, every cell decomposition
∆ ∈ D03

6 is associated with a cell decomposition Γ ∈ C03
6 by the inverse

procedure π−1. �

We have previously established that H6 acts on C6 and that H4 acts on
D03

6 . Let B0, B1, . . . , B5 be the actions generating H6, as described in sub-
section 3, and letA1, A2, A4, A5 generateH4. LetH03

6 ⊂ H6 be the subgroup
generated by B1, B2B3B

−1
2 , B4, B5B0B

−1
5 , and their inverses. It is easy to

see thatH03
6 acts on elements in C03

6 and preserves this set.

Lemma 30. The diagrams in Fig. 15 commute.
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Figure 15: The commuting actions

Proof. Let (a, b, c, d, e, f) be the 6 loops of a cell decomposition Ψ0 as in
Fig. 1, looping around the asymptotic values (w0, . . . , w5). Let Ψ′0 be the
cell decomposition with the four loops (b, c, e, f), such that if Γ ∈ C03

6 is the
preimage of Ψ0, then π(Γ) is the preimage of Ψ′0. That is, the preimages of
the loops a and d in Ψ0 are removed under π.
Bj acts on Ψ0 and Aj acts on Ψ′0. (See subsection 3 for the definition.) We

have

(5) A1(b, c, e, f) = (bcb−1, e, f), A4(b, c, d, e) = (b, c, efe−1, e).

and

B1(a, b, c, d, e, f) = (a, bcb−1, d, e, f),

B4(a, b, c, d, e, f) = (a, b, c, efe−1, e, f).
(6)

Equation (5) and (6) shows that the left diagrams commute, since applying
π to the result from (6) yields (5). We also have that

(7) A2(b, c, e, f) = (b, cec−1, c, f), A5(b, c, e, f) = (f, c, e, fbf−1).

We now compute B−1
3 B2B3(a, b, c, d, e, f). Observe that we must apply

these actions left to right:

B−1
3 B2B3(a, b, c, d, e, f) = B2B3(a, b, c, e, e−1de, f)

= B3(a, b, cec−1, c, e−1de, f)

= (a, b, cec−1, c(e−1de)c−1, c, f)

(8)

A similar calculation gives

(9) B−1
0 B5B0(a, b, c, d, e, f) = (f(b−1ab)f−1, f, c, d, e, f, b, f−1),

and applying π to the results (8) and (9) give (7). �
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Remark 31. Note thatB−1
j Bj−1Bj(Γ) = Bj−1BjB

−1
j−1(Γ) for all Γ ∈ C6,which

follows from basic properties of the braid group.

The above result can be generalized as follows: Let Cn be the set of cell
decompositions with n sectors such that all sectors are dominant. Let Cl

n ⊂
Cn, l = {l1, l2, . . . , lk} be the set of cell decompositions such that for any
Γ ∈ Cl

n, no two sectors in the set Sl1 , Sl2 , . . . , Slk have a common edge in the
associated undirected graph TΓ. Let Dl

n be the set of cell decompositions
with n sectors such that the sectors Sl1 , Sl2 , . . . , Slk are subdominant. Let
{Aj}j /∈l be the n − k actions acting on Cl

n indexed as in subsection 3. Let
{Bj}n−1

j=0 be the actions on Cn. Let π : Cs
n → Ds

n be the map similar to the
bijection above, where one obtain a cell decomposition in Ds

n by removing
edges with a label in l from a cell decomposition in Cs

n. Then

(10)

{
π(Bj(Γ)) = Aj(π(Γ)) if j, j + 1 /∈ l,
π(B−1

j Bj−1Bj(Γ)) = Aj(π(Γ)), j /∈ l, j + 1 ∈ l.

Remark 32. There are some advantages with cell decompositions with no subdom-
inant sectors:

• An action Aj always interchanges the asymptotic values wj and wj+1.
• Lemma 8, item II implies TΓ have no bounded faces iff order of the asymp-

totic values is a cyclic permutation of the standard order.

6. APPENDIX

6.1. Examples of monodromy action. Below are some specific examples
on how the different actions act on trees and non-trees.
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Figure 16: Example action of A−1
4 and A−2

4 in case 1.
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Figure 17: Example action of A5 and A2
5 in case 2.
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Figure 18: Example action of A−1
5 and A−2

5 in case 3.
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