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Abstract. A link at the origin of an isolated singularity of a two-dimensional semi-

algebraic surface in R4 is a topological knot (or link) in S3. We study the connection

between the ambient Lipschitz geometry of semialgebraic surface germs in R4 and knot

theory. Namely, for any knot K, we construct a surface XK in R4 such that: the link at

the origin of XK is a trivial knot; the germs XK are outer bi-Lipschitz equivalent for

all K; two germs XK and XK′ are ambient semialgebraic bi-Lipschitz equivalent only

if the knots K and K ′ are isotopic. We show that the Jones polynomial can be used to

recognize ambient bi-Lipschitz non-equivalent surface germs in R4, even when they are

topologically trivial and outer bi-Lipschitz equivalent.

1. Introduction

We study the difference between the outer and ambient bi-Lipschitz equivalence of semi-

algebraic surface germs at the origin in R4. Two surface germs are outer bi-Lipschitz

equivalent if they are bi-Lipschitz equivalent as abstract metric spaces with the outer

metric d(x, y) = ‖x−y‖. Ambient bi-Lipschitz equivalence means that there exists a germ

of a bi-Lipschitz, orientation preserving, homeomorphism of the ambient space mapping

one of them to the other one. Note that in Singularity Theory the homeomorphism is

not required to be orientation preserving. We add this condition to be consistent with

the isotopy equivalence relation in Knot Theory. Also, to avoid confusion between the

Singularity Theory and Knot Theory notions of the link, we always write “the link at the

origin” speaking of the link of a surface germ.

If a surface germ in R4 with a connected link at the origin has an isolated singularity then

its link is a knot in S3. The results of [3] show that ambient equivalence is different from

outer equivalence even when there are no topological obstructions. This phenomenon

is called “metric knots.” We consider the following question: How different are these

equivalence relations? In the previous paper [3] we show that, for any given ambient

topological type of a surface germ, one can find infinitely many equivalence classes with
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respect to ambient bi-Lipschitz equivalence. In this paper we start by showing that the

question becomes nontrivial even when “there is no topology,” i.e., for the germs with

unknotted links at the origin. Universality Theorem (Theorem 3.1 below) implies that

the ambient bi-Lipschitz classification in this case “contains all of Knot Theory.” Namely,

for any knot K, one can construct a germ of a surface XK in R4 such that:

1. The link at the origin of XK is a trivial knot;

2. The germs XK are outer bi-Lipschitz equivalent for all K;

3. Two germs XK and XK ′ are ambient semialgebraic bi-Lipschitz equivalent only if the

knots K and K ′ are isotopic.

The second theorem (Theorem 3.5 below) states that, for each germ XK in Universality

Theorem, there are infinitely many semialgebraic surfaces XK,i satisfying Universality

Theorem, such that XK,i and XK,j are semialgebraic ambient bi-Lipschitz equivalent only

if i = j.

The proofs are based on the following results of Sampaio [11] and Valette [12].

Theorem 1.1. [11, Theorem 2.2] If (X, 0) and (Y, 0) are ambient semialgebraic bi-

Lipschitz equivalent semialgebraic germs, then their tangent cones C0(X) and C0(Y ) are

ambient semialgebraic bi-Lipschitz equivalent.

Theorem 1.2. [12, Corollary 0.2] If two semialgebraic germs (X, 0) and (Y, 0) are semial-

gebraic bi-Lipschitz homeomorphic, then there is a semialgebraic bi-Lipschitz homeomor-

phism h : (X, 0) → (Y, 0) preserving the distance to the origin.

In Section 3 we define (β1, β2)-bridges and the saddle move, closely related to the broken

bridge construction in [3]. A one-bridge surface germ is a surface germ containing a

single (β1, β2)-bridge and metrically conical outside it. The saddle move relates the metric

problem of ambient semialgebraic bi-Lipschitz equivalence of two one-bridge surface germs

in R4 with the topological problem of isotopy of two knots in S3 corresponding to the

links at the origin of the surfaces obtained from these one-bridge surface germs by the

saddle moves (see Definition 3.3). That is why topological knot invariants, such as the

Jones polynomial, yield metric knot invariants, which can be used to recognize ambient

semialgebraic bi-Lipschitz non-equivalence of surface germs.

Although one-bridge surface germs are the simplest examples of not normally embedded

surfaces, they have rather non-trivial ambient Lipschitz geometry. Another version of

Universality Theorem (Theorem 3.13 below) states that, for any two knots K and L, one

can construct a one-bridge surface germ XKL such that:

1. The link at the origin of XKL is isotopic to L;

2. For any knots K and L, all surface germs XKL are outer bi-Lipschitz equivalent;
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3. Surface germs XK1L and XK2L are ambient semialgebraic bi-Lipschitz equivalent only

if the knots K1 and K2 are isotopic.

In Section 4 we consider the Jones polynomial of the link at the origin L = LS(X) of

a surface germ S(X) obtained from a one-bridge surface germ X by the saddle move

(see Definition 3.3). Since the isotopy class of L is an ambient semialgebraic Lipschitz

invariant, its Jones polynomial becomes an ambient Lipschitz invariant of X . If X = X ′
K,i

is a “twisted” surface constructed in [3] (see also Theorem 3.5) and K is a trivial knot,

then L is a torus link. Its Jones polynomial is computed completely (see Corollary 4.2 and

Remark 4.3) and determines the number i of twists. This shows that Jones polynomial

can be used to prove ambient bi-Lipschitz non-equivalence of metric knots.

If we do not suppose the surface germ to be a one-bridge surface germ, we obtain a

stronger version of Universality Theorem (Theorem 3.14 below). It states that, for any

two knots K and L, and any two rational numbers α > 1 and β > 1, one can construct a

surface germ Xαβ
KL such that:

1. The link at the origin of Xαβ
KL is isotopic to L;

2. For a fixed knot K, the tangent link of Xαβ
KL (i.e., the intersection of the tangent cone

with the unit sphere) is isotopic to K;

3. All surface germs Xαβ
KL are outer bi-Lipschitz equivalent for fixed α and β.

All sets, functions and maps in this paper are assumed to be real semialgebraic. We use

semialgebraic bi-Lipschitz equivalence, because we refer to the theorem of Valette [12]. Our

results are also true for subanalytic bi-Lipschitz equivalence of subanalytic surface germs,

and we expect them to remain true in any polynomially bounded o-minimal structure

over R.

2. Definitions and Notations

We consider germs at the origin of semialgebraic surfaces (two-dimensional semialgebraic

sets) in R4.

Definition 2.1. A surface X can be considered as a metric space, equipped with either

the outer metric d(x, y) = ‖x − y‖ or the inner metric di(x, y) defined as the minimal

length of a path in X connecting x and y. A germ X is normally embedded if its inner

and outer metrics are equivalent.

Definition 2.2. Two germs of semialgebraic sets (X, 0) and (Y, 0) are outer bi-Lipschitz

equivalent if there exists a homeomorphism H : (X, 0) → (Y, 0) bi-Lipschitz with respect

to the outer metric. The germs are semialgebraic outer bi-Lipschitz equivalent if the map

H can be chosen to be semialgebraic. The germs are ambient bi-Lipschitz equivalent if

there exists an orientation preserving bi-Lipschitz homeomorphism H̃ : (R4, 0) → (R4, 0),
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such that H̃(X) = Y . The germs are semialgebraic ambient bi-Lipschitz equivalent if the

map H̃ can be chosen to be semialgebraic.

Definition 2.3. The link at the origin LX of a germ X is the equivalence class of the

sets X ∩ S3
0,ε for small positive ε with respect to the ambient bi-Lipschitz equivalence.

The tangent link of X is the link at the origin of the tangent cone of X .

Remark 2.4. By the finiteness theorems of Mostowski, Parusinski and Valette (see [9],

[10] and [13]) the link at the origin is well defined. We write “the link at the origin”

speaking of this notion of the link from Singularity Theory, reserving the word “link” for

the notion of the link in Knot Theory. If X has an isolated singularity at the origin then

each connected component of LX is a knot in S3.

Definition 2.5. A semialgebraic germ (X, 0) ⊂ Rn is called outer metrically conical if

there exists a germ of a bi-Lipschitz homeomorphism H : (X, 0) → C(LX), where C(LX)

is a straight cone over LX . The map H is called a conification map. A germ (X, 0) is

called ambient metrically conical if there exists a germ of a bi-Lipschitz homeomorphism

H̃ : Rn → Rn, such that H̃(X) = C(LX). The map H̃ is also called a conification map. A

germ (X, 0) is called outer (ambient) semialgebraic metrically conical if a corresponding

conification map can be chosen to be semialgebraic.

Remark 2.6. Notice that the definition makes sense for semialgebraic germs of any

dimension, not only for surface germs.

Definition 2.7. An arc in a semialgebraic germ (X, 0) is a germ of a semialgebraic embed-

ding γ : [0, ǫ) → X such that γ(0) = 0. Unless otherwise specified, arcs are parameterized

by the distance to the origin, i.e., ‖γ(t)‖ = t. We identify an arc with its image in X .

Definition 2.8. Let f 6≡ 0 be (a germ at the origin of) a semialgebraic function defined

on an arc γ. The order α of f on γ (notation α = ordγf) is the value α ∈ Q such that

f(γ(t)) = ctα + o(tα) as t→ 0, where c 6= 0. If f ≡ 0 on γ, we set ordγf = ∞.

For any two arcs γ and γ′ in X one can define two orders of contact: inner and outer.

Definition 2.9. The outer order of contact tord(γ, γ′) is defined as ordγf , where f(t) =

‖γ(t) − γ′(t)‖. The inner order of contact itord(γ, γ′) is defined as ordγg, where g(t) =

dp(γ(t), γ
′(t)). Here dp is a definable pancake metric (see [4]) equivalent to the inner metric.

These two orders of contact are rational numbers such that 1 ≤ itord(γ, γ′) ≤ tord(γ, γ′).
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Definition 2.10. Let β > 1 be a rational number. Consider the space R3 with coordinates

(x, y, z). For a fixed t ≥ 0, let Zt = {|x| ≤ t, |y| ≤ t} be a square in the (x, y)-

plane {z = t} and let Z =
⋃

t≥0 Zt. Let W
+
t be the subset of Zt bounded by the line

segment I+t = {|x| ≤ t, y = t} and the union J+
t of the two line segments connecting

the endpoints of I+t with the point (0, tβ). Let W−
t = {(x, y) : (x,−y) ∈ W+

t } and

J−
t = {(x, y) : (x,−y) ∈ J+

t }. Let Wt = W+
t ∪W−

t (shaded area in Figure 1a) and let

W =
⋃

t≥0Wt ⊂ R3. A β-bridge is the surface germ Bβ =
⋃

t≥0 J
+
t ∪ J−

t . Note that the

tangent cone of W is the set {|x| ≤ |y| ≤ z} and the tangent cone of Bβ is the surface

germ {|x| = |y| ≤ z}.
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Definition 2.11. Let 1 < β1 ≤ β2 be two rational numbers. For a fixed t ≥ 0, let

Zt = {|x| ≤ t, |y| ≤ t, z = t} and Z =
⋃

t≥0 Zt be as in Definition 2.10. In the xy-plane

{z = t} consider the points (see Figure 2)

p1(t) = (−t, t), p2(t) = (−tβ1 , tβ2), p3(t) = (tβ1 , tβ2), p4(t) = (t, t),

p′1(t) = (−t,−t), p′2(t) = (−tβ1 ,−tβ2), p′3(t) = (tβ1 ,−tβ2), p′4(t) = (t,−t).

Let us connect the points p1(t), p2(t), p3(t), p4(t) by three line segments, and define J̄+
t as

the union of these three segments. Let U+
t ⊂ Zt be the convex hull of J̄+

t . Let P
+
t be the

segment connecting the points p2(t) and p3(t). Similarly, let J̄−
t be the union of segments

connecting the points p1(t), p
′
2(t), p

′
3(t), p

′
4(t), and let U−

t be the convex hull of J̄−
t and P−

t

be the segment connecting p′2(t) with p
′
3(t). Let Pt = P+

t ∪P−
t and let P =

⋃
t≥0 Pt ⊂ R3.

Let Ut = U+
t ∪U−

t (shaded area in Figure 2), and let U =
⋃

t≥0 Ut ⊂ R3. A (β1, β2)-bridge

is the surface germ Bβ1β2 =
⋃

t≥0 J̄t, where J̄t = J̄+
t ∪ J̄−

t .

Note that the set U has the same tangent cone at the origin as W , while the tangent cone

at the origin of P is the positive z-axis. Note also that, for β1 = β2 = β, the (β, β)-bridge

is outer bi-Lipschitz equivalent to the β-bridge.

Definition 2.12. Let X be a semialgebraic surface germ in R4 with the link at the origin

homeomorphic to a circle in S3. We say that X is a one-bridge surface germ if

1. There exists a semialgebraic bi-Lipschitz C1 embedding Θ : Z → R4 such that

Θ(Bβ1β2) = X ∩Θ(Z).

2. The union X ∪Θ(Z) is normally embedded in R4 and ambient semialgebraic metrically

conical: there exist a semialgebraic bi-Lipschitz homeomorphism H̃ : R4 → R4, such that

H̃(X ∪Θ(Z)) is a straight cone.

Definition 2.13. Let α > 1 and β > 1 be rational numbers. Consider the space R3 with

coordinates (x, y, z). For a fixed t ≥ 0, let Zα
t = {|x| ≤ tα, |y| ≤ t} be a rectangle in

the (x, y)-plane {z = t}. Let W α+
t be the subset of the rectangle Zα

t bounded by the line

segment Iα+t = {|x| ≤ tα, y = t} and the union Jα+
t of the line segments connecting

the endpoints of Iα+t with the point (0, tβ). Let W α−
t = {(x, y) : (x,−y) ∈ W α+

t } and

Jα−
t = {(x, y) : (x,−y) ∈ Jα+

t }. Let W α
t = W α+

t ∪W α−
t (shaded areas in Figure 1b) and

let W α =
⋃

t≥0W
α
t ⊂ R3. An (α, β)-wedge is the surface germ Eαβ =

⋃
t≥0 J

α
t , where

Jα
t = Jα+

t ∪ Jα−
t .

Note that the tangent cone at the origin of W α is the set {(x, y, z) : x = 0; |y| ≤ z}.

Remark 2.14. We define a link diagram in the same way as it is done in Knot Theory,

choosing a generic projection of the topological link to some 2-dimensional plane in R3

(see [7] for details). Two diagrams are equivalent if they can be related by a finite sequence

of Reidemeister moves.



LIPSCHITZ GEOMETRY OF SURFACE GERMS IN R4
: METRIC KNOTS 7

The following result is a special case of the finiteness theorem of Hardt (see [6]).

Theorem 2.15. Let X be a semialgebraic surface germ. Then, for small t > 0 and for

any plane R2, such that the projections of the links X ∩ St are generic, the diagrams of

the links X ∩ St are equivalent.

Definition 2.16. Let FK ⊂ S3 be a smooth semialgebraic embedded surface diffeomor-

phic to S1 × [−1, 1], such that the two components K̃ and K̃ ′ of the boundary ∂FK of

FK are isotopic to the same knot K and the linking number (see [8]) of the components

K̃ and K̃ ′ is zero. The surface FK is called a characteristic band of the knot K. Let ỸK

and X̃K be the cones over FK and ∂FK , respectively. These cones are called characteristic

cones of the knot K.

Definition 2.17. Let (ρ, l), where ρ ∈ S1 and l ∈ [−1, 1], be coordinates in FK . Let

ξ = (ρ0, 0) be an interior point of FK . We define a slice SK = {(ρ, l) ∈ FK , |ρ− ρ0| ≤ ǫ}.

Definition 2.18. Let β > 1 be a rational number. The standard β-horn in R4 is the set

Cβ = {(x, y, z, t) ∈ R4 | t ≥ 0, x2+y2+ z2 = t2β}. The standard β-horn like neighborhood

of the positive t-axis is the set Vβ = {(x, y, z, t) ∈ R4 | t ≥ 0, x2 + y2 + z2 ≤ t2β}.

If β = 1 then C1 = {t ≥ 0, x2+y2+z2 = t2} is a cone and V1 = {t ≥ 0, x2+y2+z2 ≤ t2}

is a conical neighborhood of the positive t-axis.

The standard β-hornification Ξβ : V1 → Vβ is defined as Ξβ(x, y, z, t) = (xtβ , ytβ, ztβ , t).

For an arc γ ⊂ R4, a conical neighborhood of γ is the image V1(γ) of a semialgebraic

bi-Lipschitz map Φ : V1 → R4 such that γ is the image of the positive t-axis. A β-

horn like neighborhood of γ is Vβ(γ) = Φ(Vβ), and a β-hornification to γ is the map

Ψβ : V1(γ) → Vβ(γ) defined as Ψβ = ΦΞβ Φ
−1 (see Figure 3). We may assume, by

Valette’s theorem, that Ψβ preserves the distance to the origin. For a subset S of V1(γ),

the set Ψβ(S) is called a β-hornification of S to γ.

3. Metric Knots

.

Theorem 3.1 (Universality Theorem). Let K ⊂ S3 be a knot. Then one can associate to

K a semialgebraic one-bridge surface germ (XK , 0) in R4 so that the following holds:

1) The link at the origin of each germ XK is a trivial knot;

2) All germs XK are outer bi-Lipschitz equivalent;

3) Two germs XK1 and XK2 are ambient semialgebraic bi-Lipschitz equivalent only if the

knots K1 and K2 are isotopic.
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0 0

Y
b

Figure 3. Hornification of the cone over a knot

W

YKXK

F

v=

K

Figure 4. The links of the sets XK = ∂YK and W in the proof of Theorem 3.1.
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Proof. Let FK ⊂ S3 be a characteristic band of the knot K, and let ỸK and X̃K be

the corresponding characteristic cones (see Definition 2.16). Let SK ⊂ FK be a slice

(see Definition 2.17). Let ϕK : SK → Z1, where Z1 is the set Zt in Definition 2.10

with t = 1, be a semialgebraic bi-Lipschitz homeomorphism (ρ, l) 7→ ((ρ − ρ0)/ǫ, l).

Let MK = {tσ : t ≥ 0, σ ∈ SK} ⊂ R4 be the cone over SK . We define a mapping

ΦK :MK → Z ⊂ R3 as the corresponding mapping of the cones:

(1) ΦK(tσ) = tϕK(σ) for σ ∈ SK .

Note that ΦK is a bi-Lipschitz homeomorphism. Let W ⊂ R3 be the set in Definition

2.10, and let

(2) VK = Φ−1
K (W ), YK =

(
ỸK \MK

)
∪ VK , XK = ∂YK .

Then XK is a one-bridge surface germ, part of the surface germ X̃K inside MK being

replaced by a β-bridge Bβ (see Figure 4). Let us show that XK satisfies the conditions of

Theorem 3.1.

1) The link at the origin of XK is a trivial knot, because it bounds the closure of FK \SK

homeomorphic to a disk.

2) Let K1 and K2 be any two knots. Let Ψ : ỸK1 → ỸK2 be a semialgebraic bi-Lipschitz

map sending each point (ρ, l, t) ∈ ỸK1 to the point (ρ, l, t) ∈ ỸK2. By definition Ψ(MK1) =

MK2 . By the definition of the maps ΦK1 and ΦK2 (see (1)) we have Ψ(YK1) = YK2 and

Ψ(XK1) = XK2.

3) Note that, for any knotK, the link of the tangent cone C0XK of the set XK is the union

of two knots isotopic toK, with a single common point. Thus ifK1 andK2 are not isotopic,

then the tangent cones C0XK1 and C0XK2 are not ambient topologically equivalent. This

contradicts Sampaio’s theorem [11] (see also Theorem 1.1) which implies that tangent

cones of ambient Lipschitz equivalent semialgebraic sets are ambient Lipschitz equivalent.

In our case, the links of the tangent cones are not even ambient topologically equivalent.

This concludes the proof of Theorem 3.1. �

Definition 3.2. A surface germ XK obtained by the above construction is called a band-

bridge surface germ corresponding to the knot K and a β-bridge (or a (β1, β2)-bridge as

in the proof of Theorem 3.5 below).

Definition 3.3. Consider the (β1, β2)-bridge Bβ1β2 =
⋃

t≥0 J̄t (see Definition 2.11). The

set J̄t has two components J̄+
t and J̄−

t , each of them consisting of three line segments

connecting the points p1(t), p2(t), p3(t), p4(t) and p′1(t), p
′
2(t), p

′
3(t), p

′
4(t), respectively

(see Figure 2). Let Ĵt be the set obtained by replacing the line segments [p2(t), p3(t)] and
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Figure 5. a) The saddle move. b) The crossing move.

[p′2(t), p
′
3(t)] in J̄t with the line segments [p2(t), p

′
2(t)] and [p3(t), p

′
3(t)] (see Figure 5a).

Let Sβ1β2 =
⋃

t≥0 Ĵt. Let X be a one-bridge surface germ (see Definition 2.12). Replacing

B̃ = Θ(Bβ1β2) ⊂ X with S̃ = Θ(Sβ1β2), we obtain a new surface germ S(X). This defines

the saddle move operation applied to X .

Lemma 3.4. Let X1 and X2 be semialgebraic ambient bi-Lipschitz equivalent one-bridge

surface germs. Then the surface germs S(X1) and S(X2), obtained by the saddle move

applied to X1 and X2, are ambient topologically equivalent, the links at the origin LS(X1)

and LS(X2) are isotopic as topological links in S3, and the diagrams of the links LS(X1) and

LS(X2) are equivalent.

Proof. Let Z ⊂ R3 be as in Definitions 2.10 and 2.11. Let Θ1 : Z → R4 and Θ2 : Z → R4

be bi-Lipschitz embeddings such that B̃1 = Θ1(Bβ1β2) ⊂ X1 and B̃2 = Θ2(Bβ1β2) ⊂ X2.

Since X1 and X2 are one-bridge surfaces, we can suppose that X1∪Θ1(Z) and X2∪Θ2(Z)

are straight cones over their links. Let H : R4 → R4 be a bi-Lipschitz homeomorphism

isotopic to identity such that H(X1) = X2. By Valette’s Theorem [12] (see also Theorem

1.2) we may suppose that H preserves the distance to the origin, and that the maps Θ1

and Θ2 send each section Zt of Z to the sphere St of radius t centered at the origin.

Let P̃1 = Θ1(P ) and P̃2 = Θ2(P ), where P =
⋃

t≥0 Pt ⊂ Bβ1β2 (see Definition 2.11) and

let P̃1(t) = Θ1(Pt) = P̃1 ∩ St and P̃2(t) = Θ2(Pt) = P̃2 ∩ St. Since the tangent cone C0P

of P is the positive z-axis, the tangent cones C0P̃1 and C0P̃2 of P̃1 and P̃2 are rays in R4.

For a small positive ǫ, let Nt ⊂ St be a ball of radius ǫt centered at the point C0P̃2 ∩ St,

and let N =
⋃

t≥0Nt be a conical ǫ-neighbourhood of C0P̃2. Note that P̃2 ⊂ N ∩X2 ⊂ B̃2

for small ǫ > 0.
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Let p2(t), p
′
2(t), p3(t), p

′
3(t) be the boundary points of Pt (see Definition 2.11). Let q2(t) =

Θ1(p2(t)), q
′
2(t) = Θ1(p

′
2(t)), q3(t) = Θ1(p3(t)), q

′
3(t) = Θ1(p

′
3(t)) be the boundary points

of P̃1(t), and let v2(t) = Θ2(p2(t)), v
′
2(t) = Θ2(p

′
2(t)), v3(t) = Θ2(p3(t)), v

′
3(t) = Θ2(p

′
3(t))

be the boundary points of P̃2(t). Then q̃2(t) = H(q2(t)), q̃
′
2(t) = H(q′2(t)), q̃3(t) = H(q3(t)),

q̃′3(t) = H(q′3(t)) are the boundary points of H(P̃1(t)).

The saddle move operation applied to X1 replaces P̃1 with Q =
⋃

t≥0Qt, where Qt =

Q2(t) ∪ Q3(t), Q2(t) = Θ1([p2(t), p
′
2(t)]), Q3(t) = Θ1([p3(t), p

′
3(t)]). The saddle move op-

eration applied to X2 replaces P̃2 with V =
⋃

t≥0 Vt, where Vt = V2(t) ∪ V3(t), V2(t) =

Θ2([p2(t), p
′
2(t)]), V3(t) = Θ2([p3(t), p

′
3(t)]). Let Q̃ = H(Q), Q̃2 = H(Q2), Q̃3 = H(Q3).

Note that the boundary points q̃2(t), q̃
′
2(t), q̃3(t), q̃

′
3(t) of Q̃t are the same as the boundary

points of H(P̃1(t)), and the boundary points v2(t), v
′
2(t), v3(t), v

′
3(t) of Vt are the same

as the boundary points of P̃2(t). In particular, all these points belong to the bridge B̃2 of

X2, and to the ǫt-ball Nt (see Figure 6).

Note that tord(Q̃2, Q̃3) = tord(V2, V3) = β1 and tord(Q̃2, V2) = tord(Q̃3, V3) = β2. Con-

sider diam(V2(t)), diam(V3(t)), diam(Q̃2(t)), diam(Q̃3(t)) as functions of t. Note that the

order of all of these functions at the origin is β2. Let N2 be the family of balls N2,t on

St centered at v2(t) with the radius tβ̃ for β̃ ∈ (β1, β2), and let N3 be the family of

balls N3,t on St centered at v3(t) with the radius tβ̃ . Clearly N2,t ∩ N3,t = ∅ and also

Q̃2(t) ⊂ N2,t, V2(t) ⊂ N2,t, Q̃3(t) ⊂ N3,t, V2(t) ⊂ N3,t.

Since Q̃2(t), Q̃3(t), V2(t), V3(t) are homeomorphic to segments, there exists a homeomor-

phism H̄2 : N1 → N1 isotopic to identity, such that :

1. H̄2 maps the sections z = t to the sections z = t.

2. H̄2 is identity on the boundary of N1.

3. H̄2(H(Q̃2)) = V2.

4. The bridge B̃2 = H(B̃1) is invariant under H̄2.

Similarly, there exists a homeomorphism H̄3 : N2 → N2 isotopic to identity, such that :

1. H̄3 maps the sections z = t to the sections z = t.

2. H̄3 is identity on the boundary of N2.

3. H̄3(H(Q̃3)) = V3.

4. The bridge B̃2 = H(B̃1) is invariant under H̄3.

Then we define a homeomorphism H ′ : R4 → R4 to be equal to H outside H−1(N1 ∪N2),

to H̄2 ∗H on H−1(N1) and to H̄3 ∗H on H−1(N2), thus H
′(S(X1)) = S(X2). This proves

that S(X1) and S(X2) are ambient topologically equivalent, and the links at the origin

LS(X1) and LS(X2) are isotopic as topological links. �

Theorem 3.5. For any knot K ⊂ S3 and all integers i ≥ 0, there exist semialgebraic

surface germs (X ′
K,i, 0) in R4 such that:
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Figure 6. The images by the map H in the proof of Lemma 3.4.

1) The tangent cones at the origin of all X ′
K,i are topologically equivalent to the cone over

two knots isotopic to K with a single common point.

2) All X ′
K,i are outer bi-Lipschitz equivalent.

3) X ′
K,i and X

′
K,j are semialgebraic ambient bi-Lipschitz equivalent only when i = j.

Proof. Consider a characteristic band FK ⊂ S3, a slice SK ⊂ FK , and characteristic cones

ỸK and X̃K (see Definitions 2.16 and 2.17). We construct a band-bridge surface germ with

a (β1, β2)-bridge corresponding to K as follows. Let MK = {tσ : t ≥ 0, σ ∈ SK} ⊂ R4 be

the cone over SK (as in Theorem 3.1). Let ΦK : MK → Z ⊂ R3 be the map defined in

(1):

(3) ΦK(tσ) = tϕK(σ) for σ ∈ SK .

Note that ΦK is a bi-Lipschitz homeomorphism. For 1 < β1 ≤ β2, let U ⊂ R3 be the set

in Definition 2.11. We define

(4) V ′
K,0 = Φ−1

K (U), Y ′
K,0 =

(
ỸK , \MK

)
∪ V ′

K,0 X ′
K,0 = ∂Y ′

K,0.

The set Y ′
K,0 is obtained by replacing the set W (see Definition 2.10) with the set U in

construction of the set XK in the proof of Theorem 3.1. Let X ′
K,0 = ∂Y ′

K,0 be its boundary

(see Figure 7). This construction replaces a β-bridge in Theorem 3.1 by a (β1, β2)-bridge.

In particular, the one-bridge surface germ (X ′
K,0, 0) satisfies conditions of Theorem 3.1.

Let now F ′
K,i be the set obtained by removing the slice SK from FK , making i complete

twists and adding SK back (see Figure 8a-d). Let Y ′
K,i be the set obtained from the cone

over F ′
K,i by replacing the set MK (the cone over SK) with the set U (see Figure 8e) and

let X ′
K,i = ∂Y ′

K,i be its boundary. The same arguments as in the proof of Theorem 3.1
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U

YK,0XK,0 v=` `

Figure 7. The links of the surface X ′
K,0 = ∂Y ′

K,0 and U in the proof of

Theorem 3.5.

show that the link of X ′
K,i is a trivial knot and the tangent cone of X ′

K,i is a cone over

the union of two knots isotopic to K, pinched at one point.

We are going to prove that X ′
K,i and X ′

K,j are not semialgebraic ambient bi-Lipschitz

equivalent if i 6= j. The result of the saddle move applied to each of these surface germs

is a surface germ such that its tangent link is the union of two copies of the knot K, with

the linking number of the two copies being twice the number of complete twists. Thus

the links S(X ′
K,j) and S(X ′

K,i) are not isotopic when i 6= j. It follows from Lemma 3.4

that surface germs X ′
K,i and X

′
K,j are ambient semialgebraic bi-Lipschitz equivalent when

i 6= j.

Note that the topology of the tangent link of X ′
K,i does not depend on i. The tangent link

is formed by two copies of K pinched at one point. �

Remark 3.6. Let X ′
K,i be the surface germ constructed in the proof of Theorem 3.5.

Then the link at the origin of the surface germ S(X ′
K,i), obtained from X ′

K,i by the saddle

move, is a subset of F ′
K,i isotopic to ∂F ′

K,i.
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SK
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SK

U

U

Figure 8. Cut and twist in the proof of Theorem 3.5.

Proposition 3.7. Let X ′
K,i be a surface germ constructed in Theorem 3.5, and let S(X ′

K,i)

be the surface germ obtained by a saddle move applied to X ′
K,i. If K is a trivial knot, then

the link at the origin of S(X ′
K,i) is a torus link.

Proof. For a small ǫ > 0, the boundary of the ǫ-neighbourhood of K is an unknotted

two-dimensional torus TK ⊂ S3. One can define coordinates (φ, ψ) on TK , where φ ∈

K, ψ ∈ S1, so that the curves K̃ = {φ ∈ K, ψ = 0} and K̃ ′ = {φ ∈ K, ψ = π} have the

linking number zero. Then FK = {φ ∈ K, 0 ≤ ψ ≤ π} ⊂ TK is a characteristic band of

the knot K (see Definition 2.16) bounded by the curves K̃ and K̃ ′. If X ′
K,0 is the surface

germ constructed in Theorem 3.5, then the link at the origin of S(X ′
K,0), isotopic to the

union of K̃ and K̃ ′, is a trivial torus link.

The surgery for constructing a surface germ X ′
K,i in Theorem 3.5 (see Figure 8) corre-

sponds to the choice of a coordinate system (φ, ψi) on TK such that the band FK,i =

{φ ∈ K, 0 ≤ ψi ≤ π} ⊂ TK is bounded by the curves K̃i = {φ ∈ K, ψi = 0} and
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K̃ ′
i = {φ ∈ K, ψi = π} with the linking number 2i. Since the link at the origin of S(X ′

K,i)

is isotopic to the union of K̃i and K̃
′
i (see Remark 3.6) it is a torus link. �

Proposition 3.8. Let X1 and X2 be two one-bridge surface germs. If the germs are

ambient bi-Lipschitz equivalent, then the links of the origin LS(X1) and LS(X2) are isotopic.

Remark 3.9. Saddle move on the level of knot diagrams is described as follows:

〈 〉

is replaced by

〈 〉
.

Here we are going to define the crossing move, that will be useful for further calculations.

Definition 3.10. We proceed in a similar way to the definition of the saddle move.

Consider the subset B of a one-bridge surface X outer bi-Lipschitz equivalent to a (β1, β2)-

bridge Bβ1β2 =
⋃

t≥0 J̄t (see Definition 2.11). The set J̄t has two components J̄+
t and

J̄−
t , consisting of three line segments connecting the points p1(t), p2(t), p3(t), p4(t) and

p′1(t), p
′
2(t), p

′
3(t), p

′
4(t), respectively, in the plane {z = t, w = 0} (see Figure 2). Let us

embed this set to R4 with coordinates (x, y, z, w). Replacing the line segments [p2(t), p3(t)]

and [p′2(t), p
′
3(t)] with the line segment [p2(t), p

′
3(t)] and a circle arc in the half-space

{w ≥ 0} with the ends at p′2(t) and p3(t), orthogonal to the plane {w = 0} (see Figure 5b),

we replace the set J̄t with the set Ĵt. Let B̂β1β2 =
⋃

t≥0 Ĵt. Note that the surface germs

Bβ1β2 and B̂β1β2 have the same boundary arcs. Replacing the subset B of X with the

subset B̂ outer bi-Lipschitz equivalent to B̂β1β2 , so that B and B̂ have the same boundary

arcs, we get a new surface germ C(X). This defines a crossing move operation applied to

X .

Remark 3.11. Crossing move on the level of knot diagrams is described as follows:〈 〉
is replaced by

〈 〉
.

Remark 3.12. One can show that, for the fixed orientation on LX , the isotopy class of

the resulting knot or link is an ambient bi-Lipschitz invariant. However, in what follows

we do not need this result.

The next statement is a modification of the Universality Theorem.

Theorem 3.13. For any two knots K and L, there exists a germ of a semialgebraic

one-bridge surface germ XKL such that:

1. The link of XKL at the origin is isotopic to L.
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Figure 9. Construction of XKL

2. For a fixed knot K all surface germs XKL have isotopic tangent links. In particular,

surface germs XK1L and XK2L are ambient semialgebraic bi-Lipschitz equivalent only if

the knots K1 and K2 are isotopic.

Proof. We use the construction from the proof of Theorem 3.1. Consider a characteristic

band FK , the characteristic cones ỸK and X̃K (see Definition 2.16). Consider the surface

germ XK defined in (2) for the knot K. Let γ ⊂ XK be an arc not tangent to the set

VK defined in (2) (i.e., tord(γ′, γ) = 1 for any γ′ ⊂ VK). Let V (γ) be a small conical

neighbourhood of γ in R4, such that V (γ) ∩ XK is a Hölder triangle. Let us embed the

straight cone ZL over L inside V (γ) so that its image Z̃L does not intersect XK , and its

is ambient topologically equivalent to L. Let us choose two arcs γ1 and γ2 in XK ∩ V (γ),

and two arcs γ′1 and γ′2 in Z̃ ∩ V (γ), satisfying the following conditions:

a. tord(γ1, γ2) = tord(γ′1, γ
′
2) = 1.

b. Replacing the union of the Hölder triangles T (γ1, γ2) ⊂ XK and T (γ′1, γ
′
2) ⊂ Z̃ with the

union of Hölder triangles T (γ1, γ
′
1) ⊂ V (γ) and T (γ2, γ

′
2) ⊂ V (γ), as shown in Figure 9,

we obtain a semialgebraic set XKL such that XKL∩V (γ) is conical and its link is isotopic

to the connected sum of K and L. Note that construction of XKL is similar to the saddle

move construction in Definition 3.3.
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Let us check that the surface germ XKL satisfies conditions of Theorem 3.13.

1. Since the link of XK is unknotted, the connected sum is isotopic to L.

The proof of the fact that, for a fixed knot L, all surface germs XKL are outer bi-Lipschitz

equivalent is the same as the proof that all surface germs XK are outer bi-Lipschitz

equivalent in the proof of Theorem 3.1.

2. Since XKL is a one-bridge surface germ, its tangent link is the union of two knots with

a single common point. One of these two knots is isotopic to K, and the other one is

isotopic to the connected sum of K and L. Since the first knot is isotopic to K, condition

2 is satisfied. �

The next result is another modification of the Universality Theorem. In contrast to the

previous results, we consider surface germs with the metric structure more complicated

than one-bridge.

Theorem 3.14. For any two knots K and L, and for any two rational numbers α and β

such that 1 ≤ α ≤ β, there exists a semialgebraic surface germ Xαβ
KL such that:

1. For any knots K and L, the link at the origin of Xαβ
KL is isotopic to L.

2. For any knots K and L, the tangent link of Xαβ
KL is isotopic to K.

3. For fixed α and β, all surface germs Xαβ
KL are outer bi-Lipschitz equivalent.

Proof. Let FK ⊂ S3 be the characteristic band of a knot K (see Definition 2.16). It is

diffeomorphic to S1 × [−1, 1], and its boundary has two components K̃ and K̃ ′ isotopic

to K. Let (ρ, l), where ρ ∈ S1 and l ∈ [−1, 1], be coordinates in FK . Let ỸK and X̃K be

the corresponding characteristic cones (see Definition 2.16). Then (ρ, l, t) are coordinates

in ỸK , where t is the distance to the origin. Let Ỹ α
K be a subset of ỸK defined as follows:

Ỹ α
K = {(ρ, l, t) : |l| ≤ tα}. The set Ỹ α

K is called α-contraction of ỸK . Notice that the

tangent link of Ỹ α
K is a knot isotopic to K.

Let SK = {(ρ, l) : |ρ − ρ0| ≤ ǫ} be a slice of FK (see Definition 2.17) for a small ǫ > 0,

and let MK be the cone over SK . Let M
α
K = {(ρ, l, t) : ρ0 − ǫ ≤ ρ ≤ ρ0 + ǫ, |l| ≤ tα} be

α-contraction of MK . Replacing M
α
K by the (α, β)-wedge W αβ (see Definition 2.13 and

Figure 1b) as in the proof of Theorem 3.1, we get the set Y αβ
K . Let Xαβ

K be the boundary

of Y αβ
K .

Let γ ⊂ Xαβ
K be an arc far from the set W αβ, i.e., tord(γ, γ′) = 1 for any arc γ′ ⊂ W αβ.

Let ZL be the straight cone over L. Let Vβ(γ) ⊂ R4 be a β-horn like neighbourhood of

γ. Let Zβ
L,γ = Ψβ(ZL) ⊂ V β(γ) be a β-hornification of ZL to γ (see Definition 2.18 and
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Figure 3). Let us choose two arcs γ1 and γ2 in XK ∩ Vβ(γ), and two arcs γ′1 and γ′2 in

Zβ
L,γ ∩ Vβ(γ) satisfying the following conditions:

a. tord(γ1, γ2) = β, tord(γ′1, γ
′
2) = β.

b. If we remove from XK the Hölder triangle bounded by the arcs γ1 and γ2, remove from

Zβ
L,γ the Hölder triangle bounded by the arcs γ′1 and γ′2, and add to the set XK ∪ Z̃ the

Hölder triangle obtained as the union of line segments connecting γ1(t) and γ′1(t), and

the Hölder triangle obtained as the union of line segments connecting γ1(t) and γ
′
2(t), we

obtain a semialgebraic set Xαβ
KL with the link isotopic to the connected sum of the links

of XK and Zβ
L,γ (see Figure 9). Note that construction of Xαβ

KL is similar to construction

of XKL in the proof of Theorem 3.13 and to the saddle move construction in Definition

3.3.

Let us check that the surface germ Xαβ
KL satisfies conditions of Theorem 3.14.

1. Since Xαβ
K has a trivial link, the connected sum is isotopic to L.

2. Since ZL is a subset of a β-horn neighbourhood of γ, it corresponds to a single point

in the tangent link. Thus the tangent link of Xαβ
KL is the same as the tangent link of Xαβ

K ,

which is isotopic to K.

3. The proof of the fact that the surface germs Xαβ
KL are outer bi-Lipschitz equivalent for

a fixed L is the same as the proof that all surfaces XKL are outer bi-Lipschitz equivalent

in the proof of Theorem 3.13. �

4. Knot Invariants

In this section we make slight changes of notations. In the previous sections we used the

notation LX for the link at the origin of a surface germ X . Here we are going to use the

notation KX if the link at the origin of X is a knot, and LX if it is a topological link with

more than one component.

Let us first recall the definition of the Jones polynomial J(L) of a link L via Kauffman

bracket polynomial 〈DL〉, where DL is a link diagram of L. Kauffman bracket polynomial

[7] is a polynomial in a variable A which is uniquely determined by the following properties:

(1) Kauffman bracket on the trivial diagram equals one, i.e., 〈O〉 = 1

(2) Skein relation

〈 〉
= A

〈 〉
+ A−1

〈 〉

(3) For any link diagram DL′ we have 〈O ∪DL′〉 = (−A2 − A−2) 〈DL′〉

The Jones polynomial of an oriented link L can be defined as

J(L) = (−A3)−ω(DL) 〈DL〉 ,
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after the substitution A = t−
1
4 . Here ω(DL) is the writhe number of the diagram DL, i.e.,

the number of positive crossings minus the number of negative crossings in DL.

Proposition 4.1. Let X be a one bridge surface such that the link of X at the origin is

a knot KX . Let KC(X) be the knot, obtained from K(X) by the crossing move. Let Y be a

one-bridge germ such that the link at the origin of Y is the same knot KY = KX as the

link at the origin of X. Let S(Y ) be a germ obtained from Y by the saddle move. Suppose

that Y is such that the link at the origin of the surface S(Y ) is a 2-component link LS(Y ).

If the Jones polynomial J(KC(X)) of the knot KC(X) satisfies

J(KC(X)) 6= −t
1
2J(LS(Y )) + (−1)ω(DK′ )−ω(DK) t

3(ω(D
K′ )−ω(DK))+1

4 J(K),

where DK is a diagram of a knot K determined by X, and DK ′ is a diagram (determined

by the crossing move) of a knot KC(X) then X and Y are not semialgebraic ambient

bi-Lipschitz equivalent.

Proof. Let DK be a diagram of a knotK(X) determined by X and let DK ′ be a diagram of

a knotKC(X). Let us orientDK in an arbitrary way. We orientDK ′ so that the intersection,

corresponding to the crossing move (see Figure 10) on the diagram is positive, i.e., it looks

like

(

+

)
. Let S(X) be a germ of a surface obtained from X by a saddle move. Let DL

be the corresponding diagram of the characteristic link LS(X). We orient DL such that

the part, corresponding to the saddle move (see Figure 10) looks like

(

0

)
. Before the

substitution A = t−
1
4 we have

〈DK ′〉 = (−A3)ω(DK′ )J(KC(X)) 〈DL〉 = (−A3)ω(DL)J(LS(X)).

Now it follows from the condition (2) of the Kauffman bracket that

(−A3)ω(DK′ )J(KC(X)) = A(−A3)ω(DL)J(LS(X)) + A−1(−A3)ω(DK)J(K).

Using the fact that ω(DK ′) = ω(DL) + 1 and after the substitution A = t−
1
4 we get

(5) J(KC(X)) = −t
1
2J(LS(X)) + (−1)ω(DK′ )−ω(DK ) t

3(ω(D
K′ )−ω(DK))+1

4 J(K).

Recall that Proposition 3.8 implies that if the link LS(X) is not isotopic to the link

LS(Y ), then X and Y are not semi-algebraic ambient bi-Lipschitz equivalent. Hence if

J(LS(X)) 6= J(LS(Y )), then X and Y are not semialgebraic ambient bi-Lipschitz equiva-

lent. Now equality (5) yields the proof of the proposition. �

Corollary 4.2. If K is a trivial knot and LS(Y ) is (2, 2m)-torus link L(2, 2m), where m is

a non-negative integer, then we get the following closed formula: If the Jones polynomial
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(a)

(b) (c)

Saddle move Crossing move

Figure 10. The Saddle move and the Crossing move

J(KC(X)) of the knot KC(X) satisfies

(6) J(KC(X)) 6= tm + tm+2

(
1 + t2m−1

1 + t

)
+ (−1)ω(DK′ )−ω(DK) t

3(ω(D
K′ )−ω(DK))+1

4 ,

then X and Y are not semialgebraic ambient bi-Lipschitz equivalent.

Proof. Recall that for each n the Jones polynomial of the torus knot K(2, 2n+ 1) equals

J(K(2, 2n+ 1)) = tn
1− t3 − t2n+2 + t2n+3

1− t2
,

see e.g. [5]. The skein relation for the Jones polynomial together with the above equality

yield

(7) J(L(2, 2m)) = −t
2m−1

2 − t
2m+3

2

(
1 + t2m−1

1 + t

)
.
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Noting that if K is a trivial knot, then its Jones polynomial J(K) = 1, and applying

equalities (5) and (7) we obtain the proof of the corollary. �

Remark 4.3. The above theorem has two advantages: it has a computational value, and

as its immediate corollary we obtain the main result of Birbrair-Gabrielov [3, Theorem

4.1]. Let us illustrate this on the following example. Let X be such that it determines a

knot diagram DK which has no intersections, and after the crossing move the diagram

DK ′ has exactly one positive intersection. It follows that ω(DK ′) − ω(DK) = 1, and

J(KC(X)) = 1 since KC(X) is a trivial knot. Let Y be such that it determines a trivial

knot diagram presented in Figure 10a. The diagram of the link LS(Y ) is presented in

Figure 10b. Note that it is a (2, 2)-torus link (Hopf link). The diagram of the knot KC(Y )

is presented in Figure 10c. Note that it is a trefoil knot. Noting that m = 1 the right

hand side of equation (6) equals t3. Hence J(KC(X)) 6= t3 and thus X and Y are not

semialgebraic ambient bi-Lipschitz equivalent.
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