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Abstract

This paper introduces a multiscale analysis based on optimal piecewise linear

approximations of time series. An optimality criterion is formulated and on its base

a computationally effective algorithm is constructed for decomposition of a time

series into a hierarchy of trends (local linear approximations) at different scales.

The top of the hierarchy is the global linear approximation over the whole obser-

vational interval, the bottom is the original time series. Each internal level of the

hierarchy corresponds to a piecewise linear approximation of analyzed series. Possi-

ble applications of the introduced Multiscale Trend Analysis (MTA) go far beyond

the linear interpolation problem: This paper develops and illustrates methods of

self-affine, hierarchical, and correlation analyses of time series.

Key words: multiscale trend analysis, piecewise linear approximation, hierarchical

scaling.

1 Introduction

The motivation for the Multiscale Trend Analysis (MTA) introduced in this paper

is to describe and analyze time series in terms of their observed trends (local linear

approximations). Indeed, trends are the most intuitive feature of a time series and it

seems natural to use them for series quantitative description. Such a description is

intrinsically multiscale since each non-trivial process exhibits juxtaposition of trends of

different duration and steepness depending on the observational scale.
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The proposed analysis is based on piecewise linear approximations of the analyzed

time series. Construction of such approximations involves a tradeoff between quality and

detail. We formulate (see Sect. 2.3) a local optimality criterion and use it in a multiscale

fashion to detect local trends in a time series at all possible scales, thus forming a hierarchy

of trends. This hierarchy serves as a unique representation of the original time series and

is used for quantitative analysis.

The problem of piecewise interpolation of time series has been given significant atten-

tion in the context of image processing (see for example [1, 2, 3]). However, the focus was

on constructing an optimal piecewise linear approximation Lε(t) with minimal number

of segments for given error ε (deviation from the original signal). On the contrary, we

concentrate on finding a whole hierarchy of consecutively more detailed approximations.

This paper illustrates the following applications of MTA:

• Descriptive and exploratory data analysis. Computationally effective trend decom-

position naturally complements a standard data miner’s toolbox. Conveniently,

MTA does not rely on any assumptions about the analyzed time series (e.g. sta-

tionarity or existence of higher moments) while its results are easily interpreted

• Self-affine analysis. Particularly, MTA provides a way to extract local fractal prop-

erties of the processes.

• Hierarchical analysis. Representation of a time series as a hierarchy (tree) allows

one to use methods borrowed from the theory of hierarchical scaling complexities [4].
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Particularly, Horton-Strahler indexing provides a natural way to consider scaling

laws for trends.

• Correlation analysis. MTA allows one to detect non-linear correlations, particularly

those caused by the presence of amplitude modulation and non-linear long-term

trends.

The paper is organized as follows: Section 2 introduces the basic notions and de-

scribes the computational algorithm for decomposition of a series into a hierarchy of

trends. Methods of MTA-based self-affine analysis comprise Sect. 3. Section 4 intro-

duces hierarchical analysis of time series. Correlation analysis is described in Sect. 5.

Fractional Brownian walks and Mandelbrot cascade measures are used to illustrate meth-

ods of Sect. 3 - 5. Section 6 concludes.

2 Multiscale Trend Decomposition

The core of the MTA is construction of a hierarchical tree TX that describes the

trend structure of a given time series X(t) . Trend is defined here as a linear least square

approximation of X(t) at a subinterval of the observational time interval. The tree TX

is formed step-by-step, from the largest to the smallest scales: First, we determine the

longer trends, then look for the shorter and shorter trends against the background of

already established ones, all the way down the hierarchy of scales. The larger the scale at

which the trend is observed, the higher the level of the corresponding vertex within the
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tree. The root (top vertex) of the resulting tree TX corresponds to the global linear trend

of X(t); each internal vertex corresponds to a distinct local trend, the leaves (vertices

with no descendants) to the the elementary linear segments of the original time series

X(t): [X(ti), X(ti+1)]. The union of leaves thus coincides with X(t).

A recursive procedure for constructing the tree TX is described below.

2.1 Scheme of the decomposition

Without loss of generality we presume that the time series X(t) is observed at a finite

number of epochs within the time interval [0, 1]. At the first step the whole time series

X(t), t ∈ [0, 1] is approximated by a single trend — the linear least square fit L0(t)

(Fig. 1a).

This trend forms the vertex v0 at the level 0 (the root) of the resulting hierarchical

tree TX (Fig. 1c). It is also convenient to say that the root of TX corresponds to the

whole time interval [0, 1], and vice versa. At the next step we determine secondary

trends on the background of the first global one. For this we consider the deviation

X1(t) = X(t)− L0(t), t ∈ [0, 1] of X(t) from its linear trend L0(t) and approximate it

by a piecewise linear function L1(t) (Fig. 1b). The most delicate part of the analysis —

choosing the optimal number n0 of segments for this approximation — is described below

in Sect. 2.2. The approximation L1(t) results in partition of the time interval [0, 1] = I0

into n0 nonoverlapping subintervals I1
i = [t1i , t

1
i+1], i = 1, . . . , n0, with t11 = 0, t1n0+1 = 1.

The linear segments l1i (t) that comprise L1(t) are determined by the least square fit
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of X(t) within corresponding subintervals. They form n0 vertices v1
i , i = 1, . . . , n0 at

level 1 of the tree TX . The enclosures I1
i ⊂ I0 are reflected in the structure of the

tree TX by the fact that the vertices corresponding to subintervals I1
i are descendants

of the root, which corresponds to I0. Note that the approximation L1(t) constructed

this way is discontinuous since we do not require the ends of adjacent segments l1i (t) to

coincide. Considering continuous approximation L1(t) does not change the general idea

and applicability of the proposed technique. As can be seen from Figs. 3, 4 below in

generic cases both the approaches lead to similar results. The continuous version of the

algorithm is used in example of Fig. 17.

Repeating the above procedure at arbitrary interval I1
i from level 1 we form n1

i ternary

linear trends, each determined by the least square fit of X(t) at a subinterval I2
j ⊂ I1

i ,

j = 1, . . . , n1
i . The union of N2 =

∑n0

i=1 n
1
i such trends descending from all the trends of

level 1 form level 2 of the tree TX . To index the vertices (local trends) at level 2 we use

the natural ordering induced by the corresponding time partition: v2
i (l2i ) denotes the

vertex (trend) that corresponds to the time subinterval I2
i =

[
t2i , t

2
i+1

]
, i = 1, . . . , N2.

Repeating the same procedure at each time interval of level l, l ≥ 0 we form level

(l + 1). It consists of

Nl =
Nl−1∑
i=1

nl−1
i

subintervals (vertices). By construction, N0 = 1 and Nk < Np for k < p. The depth of

the resulting tree is denoted by L.

Each level l of the tree TX corresponds to a piecewise linear approximation Ll(t)
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of the time series X(t) as well as to the induced partition I l =
{
I l
i , i = 1, . . . , Nl

}
of

the observational interval I0. The global piecewise linear approximation Ll(t) at level

l is a union of local linear approximations lli(t), t ∈ I l
i =

[
tli, t

l
i+1

]
, i = 1, . . . , Nl, and

I0 = ∪Nl
i=1I

l
i ∀l.

By rli we denote the length of subinterval I l
i , and by eli the rms deviation of X(t) from

its linear fit lli(t) at this subinterval:

eli =

√√√√∑
t∈Il

i

(
X(t)− lli(t)

)2
. (1)

The total fitting error El at the level l is given by

E2
l =

Nl∑
i=1

(
eli

)2
=

∑
t∈I0

(
X(t)− Ll(t)

)2
. (2)

All vertices (subintervals) at a given level of TX result from the same number of

divisions of the initial interval [0, 1]. However, in many applications it is desirable to work

with approximations characterized by a similar scale of observed trends, independently of

the division history. To take this into account we consider the modified treeMX obtained

from TX by the following procedure. The first two levels of MX are the same as that of

TX . Each consecutive level is formed by division of only one of the existing subtrends

and leaving all the other unchanged. A subtrend vl
i to be divided corresponds to the

maximal improvement of the fitting quality ∆ =
(
eli

)2−∑ (
el+1

c

)2
, where c runs over the

indexes of children of the vertex i. We will call TX the topological and MX the metric

tree associated with the series X(t). To avoid excessive notations we will use the same

indexing for both the trees TX and MX stating each time which one is considered.
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2.2 Optimal piecewise linear approximation

Here we describe a procedure for finding the optimal piecewise linear approximation

L(t) of a series X(t) at a given time interval. Without loss of generality we suppose that

the interval is [0, 1]. The problem, of course, is in finding the optimal tradeoff between

the number N of linear segments within L(t) and the corresponding fitting quality E.

Clearly, the larger the number N , the better the resulting fit. Our goal is to depict by

linear segments only the most prominent large-scale trends of X(t) leaving the smaller

fluctuations for the later steps of the decomposition. To solve this problem we employ

the function

C(N,E) = − log(E/E0)

N − 1
, (3)

where E0 is the fitting error of the global linear approximation L0(t) of X(t) on [0, 1].

This function measures the quality of a piecewise linear approximation L(t;N,E) which

consists of N linear segments and has total fitting error E. The optimal approximation

L(t;N∗, E∗) corresponds to the maximum of C(N,E):

C(N∗, E∗) = max
N,E

C(N,E). (4)

Geometrically, consider the plane (N, log(E/E0)), N being the number of linear seg-

ments within a piecewise linear approximation of X(t) on [0, 1], and E the total fitting

error. The global linear approximation L0(t) at the whole interval [0, 1] corresponds to

the point p0 = (1, 0). An arbitrary piecewise approximation Li(t) corresponds to the

point pi = (Ni, log(Ei/E0)), Ni ≥ 1, Ei ≤ E0. The slope of the linear segment [p0, pi]
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shows the increase of the fitting quality per one additional segment of approximation.

By the criterion (3,4) we chose the approximation with the maximal quality increase.

With the above criterion (3,4) one can find the optimal approximation by a full search

over all possible partitions of [0, 1] by epochs of X(t) into N = 2, 3, ... subintervals.

However, the computational complexity of such an approach depends exponentially on

the number of observations so it can hardly be used in practice. In Sect. 2.3 below we

introduce an optimized search based on the idea that partition epochs should correspond

to the prominent edges of the analyzed series X(t).

2.3 Optimized search

The idea of the optimized search is to reasonably reduce the set of possible partition

epochs by considering only those at which X(t) significantly changes its slope — edge

points.

The edge points are determined by the following recursive procedure illustrated in

Fig. 2.

At the first step we choose the epochs (t1, t2) corresponding to the maximum and

minimum of the detrended function X1(t) = X(t)− L0(t), where L0(t) is a least-square

linear fit of X(t) in [0, 1]. If one of these epochs coincides with the interval boundary

(say, t1 = 0) only the remaining epoch (t2) is considered. If both these epochs coincide

with the interval boundaries, we redefine L0(t) as the line connecting X(0) and X(1)

and repeat the procedure. As a result we have one or two partition epochs within the
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initial interval; they divide it into two or three subintervals respectively. The procedure

is now repeated for each of these subintervals, producing two to six new partition epochs.

Together with already selected ones, they divide the initial interval into, respectively,

four to nine subintervals, etc. The partition stops when the predefined number (Nh − 1)

of partition epochs is collected; this corresponds to Nh subintervals.

With (Nh − 1) possible partition epochs there are
(
2Nh−1 − 1

)
ways to divide the

interval into 2, . . . , Nh subintervals. The optimal — according to (3,4) — partition can

be found by
(
2Nh−1 − 2

)
operations.

To further reduce the computation volume, we first choose the optimal one from

(Nh − 1) partitions formed by (Nh − 2) partition epochs. Next, only the (Nh − 2) epochs

that form this partition are used to find the optimal partition with (Nh − 3) partition

epochs, etc. Finally, we use criterion (3,4) to choose the optimal from (Nh−1) partitions,

each having a distinct number of subintervals ranging from 2 to Nh. This way we reduce

the number of operations to (N2
h −Nh − 2)/2.

Clearly, the above optimization may produce a piecewise function which does not

coincide with the optimal one resulting from applying the criterion (3,4) to the whole

variety of possible partitions. As such, this optimization should be considered as a com-

putationally effective approximation of the result. Extensive numerical experiments show

that it is reasonably good for a wide range of time series including fractional Brownian

motions with different Hurst exponents and self-affine processes coming from geophysical

observations.
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2.4 Examples

Here we show some examples and illustrate different ways to visualize the results of

the decomposition.

Figure 3 shows four levels, l = 0, 1, 2, and 10 of treeMX for a fractional Brownian walk

with Hurst exponent H = 0.7. Panel a) shows the analysed series X(t) and the piecewise

linear approximations Ll(t), l = 0, 1, 2, 10, while panel b) shows the four corresponding

levels of the tree MX .

One can see how the fitting quality improves with the number of linear segments:

each consecutive approximation tries to account for the most prominent variations of

X(t) adding the least possible number of new segments. For example, starting with the

three segments of the decomposition L1(t) at level 1, it is clearly more efficient to improve

the leftmost segment, which exhibits large deviations around t = 0.1, than work with the

central or rightmost one. When work is done with the largest deviation (see level 2) we

proceed to the smaller ones.

The function shown in Fig. 4a on the background of its tree MX is a sum of three

sinusoids with different frequencies.

The amplitudes are chosen in such a way that the largest fluctuations are carried at

the smallest frequency, intermediate at the second largest, and smallest at the highest

one. This structure is clearly depicted by the decomposition with each separate level

responsible for a distinct frequency (see panels b), c), and d)).

Two more examples are given in Fig. 5 where we show only the signals X(t) and the
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upper levels of their treesMX , which is enough to understand the shape of corresponding

piecewise linear approximations. Decomposition for the famous Devil’s Staircase is shown

in Fig. 5a: it gives the exact description of the staircase structure. Figure 5b shows a

decomposition for modulated oscillations with time-dependent frequency. Contrary to

the panel a) here we use color-code to depict slope changes (from downward to upward

or vice versa), not their directions. In this example one can see how the amplitude of

oscillation is reflected in the decomposition: the higher the amplitude, the higher the

level at which it is first detected.

2.5 On the numerical parameter Nh

The only numerical parameter of our algorithm is the maximal number Nh of

secondary trends (see Sect. 2.3). Large values of Nh contribute to the computational

complexity, while small values may prevent fast detection of optimal approximation and

create superfluous levels of the hierarchy TX . Numerous experiments suggest the value

Nh = 5 as the optimal tradeoff, and we use it for all experiments presented in this paper.

Clearly, with Nh = 5 we are not insured from creating unnecessary levels. For example

the division of Fig. 4b consists of 6 (> Nh = 5) linear segments, so it could not be

obtained by a single division of the original series. In fact this is level 2 of the original

hierarchy MX . Analogously, the intermediate division of Fig. 4a (see also Fig. 4c)

corresponds to level 19, and the bottom one (Fig. 4d) to level 82.

The simple procedure used to remove unnecessary levels is illustrated in Fig. 6 where
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we show the fitting error El/E0 for all levels l of the tree MX constructed for the signal

of Fig. 4a. The prominent edge points show the three levels at which saturation of the

fitting quality is reached; only these three levels are left in Fig. 4a.

If the analyzed tree has only less-than-5-fold partitions (which is the case for the

Devil’s Staircase of Fig. 5a) the above procedure is unnecessary. The properties of this

procedure and conditions for its use are beyond the scope of the present paper.

3 Self-affine analysis

In this section we demonstrate how self-affine properties of a time series are reflected

in its decomposition MX .

Recall [5, 6] that statistical properties of a self-affine time series X(t) remain the same

under the transformation 

t′ = rt,

X ′ = rHX.

(5)

That is, when one changes the observational time scale by a factor of r, the scale of

measurements should be changed by a factor of rH in order to preserve the characteristic

statistical features of X(t). The parameter H is called Hurst exponent; it is related to

the fractal dimension D of a self-affine time series as H = 2−D [6]. Accordingly, for one-

dimensional time series the Hurst exponent may take values within the range 0 < H < 1.

A useful interpretation of H comes from the character of correlations between the time

series increments: ∆i = X(ti) − X(ti−1). Negative correlations between ∆i and ∆i+1
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lead to high fluctuations of X(t) and as a result to absence of pronounced trends; this

situation corresponds to small values of Hurst exponent: H < 1/2. Positive correlations

— leading to existence of long-term trends — correspond to H > 1/2. For a process with

independent increments (e.g. Brownian walk) one has H = 1/2.

To estimate the Hurst exponent of observed time series one typically considers the

dependence of a convenient measure of its variation on the length of a corresponding

observational interval [5, 6]. In our case the appropriate variation measure can be chosen

as the fitting error El (2) of MX at level l. According to (5), for a self-affine series X(t)

we expect to observe a power-law relation

El

E0

= N−H
l = RH

l , (6)

where Nl is the number of segments at the level l, Rl = N
−1
l is their mean length.

As a model example we consider fractional Brownian walks (FBWs) with Hurst ex-

ponent in the range 0 < H < 1.

Figure 7a shows trajectories and the corresponding (Nl, El)-scalings for three FBWs

with H = 0.1, 0.5, and 0.9. Figure 7b shows the value b(H) estimated by the best linear

square fit from the relation

log(El/E0) = −b log(Nl) (7)

based on decomposition of 2100 independent FBWs; to remove statistical fluctuations we

averaged b over 100 FBWs for each value of H . As seen in Fig. 7b, the scaling (6) clearly

holds for H > 0.3; the deviations observed at the smaller values of H are due to the

fact that the corresponding FBWs become noisier and hardly display pronounced trends.
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This effect is typical for self-affine analysis (e.g., see [7]). To neglect it we consider

the integrated signal Y (t) =
∑

s≤tX(s). Estimations of the slope b(H) for integrated

FBWs are presented in Fig. 7c. The linear relation b(H) = H + 1 is now observed for

0 < H < 0.6, the change of slope compared to Fig. 7b is due to the integration procedure.

Another way to estimate H is to consider the error-length dependence for all individ-

ual linear segments comprising MX :

eli
E0

=
(
rli

)H+1/2
, l = 1, . . . , L, i = 1, . . . , Nl. (8)

The difference in the power exponents of relations (6) and (8) is explained by the fact

that the former deals with averaged statistics, while the latter deals with characteristics

of individual intervals. Figure 8 illustrates the error-length dependence (8) for FBWs

with H = 0.1 and H = 0.9.

Importantly, MTA provides a convenient basis for estimation of local Hurst exponent

H(t). Consider all the intervals from TX that cover epoch t. At each level l of TX there

is one and only one such interval; we use the index l
(t) to denote this interval and all its

characteristics. The local Hurst exponent H(t) is estimated now from the relation

el(t)
E0

=
(
rl(t)

)H(t)+1/2
, l = 1, . . . , L. (9)

Figures 9a,b show the dynamics of the local Hurst exponent for multi- and monofractals.

We use a Mandelbrot cascade measureM(0.7, 0.3; 0.3, 0.7) as a model example of a multi-

fractal (Fig. 9c), and a Brownian walk as that of a monofractal (Fig. 9d). The definition

of Mandelbrot cascade measure is given in Appendix A. Recall that monofractals are
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characterized by a single Hurst exponent (H(t) =const.), while multifractals by several

or by a whole range of possible Hurst exponents. Note that the range of H(t) variation

for the monofractal (Fig. 9b) is an order of magnitude less than that for the multifractal

(Fig. 9a).

The points
(
el(t), r

l
(t)

)
used in (9) to estimate the local Hurst exponent are extracted

from the whole set
(
eli, r

l
i

)
of (8). This suggests a method for detecting multifractality

in X(t): the larger the scattering of the points
(
eli, r

l
i

)
, the larger the probability that

the observed series is a multifractal. Formal statistical tests can be easily constructed

from this general principle based on the particular problem at hand. The character of

temporal variations of H(t) (Figs. 9a,b) can be also used in such tests. An example of

the scattering
(
eli, r

l
i

)
is shown in Fig. 10 for mono- and multifractals of Fig. 9. In this

model example the difference is obvious.

4 Hierarchical scaling

The appropriate ordering of vertices within a tree TX is very important for meaningful

description and analysis of the series X(t). The problem of such an ordering becomes

not trivial as soon as the tree is not uniform (i.e. is not formed by applying the same

deterministic division rule to each of its vertices). A befitting way to solve this problem

is given by the Horton-Strahler topological classification of ramified patterns [4, 8, 9]

illustrated in Fig. 11: One assigns orders to the vertices of the tree, starting from k = 1

at leaves (vertices with no descendants).
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The order of an internal vertex equals the maximal order m of its descendants, if they

are distinct, and m+ 1 if they are all equal. Originally introduced in geomorphology by

Horton [8] and later refined by Strahler [9], this classification is shown to be inherent in

various geophysical, biological, and computational applications [4, 10, 11, 12].

As a result of the Horton-Strahler indexing of the tree TX , each of its vertices is

characterized by an order k, length r of the corresponding partition interval, and the

error e of the linear least square fit of X(t) on this interval. The scaling behavior of X(t)

can be described by the exponents of the relations:

N(k) ∼ 10−BNk; R(k) ∼ 10BRk; E(k) ∼ 10BEk. (10)

Here N(k) is the number of vertices of order k, R(k) and E(k) are the values of r and e

averaged over the vertices of order k.

The relation between the number N(k) of vertices of order k and their average length

R(k) determines the fractal dimension d of the tree TX [10]:

N(k) = R(k)−d. (11)

Combining (10) and (11) we find:

d =
BN

BR
. (12)

The structure of the tree TX can be considered at different levels of detail: First, one

can consider only the topological structure (Fig. 12a), where the position of each vertex

is uniquely determined by its parent (the nearest vertex placed closer to the root); and

any permutation of siblings (the vertices with the same parent) does not change the tree.
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Each vertex is characterized by its Horton-Strahler index, and the only constraint on a

tree resulting from MTA is the maximal possible number Nh of siblings, that is subtrends

within a given trend. Next, one can add the information on interval partition (Fig. 12b):

The siblings become ordered according to the partition of the interval corresponding

to their parent. Each vertex vi is additionally characterized by the length ri and the

following conservation law holds:

ri =
∑
rc, (13)

where c runs over the indexes of the children of the element i.

Finally, (Fig. 12c) one considers error characteristics ei, which describe the quality

of the linear fit of X(t) within the corresponding time interval. In terms of these errors

the system becomes dissipative:

ei ≥
∑
ec, (14)

with the same meaning of subindexes as in (13).

The exponents BN,R,E of (10) reflect different statistical properties of the tree TX :

BN describes its topological structure while BR and BE relate to the metric structures

based, respectively, on properties of interval partition (r-metric) and piecewise linear fit

(e-metric).

For illustration we again use FBWs with different Hurst exponent.

Figure 13 shows the dependence of the exponents BN,L,E on the Hurst exponent

0 ≤ H ≤ 1. The estimations are averaged over 100 FBWs for each value of H . The

exponents BN and BR are nearly constant: BN ≈ 0.52, BR ≈ 0.57, while for the exponent
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BE we observe the linear dependence:

BE = 0.7 +H ≈ log10(5) +H. (15)

These results have an important interpretation: All FBWs with Hurst exponent in the

range 0 ≤ H ≤ 1 have the same topological and r-metric structures in terms of MTA tree

TX . Particularly, trees TX corresponding to different H have the same fractal dimension

d = BN/BR ≈ 0.9. The only characteristic that depends on the Hurst exponent is the

fitting error (e-metric), that is the degree of variation of X(t) within a given interval.

5 Correlation analysis

One of the important applications of MTA is correlation analysis of time series.

The major drawback of classical correlation analysis is that interpretation of its results

may be completely ruined by the presence of long-term trends and/or modest amplitude

modulations of signals. The MTA can naturally avoid these problems by depicting the

essential local properties of the analyzed series.

We start this section by introducing two measures of similarity for time series. One

is based solely on the time interval partition induced by MX ; another takes into account

the directions (upward vs. downward) of local trends.
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5.1 Distance between partitions

Each level l of the tree MX (Sect. 2) corresponds to a partition of the time interval

[0, 1] into Nl nonoverlapping subintervals. Since each of these subintervals corresponds

to a distinct observed trend of the series X(t), the problem of comparison of two such

partitions naturally arises. Below we introduce the distance between two partitions.

Consider the space Ω of finite partitions of the unit interval [0, 1]. Each partition

A is defined by a finite number nA of points; the boundaries 0 and 1 are included in all

partitions:

A = {0 = a0 < a1 < . . . < anA
< anA+1 = 1}.

The trivial partition U consists only of boundary points: U = {0, 1}.

For A,B ∈ Ω we say that B is a subpartition of A (B ⊂ A) if all points from A are

among points from B; this imposes a partial order on Ω. A union A ∪ B is defined as

the partition consisting of the points included in either A or B, without repetitions. An

intersection A∩B is defined as the partition consisting of points included in both A and

B.

An asymmetric distance m(A,B) from A to B (A,B ∈ Ω) can be defined as

m(A,B) =
nA∑
i=1

min
0≤j≤nB+1

{|ai − bj |}, (16)

which gives for the trivial partition

m(A,U) ≡ m(A) =
nA∑
i=1

min{ai, 1− ai}
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The distance (16) is interpreted as the minimal correction to A that makes B its subpar-

tition: B ⊂ A′, where A′ stands for the corrected version of A.

The following properties of m(A,B) follow directly from the definition (16):

1. 0 ≤ m(A,B) <∞;

2. m(A,B) = 0 iff B ⊂ A;

3. Additivity with respect to A: m(A1 ∪ A2, B) = m(A1, B) +m(A2, B);

4. Monotonicity with respect toB (the triangle inequality): m(A,B1∪B2) ≤ m(A,B1)+

m(A,B2).

It is convenient to consider the symmetric function

µ(A,B) = max{m(A,B), m(B,A)}, (17)

whose small values signal that the partitions A and B are similar. Note that µ is not a

distance since it does not satisfy the triangle inequality. The reciprocal µ−1 may serve

as a measure of partition correlation.

5.2 Slope sign correlation

Here we introduce the correlation function that describe similarity between two

piecewise linear approximations L1(t) and L2(t) of X(t), t ∈ [0, 1]. (We use upper

indexes in order not to mix these arbitrary approximations with L1(t), and L2(t) at the

first and second levels of the decomposition.) This correlation function is based on the
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coarse information about trends from Li(t): We take into account only their directions

— upward vs. downward.

First, we introduce the signed partitions P1 and P2 of the interval [0, 1]. They are

formed by the intervals of constant sign of the slope of Li(t), i = 1, 2 (see Fig. 14a).

A subinterval from Pi is assigned the sign ”+” if the corresponding trend of Li(t) is

upward, and ”–” if it is downward. Second, we define the signed partition P as a union of

Pi, i = 1, 2 with the signs determined by multiplication of the signs of the corresponding

subintervals from Pi (Fig. 14b). As a result, the positive intervals of P correspond to

matching (up to direction) trends of L1 and L2, while negative to unmatching ones.

Each subinterval I of the partition P is formed by intersection of two subintervals

Ii ∈ Pi, i = 1, 2; two general variants of such an intersection are shown in Fig. 14c. A

subinterval I is assigned a triplet (a, b, c) defined as shown in Fig. 14c: b is the length

of the intersection I1 ∩ I2, while a and c are the lengths of those parts of Ii that are not

included in the intersection. The triplet is normalized: a + b + c = 1. It describes how

good is the matching of intervals Ii: the meaning of b is clear; the best matching for a

given b corresponds to the case when the intervals’ ends coincide, that is to a · c = 0.

The matching quality can be reflected in the weight

w =
(1− b) log(1− b)
a log(a) + c log(c)

=
(a+ c) log(a+ c)

a log(a) + c log(c)
, (18)

lying within the range 0 ≤ w ≤ 1.

The correlation function r(L1, L2) is now defined as

r(L1, L2) =
∑
k

rk · wk. (19)
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Here the summation is taken over all the subintervals of the signed partition P ; rk denotes

the signed length of the kth subinterval, wk is the corresponding weight (18).

The measure (19) is intentionally crude: it does not distinguish between steepness

of the trends. More elaborate correlations can be easily defined following the scheme

outlined above. Nevertheless, as we show in Sect. 5.3 below, even the roughest measure

(16) is very effective in detecting non-linear correlations.

5.3 Examples

This section illustrates applications of the correlation analysis in the presence of

long-term nonlinear trends and amplitude modulations.

5.3.1 Detection of correlation

Figure 15 displays the trajectories of two processes Fi(t), i = 1, 2 coupled by the

common underlying phenomenon which — by and large — makes them change their

intermediate-scale trends synchronically. The most striking similarity between Fi(t) is

observed at the intervals [0, 0.1] and [0.2, 0.55]. Also we note the synchronous peaks

around t = 0.675, 0.775, 0.975 (more pronounced for F1(t).) At the same time, the

coupling phenomenon is not a primary one in shaping the dynamics of Fi(t), so their

overall outlooks are still quite dissimilar. In such situations one is interested in detection

and proper quantification of the observed non-linear coupling. The problem of such a

quantification constitutes an important part of modern analysis of time series.
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MTA suggests an effective way of solving this problem by comparing the trend struc-

tures of observed series at different scales. We decompose the observations Fi(t) into trees

Mi and calculate the distance µ (17) between different levels of these decompositions.

The reciprocal µ−1 of the distance between the signals Fi(t) is plotted as the function of

the decomposition levels li, i = 1, 2 in Fig. 16a.

The diagonal ridge indicates pairs of levels with similar trend structures. The promi-

nent upwell observed at the medium scales — 15 ≤ l1 ≤ 18, 14 ≤ l2 ≤ 17 — signals

that this range is responsible for the observed coupling. The maximum µ−1 = 4.6 cor-

responds to the levels l1 = 15, l2 = 14; we will refer to them as levels of maximal

correlation (LMC). The piecewise linear approximations of Fi(t) corresponding to the

LMC are shown in Fig. 17. They clearly accentuate the observed coupling.

A typical shape of µ−1 for uncoupled time series is shown for comparison in Fig.

16b. The diagonal ridge is still observed, though it is more blurred. Existence of such

a ridge is explained by the fact that partitions with a similar number of segments, even

non-matching ones, are closer to each other in the sense of (17) than partitions with

significantly different number of segments. Comparing Figs. 16a and b we conclude

that the upwell observed in panel a is not a random one and is due to the correlation

between the signals. A formal statistical test for establishing the significance of the

observed peaks of µ−1 can be constructed. The easiest way is to use a bootstrap approach:

simulate a large number of uncorrelated processes (e.g. Brownian walks) and evaluate

the distribution of values of µ−1. Then the value of observed peak can be tested against



Multiscale Trend Analysis 24

the null hypothesis of uncorrelated walks using the bootstrap distribution of peaks.

5.3.2 Quantification of detected correlation

As was shown in the previous section, MTA allows one to estimate non-linear correla-

tions between signals; the value µ−1 may be considered as a measure of such correlation.

Here we show how to evaluate the functional form of the coupling phenomenon respon-

sible for the correlation detected.

To pose the problem formally, suppose that the observations Fi(t), i = 1, 2 are formed

by applying amplitude modulations Ai(t) and adding non-linear trends Ti(t) to the same

base signal X(t):

Fi(t) = Ai(t) ·X(t) + Ti(t) + ξi(t), i = 1, 2. (20)

Here ξi(t) are measurement errors. In this model the correlation between signals Fi(t) is

due totally to the X(t). The first problem is to reconstruct trends Ti(t) and modulated

signals Ai(t) ·X(t) given the observations Fi(t). Clearly, for reliable reconstruction one

has to assume an appropriate rate of variation for the trends as well as a reasonably

small noise-to-signal ratio. In practice, we assume that such conditions are satisfied if

significant coupling has been detected by the correlation analysis of Sect. 5.3.1.

The idea of reconstruction is that the correlated parts Ai ·X(t) should be described

by the LMC of Mi (see Sect. 5.3.1). Accordingly, the trends Ti(t) should be described

by the higher-scale (less detailed) levels.

As a model example we again use the series of Fig. 15; in fact, they are produced by
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the model (20) with

X(t) = sin (400πt(t− 0.5)(t− 0.7)(t− 1)) ;

T1(t) = 5 sin
(
4πt3/2

)
;

T2(t) = −5 cos
(
2πt3/2

)
;

A1(t) = exp(2t);

A2(t) = 2 exp (−t/3) . (21)

The measurement errors ξi(t) are modeled by independent Brownian walks so they also

represent random drifts. The series Fi(t) together with their components (21) are shown

in Fig. 18.

The trends Ti(t) + ξi(t) are estimated by the piecewise linear functions T̂i, formed

by the parents of the vertices at the LMC, l1 = 15, l2 = 14. In other words, each of

the linear segments at the levels li should be formed by a single non-trivial partition

of one of the trends of T̂i. By single we mean that this is a one-time partition by the

rules described in Sect. 2; by non-trivial — that each segment is divided into more than

one subsegment. The modulated signals Ai(t) · X(t) are estimated then as ÂiXi(t) =

(
Fi(t)− T̂i(t)

)
, i = 1, 2.

The quality of these estimations is illustrated in Fig. 19 where we show real vs.

estimated modulated signals AiXi(t). The estimations are almost perfect at the intervals

[0, 0.1] and [0.2, 0.55], (cf. Fig. 15 and its discussion in Sect. 5.3.1.) Generally, we catch

well the oscillatory structure of the signals; that is their time-dependent frequencies and

directions (upward vs. downward), while the amplitude estimation is less precise.
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The estimations of Fig.19 can be further improved by means of various kernel smooth-

ing techniques. MTA results can be used for optimization of the time-dependent kernel

width.

With additional assumptions about the rate of variation for Ai(t) one may pose the

problem of reconstructing X(t) given two, or more, modulated versions Ai(t)·X(t). Using

the epochs assigned to the summands of (16) (say, ai), one may analyze time-dependent

correlations within Fi(t). Clearly, the entire analysis can be repeated with the correlation

(19) as a measure of trend similarity.

6 Discussion

The methods developed in this paper are based on the computational technique

(see Sect. 2) for solving the linear interpolation problem for time series. This problem

includes two principal difficulties. The first is a fundamental one: a tradeoff between

the quality of a possible approximation and its detail. The second difficulty is purely

computational: There are (n − 2)!/(n − 1 − k)!(k + 1)! ways to construct a piecewise

linear approximation with a given number k of segments and n observational epochs.

Clearly, the search for the optimum over all possible approximations is unacceptable for

operational use, and computationally effective algorithms are to be invented. Here we

resolve the first difficulty by introducing the optimality criterion (3,4) of Sect. 2.2, and

the second by replacing the original time series with its ”skeleton” that includes only

the edge points defined in Sect. 2.3. The whole analysis is then done hierarchically,
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in a multiscale self-similar fashion. This contributes to computational efficiency as well

as to the imprecision of the final result, since the errors made in the first steps of the

decomposition may affect all the consecutive steps. It would therefore be interesting to

study a) deviations of the MTA approximations from the optimal (in a squared deviation

sense) piecewise linear approximations with the same number of segments, and b) the

history of the first-step errors.

The procedure for edge point detection is introduced here (Sect. 2.3) in its simplest

(not to say most naive) form and is subject to further improvement. Nevertheless, even

in its present form, the MTA has the potential to be an effective tool for solving a

wide specrtrum of applied problems, ranging from exploratory data analysis to studying

hierarchical scaling for time series.

Recently, several techniques based on properties of local linear trends were proposed

and studied. The Detrended Fluctuation Analysis (DFA) [7] was shown to be a powerful

tool for multiscale analysis and interpretation of diverse medical and financial data.

Contrary to our analysis, DFA uses a predefined interval partition scheme independent

of the particular series at hand. It is oriented toward analysis of variations, rather than

the trend structure itself. An alternative approach to the problem of detection of local

linear trends is discussed in [13].

The problem considered in this paper naturally extends to higher dimensions. How-

ever, it is not clear how to apply the ideas developed here even to 2D and this issue

deserves special attention. Interestingly, elegant theoretical results on rectifiable curves
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by P. Jones [14] are tightly related to detection of linear structures in point clouds. Vari-

ous methods of multiscale geometric analysis based on Jones’ theory ([15] and references

therein) use predefined (dyadic) partition schemes. It would be very important to find

algorithms for fast linearization in point clouds.

It is worth mentioning that the self-affine analysis of Sect. 3 may be done equally

effectively by a multitude of techniques, and MTA is by no means claimed to be the most

efficient one. We include this section in order to demonstrate the diversity of possible

applications based on the single MTA decomposition of a time series.
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A Mandelbrot cascade measures

AMandelbrot cascade measureM(ri, mi), i = 1, . . . , n on the interval [0, 1] is constructed

as follows. At step 0 there is a unit mass distributed uniformly over the whole interval.

At the first step we divide the interval [0, 1] into n subintervals of lengths ri,
∑n

i=1 ri = 1

and assign to them masses mi,
∑n

i=1mi = 1. Within each interval the mass distribution

is uniform. Next, we divide each subinterval i into n subsubintervals and assign to them

uniform masses mi ·mj , j = 1, . . . , n, and so on. Therefore, at the kth step the interval

[0, 1] is divided into nk subintervals, each carrying the uniform mass mi1 · . . . ·mik , with

ik taken from the set 1, . . . , n with possible repetitions.

Such measures were introduced first to model turbulent dissipation, and were studied

by Mandelbrot [16].
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Figure 1: Scheme of the Multiscale Trend Decomposition. a) At zero step X(t) is ap-

proximated by its global linear trend L0(t). b) Detrended series X1(t) = X(t)− L0(t) is

approximated by the piecewise linear function L1(t), the whole analysis is then repeated

at each of subintervals [t1i , t
1
i+1]. c) Resulting hierarchy of trends. See Sect. 2 for details.
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Figure 2: Scheme of detection of edge points. a) At zero step X(t) is approximated by

its global linear trend L0(t). b) Epochs (t1, t2) of global maximum and minimum of the

detrended series X1(t) = X(t) − L0(t) are located. c) Analysis is repeated at each of

subintervals [0, t1], [t1, t2], and [t2, 1].
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Figure 3: Decomposition of a Fractional Brownian walk with Hurst exponent H = 0.7.

a) Piecewise linear approximations at levels l = 0, 1, 2, 10. b) Corresponding hierarchical

tree.
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Figure 4: Decomposition of the sum of three sinusoids, X(t) = sin(5πt) + 1
5
sin(60πt) +

1
10
sin(200πt). a)X(t) on the background of three levels from its decomposition. b) Piece-

wise linear approximation corresponding to the top level of the decomposition shown in

panel a). c) Fragment corresponding to the middle level of a). d) Fragment corresponding

to the bottom level of a).
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Figure 5: Decomposition of a) Devil’s Staircase (5 upper levels ofMX are shown) and b)

modulated sinusoid with time-dependent frequency (15 levels are shown).
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ror scalings. b) Relation b(H) for FBWs, 0 ≤ H ≤ 1, values of b averaged over 100
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Figure 9: Estimation of local Hurst exponent, H(t) for a multifractal (Mandelbrot cascade

measure) (panel a) and monofractal (Brownian walk) (panel b). Corresponding time

series are shown in panels c) (multifractal) and d) (monofractal).
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Figure 15: Two signals coupled by an unobserved phenomenon. The signals tend to

change their intermediate trends synchronously, while their overall shapes are different.

The striking similarity is observed at intervals [0, 0.1] and [0.2, 0.55]. Note also the

common peaks at t = 0.675, 0.775, 0.975. See details in Sect. 5.3.1.
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Figure 16: Correlation (reciprocal distance) µ (17) between two signals shown in Fig. 15

(panel a) and two independent Brownian walks (panel b).
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Fi(t). b),f) Coupling parts Ai(t) · X(t). c),g) Non-linear deterministic trends. d),h)

Random drifts.
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Figure 19: Reconstruction (solid lines) of the coupling parts Ai(t) ·X(t) (dashed lines).

See Sect. 5.3.1 for discussion.


