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Abstract

The dynamics of a 2D site percolation model on a square lattice is studied us-
ing the hierarchical approach introduced by Gabrielov et al., Phys. Rev. E, 60,
5293-5300, 1999. The key elements of the approach are the tree representation of
clusters and their coalescence, and the Horton-Strahler scheme for cluster ranking.
Accordingly, the evolution of percolation model is considered as a hierarchical in-
verse cascade of cluster aggregation. A three-exponent time-dependent scaling for
the cluster rank distribution is derived using the Tokunaga branching constraint
and classical results on percolation in terms of cluster masses. Deviations from
the pure scaling are described. An empirical constraint on the dynamics of a rank
population is reported based on numerical simulations.

1 Introduction

Percolation model is probably the simplest and best studied system that experiences
(geometrical) phase transition of the second kind [34]. It is widely used as a toy model
for spatially distributed stochastic processes, such as diffusion in disordered media, for-
est fires, gelation, semiconduction, etc. [31, 34]. Importantly for our study, percolation
model presents a transparent mechanism of the process of hierarchical aggregation (coag-
ulation). This process has been actively employed for describing the essential properties
of material fracture and earthquake nucleation [4, 5, 10, 19, 21, 27, 29, 43], starting from
the pioneering works of Allegre et al. [1] and Newman and Knopoff [22, 23, 15]. In this
paper we describe the evolution of percolation model in terms of an inverse cascade of
hierarchical cluster aggregation.

An early idea of hierarchical aggregation was introduced by Newman and Knopoff in
the “crack-fusion” model for repetitive cycles of large earthquakes [22, 23, 15, 24]. Their
model focused on processes of small cracks fusions into successively larger ones, accommo-
dating the influence of mainshocks and aftershocks, juvenile crack genesis from tectonic
stresses, crack healing, and anelastic-creep induced time delays, plus other effects. Tur-
cotte et al. [39] have reinstated this line of research considering a log-binned description
of hierarchical aggregation and performing numerical tests to study its scaling proper-
ties. Gabrielov et al. [11] first have employed the Horton-Strahler hierarchical ranking
[13, 26] to construct an exactly solvable model of a general inverse cascade process. The
Horton-Strahler ranks (see Sect. 2.3) that came from hydrology and have been not well
known in physical applications happened to be more natural than cluster masses (sizes,
areas) in describing the aggregation process. Moreover, the ranks are shown essential for
formulating the analytical models [11]. Recent efforts deal with studying the aggregation
dynamics and its various scalings via exactly solvable hierarchical models and extensive
simulations [18].

Below we focus on the evolution of the first spanning cluster in the the classical site-
percolation model, and decribe it as a consecutive hierarchical fusion of smaller clusters
into larger ones. Noteworthy, we are interested not in a final solution of a percolation
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state, but in an evolutionary path leading from the juvenile single-particle clusters to
a self-similar population of clusters of arbitrary large size (limited by the finiteness of
the lattice), the percolation cluster included. Thus we depart from the steady-state
assumption of [11, 18, 39] as well as from the asymptotic focus on the percolation onset
typical for the classical percolation studies [34].

Specifically, we follow [11] and represent each cluster by a time-oriented tree that
reflects the history of cluster formation. The model dynamics is then described in terms
of the corresponding trees using the well-developed theory of hierarchical scaling com-
plexities [2, 26]. An important role is played by the the Horton-Strahler scheme that
provides a natural ranking for the tree-based structures. Another important element
is the Tokunaga classification that defines a special subclass of trees with self-similar
branching. A large number of hierarchies observed in nature are shown to be Tokunaga
trees [26]; this is also the case for the clusters in percolation model [11, 18]. We use the
Tokunaga constraint together with classical results on percolation dynamics (in terms
of cluster masses) to derive time-dependent scaling laws for rank distribution of clus-
ters. Importantly, we report a three-exponent scaling for the dynamics of a population
of clusters of a given rank, in deviation from the two-exponent scaling well-known for the
population of a given mass [34, 17]. We also analyze deviations from the pure scaling
and confirm our results by numerical simulations.

The inverse cascades and aggregation (coagulation) processes are important for evo-
lution of many natural hazardous processes: earthquakes, landslides, and forest fires are
argued to follow the hierarchical aggregation dynamics [40, 18]. A general review of the
theory and models of kinetics of irreversible aggregation is given by Leyvraz [16]. An
alternative approach to analytical modeling, based on ideas from [11], but using equa-
tions that are consistent with the mass action law of chemical kinetics, can be found in
da Costa et al. [7].

The paper is organized as follows. The percolation model is described in Sect. 2; this
section also introduces tree representation of clusters and the Horton-Strahler ranking.
In Sect. 3 we derive the average mass of clusters of a given rank using the Tokunaga
constraint on cluster branching. This result will be actively used in consecutive sec-
tions. Section 4 is devoted to the time-dependent rank distribution of clusters. First
(Sect. 4.1), we establish the exponential rank distribution at percolation using the result
of Sect. 3. We then proceed with time-dependent rank distribution; Sect. 4.2 introduces
the three-exponent scaling for ranks and compares it to the well-known Stauffer’s two-
exponent scaling for cluster masses. Scaling for ranks averaged over the entire evolution
of the percolation cluster is derived in Sect. 4.3; this result is motivated by the heuristic
studies that typically use averaged observations on a system. Time-dependent finite-size
corrections to the established scalings are described in Sect. 4.4. Our study of rank
distributions is concluded in Sect. 4.5 by describig the time-dependent behavior of the
total mass of clusters of a given rank. Sect. 5 analyzes fractal properties of clusters and
reports sharp increase of cluster fractal dimension in the vicinity of percolation. Sect. 6
uses simulations to establish a notable constraint on the dynamics of a rank populations.
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The results are discussed in Sect. 7.

2 Model

2.1 Dynamics

We consider the classical 2D site-percolation model [34]. The model dynamics starts with
an empty L×L square lattice. At each step a particle is dropped into a randomly chosen
unoccupied site; thus each site can be either occupied by one and only one particle or
empty. Two sites are considered neighbors if they share one side; each site on a square
lattice has four neighbors. Cluster is defined as a group of occupied neighbor sites [34].
Time refers to the steps at which particles drop onto the lattice. Since we do not have
annihilation of particles, time is formally equivalent to the number of particles on the
lattice. It is convenient to normalize time by the lattice size L2 so it varies from ρ = 0
at the start to ρ = 1 when all sites are occupied. During the system evolution, occupied
sites start to aggregate and clusters begin to form. Once a sufficient number of particles
is accumulated, a percolation cluster is formed connecting the opposite sides of the lattice
vertically and/or horizontally.

The density ρ increases monotonically from zero to its critical value ρc at percolation.
For an infinite lattice ρc ≈ 0.59274606 [25], while for a finite lattice it is smaller [34]:

ρc(L) = ρc − cL−3. (1)

Many phenomena encountered in the percolation model mimic what we see when the
phase transitions of the second kind occur. Note however that these phenomena are
of purely geometrical and statistical rather than physical nature. Indeed, the physical
percolation theory is largerly predicated in this geometrical model and there are many
empirical links between them; this is why the percolation model is said to be an example
of the geometrical phase transition of the second kind, and why its nomenclature emerges
from that of the physical critical phenomena.

The theoretical description of the percolation dynamics is conventionally given in
terms of the cluster masses [34]; and most of the universal scalings – a benchmark of phase
transitions of second kind – deal with parameters expressed via the mass distribution
of clusters. However, if one is interested in analytical description of the aggregation
process, the mass description happens to be inferior to the hierarchical rank approach
[11, 18]. Properly defined ranks not only allow one to construct exactly solvable models
of aggregation, but also they are more feasible for observations in practice. In addition,
they reflect the individual history of cluster formation. Below we follow the hierarchical
approach of Gabrielov et al. [11] to study the percolation dynamics.
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2.2 Tree representation of clusters

Each cluster in our model is represented by a tree that reflects the time-dependent for-
mation of a cluster (its history), and is a subject for quantitative analysis. Specifically,
each one-particle cluster is represented by a trivial tree consisting of a single node. When
two clusters are merged together their trees are also merged by adding a new node (par-
ent) for which they become children (and siblings to each other.) In our model, the
coalescence of two or more clusters can only be materialized by adding to the lattice a
new particle which will be a neighbor to one or more existing clusters. Figure 1a illus-
trates the four possible types of coalescence. We call k-coalescence a situation when a
newly dropped particle (marked N in the figure) is a neighbor to k existing clusters (gray
numbered sites). Numerical simulations on a square lattice with L = 2, 000 suggest the
following relative frequencies Qk of k-coalescences: Q1 ≈ 0.628, Q2 ≈ 0.318, Q3 ≈ 0.052,
Q4 ≈ 0.002. Figures 1b,c illustrate how a tree is formed for different coalescence types.
There are two basic situations: When a new particle is a neighbor to only one existing
cluster, it is considered as an individual one-particle cluster that is connected to the ex-
isting one. The connecting node of the tree in this case does not correspond to a particle
on the lattice (panel b). When a new particle is a neighbor to two, three, or four existing
clusters, it is not condidered as an individual cluster. Instead, it corresponds to the
connecting node in the tree (panel c). Thus, the connecting node in a tree may or may
not correspond to a lattice particle depending on the coalescence type. The branching
parameter (number of children for a given parent) of a tree for any cluster varies between
2 and 4. Note that both 1- and 2-coalescences result in merging only two clusters; ac-
cordingly, most of the observed coalescences (about 95%) involve only two clusters while
coalescence of three or four clusters is extremely rare.

The consecutive process of tree formation for a simple four-particle cluster is illus-
trated in Fig. 2. Importantly, the individual evolution of a cluster is crucial in construct-
ing the corresponding hierarchical tree. To construct the tree one needs to consider all
consecutive coalescences that have formed the cluster, not only its final shape. Therefore,
it is clear that the same tree may correspond to clusters of different shape: Figure 3a
shows two 11-particle clusters that both correspond to the same tree shown in panel
b. Accordingly, working with trees, we unavoidably narrow the information about the
cluster population. Notice however that trees capture an excessively larger amount of
information than mere cluster masses. Summing up, the time evolution of a cluster is
neccesary and sufficient to uniquely determine the corresponding tree, while the inverse
is not true. The problems of describing the set of trees that might correspond to a given
cluster, and the set of clusters that correspond to a given tree is beyond the scope of this
paper. Next, we describe the ranking of clusters, presenting a conventional alternative
to the logarithmic binning of cluster masses.
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2.3 Horton-Strahler ranking

The appropriate ordering of trees (clusters) is very important for meaningful description
and analysis of the model dynamics. The problem of such an ordering is not trivial
since the clusters may grow and coalesce in a variety of peculiar ways. An advantageous
way to solve this problem is given by the Horton-Strahler topological classification of
ramified patterns [13, 35, 2] illustrated in Fig. 3b: One assigns ranks to the nodes of a
tree, starting from r = 1 at leaves (clusters consisting of one particle.) When two or
more clusters with ranks ri, i = 1, . . . , n merge together, a new cluster is formed with
the rank [2]:

r =

{
r1 + 1, if ri = r1 ∀ i = 1, . . . , n
max (ri), otherwise.

The rank of a cluster is that of the root of the corresponding tree. It is possible to consider
an alternative definition of ranks: When at least two clusters with rank r coalesce, and
other coalescing clusters have a lower rank, the rank of a new cluster becomes r + 1.
Clearly, the two definition coincide when only two clusters coalesce. The results reported
in this paper are independent of the particular definition, since coalescence of more than
two clusters (especially of high ranks) is a rare event.

Originally introduced in geomorphology by Horton [13] and later refined by Strahler
[35], this classification is shown to be inherent in various geophysical, biological, and
computational applications [2, 11, 18, 26, 37, 41].

3 Mass-rank distribution

In this section we derive the distribution of the average mass mr of rank r clusters. It
will be used consequently to connect various mass and rank scaling laws. First, we define
the branching ratio Tij for a given cluster (tree) as the number Nij of subclusters (nodes)
of rank i that joined subcluster (node) of rank j, averaged over subclusters (nodes) of
rank j [26, 36]:

Tij =
Nij

Nj

.

Next we note that the mass of a rank r cluster is the sum of two r− 1 cluster masses
that formed the cluster (we ignore the possibility for three or more clusters to coalesce at
the same step), plus a unit mass of a joining particle, plus the mass of all the lower-rank
clusters that joined the considered cluster, hence:

m1 = 1

m2 = (2m1 + P ) + T12(m1 + P )

m3 = (2m2 + 1) + T23(m2 + 1) + T13(m1 + P )

. . .

mk = (2mk−1 + 1) +
k−1∑
i=1

Tk−i k(mk−i + 1)− (1 − P )T1k, k ≥ 3. (2)
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Here the coefficient P addresses the possibility for a one-particle cluster to join another
cluster in two ways: via a one-particle connector (with probability P ) or directly (with
probability 1−P ); the clusters with r > 2 can only join other clusters using a one-particle
connector.

It was predicted by Gabrielov et al. [11] and later confirmed by simulations [18] that
clusters in percolation model obey the Tokunaga scaling [36] asymptotically in k:

Ti i+k = Tk = s0s
k−1. (3)

This rewrites Eq. (2) for k ≥ 3 as

mk = (2mk−1 + 1) +
k−1∑
i=1

Ti(mk−i + 1) − (1 − P )Tk−1.

Assuming the mass-rank relation in the form mr = cr−1, c > 1 we obtain

c k−1 = 2c k−1 + 1 +
k−1∑
i=1

s0s
i−1

(
c k−i−1 + 1

)
− (1 − P )s0 s

k−1

= c k−2

[
2 +

1

c k−2
+ s0

1 − (s/c)k−1

1 − s/c
+

s0

c k−2

s k−1 − 1

s− 1
− (1 − P )s0 (s/c)k−2

]
.

It is easily checked that this equation has a solution only if c > s; thus s/c < 1 and for
large k then follows

ck−1 = ck−2

[
2 +

s0

1− s/c

]
leading to the final equation

c2 − c(2 + s + s0) + 2s = 0

with solution:

c =
2 + s + s0 ±

√
(2 + s + s0)2 − 8s

2
. (4)

Remarkably, the model of Gabrielov et al. [11] predicts in a Euclidean (assuming
clusters of regular, non-fractal, shape) limit of an inverse cascade model

s0 ≈ 0.55495813, s = 1/s0 ≈ 1.80193774, and c = 1/s2
0 ≈ 3.24697602.

The Eq. (4) in this case gives c(s0, s) = 3.24697960 (this is the only solution such that
c > s), which is remarkably close (6 digits) to the result of [11]. Furthermore, the non-
Eucledian (assuming fractal shape of clusters) steady-state simulations of Morein et al.
[18] suggest

s ≈ 3.0253, s0 ≈ 0.6993, c ≈ 4.325,
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which exactly solves Eq. (4). We found it quite amazing that our complimentary set of
assumptions used to derive (4) lead to the same numerical results as analytical study [11]
and simulations of [18]. This suggests an underlying connection between our approaches
to describe the hierarchical aggregation.

The observed mass-rank distribution of clusters at percolation is shown in Fig. 4; it
obeys the exponential relation

mr = 10 γ(r−1) = c r−1, (5)

with γ ≈ 0.625, c = 10γ ≈ 4.2. Our simulation suggest that the mass distribution within
a given rank is approximately lognormal (not shown) with the mean given by Eq. (5)
and a rank-independent standard deviation.

The relation (5) is a key element in our further analysis. As we will show, the distri-
bution of cluster ranks at percolation (Sect. 4.1) and its finite-size corrections (Sect. 4.4)
are obtained from the corresponding classical laws for masses by simple substituting the
relation (5). At the same time, one of the most important results: the time dependent
rank distribution can not be obtained this way and requires an additional treatment
(Sect. 4.2).

The exponential relation of Eq. (5) happens to be valid over the entire time interval
0 < ρ ≤ ρc. The corresponding dynamics of c(ρ) is shown in Fig. 5: it grows with
time from about 2.0 at the earliest stages to 4.2 at percolation. This growth reflects the
fact that clusters become more weighty with time due to coupling with the clusters of
lower ranks (which does not change the rank but increases the mass). The growth is not
monotonous; it is accompanied by pronounced log-periodic oscillations which are associ-
ated with creation of new ranks. The log-periodic oscillations that accompany general
power-law increase of observed parameters have been found in many systems including
hierarchical models of defect development [27], biased diffusion on random lattices [33],
diffusion-limited aggregation (DLA) [30], and others. Log-periodic oscillations can be
naturally explained by the Discrete Scale Invariance (DSI) [31], which occurs in a system
whose observables scale only for a discrete set of values. A famous example of DSI is
given by the Cantor set that pocesses a discrete scale symmetry: In order to superim-
pose its scaled image onto the original, one has to stretch it by the discrete factors 3n,
n = 1, 2, . . ., not a continuous set of values. The Cantor set and percolation belong to
systems with built-in geometrical hierarchy, leading to DSI. In our particular system,
ranks take only a countable set of values. Creation of new ranks necessarily disrupt the
system in a discontinuous way resulting in the log-periodicity.

Now we return to the numerical value of parameter c. In steady-state simulations of
[18] c = 4.325, which is reasonably close to what we observe at percolation. Recall that
the models of [11, 18] use the “fractal correction” ε to the cluster shape; this correction
affects the rate rij of clusters coalescence:

rij ≈ ε−|j−i|LiLj ,

8



where Li is the total boundary size of the clusters of rank i. The correction ε can be
expressed as

ε =
1√
c

c− 1

c− 2
,

which, together with results of Fig. 5, shows that in the percolation model ε decreases
in time passing the Euclidean limit ε = 1 [11] at (ρc − ρ) ≈ 0.14 and approaching the
steady-state “fractal” ε ≈ 0.68 [18] at ρ = ρc. The interval 2 < c ≤ 4.2 observed during
0 < ρ ≤ ρc corresponds to 0.68 ≤ ε < ∞.

4 Rank distribution

This section is devoted to establishing various time-dependent scaling laws for clusters of
a given rank. We will see that it is tipically impossible to derive such laws by applying
the mass-rank relation (5) to the coresponding well-known laws for cluster masses. This
illustrates an original character and richness of the rank description and prompts for de-
veloping new methods of analysis. We start with the simplest problem: rank distribution
at percolation.

4.1 Distribution at percolation

We start recalling the well-known cluster mass distribution at percolation [34]:

nm(ρc) ∼ q0 m
−τ , (6)

where nm(ρc) is the number of clusters of mass m per lattice site, and the Fisher exponent
τ = 187/91 ≈ 2.05 is universal for 2D systems [9, 34]. Figure 6 illustrates the mass distri-
bution at percolation for a system with L = 2000; to smooth out statistical fluctuations
it shows the number of clusters with mass equal to or larger than m:

∑
m′≥m nm(ρc).

Equation (6) suggests the slope τ − 1 ≈ 1.05, while the observed slope 0.96 is somewhat
less than that. This is due to the impact of two concurrent phenomena: so-called “de-
viation from scaling” at small m [14] and finite-size effects at large m [17, 14]; they are
discussed below in Sect. 4.4.

Now, we use Eq. (6) to derive the distribution of the number nr(ρc) of the clusters
of rank r at percolation. Taking summation over all clusters of rank r and mass m we
obtain:

nr(ρc) =
∑

nr,m(ρc) = q0

mup∑
mlo

m−τ

∼ q0

τ − 1

[
(mlo)

−τ+1 − (mup)
−τ+1

]
=

q0

τ − 1

[(
mlo

mr

)−τ+1

−
(
mup

mr

)−τ+1
]
m−τ+1

r . (7)
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Our simulations suggest (not shown) that the mass distribution within a given rank is
lognormal with a rank-independent standard deviation. Thus, for arbitrary upper and
lower quantiles mup, mlo of this distribution the values

mlo(up)

mr

are rank independent. Using this, we finally express nr(ρc) via mr:

nr(ρc) = p0 m
−τ+1
r ∝ m−1.05

r . (8)

The power law (8) is observed in a steady-state aggregation model of [18] with index
1.147. This index increase comparing to our 1.05 is due to the fact that in [18] interme-
diate clusters are removed from the lattice providing extra space for a larger number of
smaller clusters.

Combining the mass-rank relation (5) with (8) we obtain the following exponential
rank distribution at percolation:

nr(ρc) ∼ p0 m
−τ+1
r = p0

(
c−τ+1

)r−1
= p1 10−b r (9)

with
p1 = p0 c

τ−1, b = (τ − 1) log10 c ≈ 0.62.

This is indeed what we observe in Fig. 7 where the rank distribution nr at percola-
tion is shown by the dash-dotted line. The study [18] suggests c1−τ = 0.186 while our
predictions and observations lead to c1−τ ≈ 4.2−1.05 = 0.22. The two values are in good
agreement, the slight difference is explained, as in Eq. (8), by removal of intermediate
clusters in [18]. Next we consider the rank distribution for ρ �= ρc.

4.2 Dynamical rank distribution: three-exponent scaling

Here we expand results of the previous section by establishing the time-dependent rank
dustribution. First, we consider the dynamics of rank population.

4.2.1 Temporal dynamics of rank population

The dynamics of the total number (nr ·L2) of the clusters of a given rank r is illustrated
in Fig. 8 for r = 5, 6, 7. The population follows a characteristic bell-shaped trajectory,
with percolation at its rightward limb. As in the case of mass description, one does
not observe steady-state behavior in the cluster dynamics: The population of each rank
steadily develops to its peak as a result of merging of the clusters of lower ranks; then it
starts decreasing, giving birth to the clusters of higher ranks. As naturally follows from
the model definition, the peak of the population of a higher rank comes after the peak
of a lower rank. Figure 9 shows the population dynamics for the ranks 1 ≤ r ≤ 11 in
semilogarithmic scale. Here one clearly sees the similarity in the dynamics of different
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ranks. Note that this figure is remarkably similar to Fig. 7 from [39] that shows the
dynamics of clusters with logarithmically binned masses. We now proceed by establishing
the appropriate time-dependent scaling laws.

4.2.2 Time-dependent mass distribution

Recall that the temporal dynamics of the cluster mass distribution is given by the two-
exponent scaling law [32, 34, 17]:

nm(ρ) ∼ m−τ f0(z), z = (ρc − ρ)mσ + z0, (10)

with σ = 1/2. The function f0 has a bell-shaped form with maximum to the left of
percolation; it can be roughly approximated by a Gaussian function [14, 17]:

f0(z) ∝ exp
(
−a z2

)
. (11)

Note that the shift z0 is independent of m.
Considered as a function of m, the two-exponent scaling explains the power law mass

distribution (6) at percolation (with q0 = f0(z0)) as well as the downward bend for
ρ < ρc, clearly observed in Fig. 6 (dashed line); while as a function of ρ it describes the
bell-shaped dynamics of clusters with given mass m.

4.2.3 Time-dependent rank distribution

Combining the scaling laws (5) and (10) one formally obtains the two-exponent scaling
for rank dynamics. However, the two exponent scaling does not work for ranks; to show
this we assume more generally

nr(ρ) ∼ g0(z)10
−br, z = (ρc − ρ)h(r) + z′0, (12)

which is consistent with the exponential rank distribution of Eq.(9) at percolation (with
p0 = g0(z

′
0)). Possible deviations from the pure exponential law at ρ < ρc (clearly

observed in Fig. 7) and dynamics of a given rank (see Figs. 8,9) are described by specific
form of the functions g0(·) and h(·). Following [14] we define

νr(z) :=
nr(z)

nr(z′0)
=

g0(z)

g0(z′0)
. (13)

and choose h(·) in such a way that positions of the peaks of νr(z) coincide for different
r; it is always possible by choosing the appropriate time change h(r). Figure 10a shows
the ratio νr(z)/ν1(z) for r = 2, 3, 6, 8. One can see that the two-exponent scaling does
not work in our case: the curves do not coincide.

Nevertheless, the simple scaling picture is restored by introducing the additional,
third, shift exponent:

h(r) = a1 10σ1 r, z′0(r) = a2 10−σ2 r. (14)
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Function g0 still can be approximated by a Gaussian function

g0(z) ∝ exp

(
−z2

2

)
. (15)

Once the correct scaling form is established, the use of (5) is again legitimate, and
the exponent σ1 in Eq. (14) can be evaluated as:

σ1 = σ log10 ĉ ≈ 0.24,

where ĉ ≈ 3 is the median of c values observed during ρ < ρc. The observed exponent
σ1 ≈ 0.23 (not shown) is fairly close to its predicted value. The shift exponent is estimated
as σ2 ≈ 0.03; while scale coefficients are a1 ≈ 1.54, a2 ≈ 1.43. The function g0(z) that
uses these estimates is shown in Fig. 11 where different symbols depict clusters of different
ranks. The collapse is obvious, confirming the validity of the three-exponent scaling (12),
(14), (15).

In the scaling for cluster masses, the time renormalization (ρc − ρ)mσ collapses the
dynamics of mass m clusters onto the master curve f0(z − z0) with its only peak shifted
by z0 leftward from percolation; the shift z0 is mass independent. Similarly, in the scaling
for ranks the time renormalization (ρc−ρ)10σ1 r collapses the dynamics of rank r clusters
onto the master curve g0(z − z′0), although the shift now is rank dependent and is given
by 10σ2 r. To illustrate this, we show the position of percolation on the righthand limb
of the Gaussian g0(z − 0.51) in Fig. 10b. The higher the rank, the closer the position of
percolation to the peak of g0.

4.3 Averaged scaling

In applications, it is often impossible to measure the size distribution of system elements
at a given time instant. Moreover, sometimes the instantaneous size distribution does
not exist at all: This is indeed the case for the systems described by marked point
processes widely used to model seismicity, volcano activity, starquakes, etc. [8]. In such
situations one uses the averaged measurements. For instance, the famed Gutenberg-
Richter law [12, 38, 3] that gives exponential approximation to the size distribution of
earthquakes (via their magnitudes) is valid only after appropriate averaging over a wide
spatio-temporal domain. This explains the importance of the question: How do the
distributions of Eq. (10), (12) change after temporal averaging?

We answer this question for averaging over 0 ≤ ρ ≤ ρc. For the mass distribution this
leads to:

n̂m :=
∫ ρc

0
nm(ρ)dρ =

∫ ρc

0
f0(z)m

−τdρ

∝
∫ ρc

0
exp

{
−a [(ρc − ρ)mσ − z0]

2
}
m−τdρ

∝ m−τ−σ
∫ u2

u1

exp
{
u2/2

}
du

∝ m−τ−σ (≈ m−5/2). (16)
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Here the last step neglects the weak dependence of the integral on m (and uses the
values τ ≈ 2.0, σ = 1/2). The validity of (16) is confirmed by the observed averaged
mass distribution shown by the solid line in Fig. 6. The averaged mass distribution is
similar to that at percolation: it retains the power-law form while the slope is increased
by 1/2 due to averaging.

Similarly, we obtain for ranks:

n̂r :=
∫ ρc

0
nr(ρ)dρ =

∫ ρc

0
g0(z) 10

−brdρ

∝
∫ ρc

0
exp

{
−a′

[
(ρc − ρ)10σ1 r − a 10−σ2 r

]2}
10−b rdρ

∝ 10−(σ1+b) r
∫ u2

u1

exp
{
u2/2

}
du

∝ 10−(σ1+b) r = 10r (1−σ−τ) log10 c̃ = 10−r αr . (17)

The exponent αr may vary from 0.71 to 0.93 depending on 3.0 ≤ c̃ ≤ 4.2 (the range of c
values for the time when at least three ranks have been formed so the estimation of the
distribution slope is meaningful). Simulations suggest (solid line in Fig. 7) αr = 0.87,
which is in good agreement with our prediction. Again, the averaged rank distribu-
tion retains the exponential form of the distribution at percolation; while its index has
increased due to averaging.

4.4 Correction to simple scaling

Due to finiteness of the lattice, the results of previous sections require some corrections
to match exactly the simulated rank distributions. The appropriate corrections are de-
scribed below.

4.4.1 Corrected scaling at percolation

The pure power and exponential laws in Figs. 6, 7 are just first-order approximations to
the observed cluster distributions at percolation. In both cases one sees the downward
bending for small clusters and upward bending for large clusters. These are not due
to statistical fluctuations. The downward bending for small clusters is explained by
“deviations from scaling” [14]: it can be shown analytically that the small clusters do
not yet obey the general scaling law of Eqs. (6), (9) which holds only for large enough
masses (ranks). The upward bend at large clusters is due to finite-size effects [14, 17]:
each large cluster that reaches outside the lattice boundary is “seen” as a number of
smaller clusters, thus creating the upward deviation from the pure power (exponential)
law. This phenomenon is especially important when the system is close to percolation
and clusters of arbitrary large sizes have already been formed. The appropriate scale
corrections for the mass distribution were studied by Hoshen et al. [14] and Margolina
et al. [17].
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To study the above phenomena it is convenient to consider the normalized functions

Nm := mτ−1
∑

m′≥m

nm′ , Nr := 10brnr,

which, in the absence of scale corrections, would become constants:

Nm =
q0

τ − 1
, Nr = p1 c

τ−1.

The function Nr is shown in Fig. 12a; it clearly deviates from the horizontal plateau at
both sides.

In case of the mass distribution, the corrections to scaling are given by [17]:

nm(ρc) � m−τ
(
q0 + q1 m

−Ω + qL m1/DL−1
)
, (18)

where Ω ≈ 0.75, 1/D = 48/91 is the universal mean cluster radius exponent, and q0, q1, qL

are independent of s and L. The first additional term describes the deviation from scaling
for small clusters, while the second one is responsible for finite-size effects.

For rank distribution, the “deviations from scaling” at lower clusters are only observed
for r = 1; while the finite-size effects at large clusters are clearly present for many ranks.
Accordingly, we propose the following correction to scaling for the rank distribution:

nr(ρc) � 10−br
(
p0 + pL 10d rL−1

)
, r > 1. (19)

with

d =
1

D
log10 c ≈ 0.33.

The observed value of d can be estimated by plotting (nr 10br − p0) as a function of r as
shown in Fig. 12b. The observed ranks 4 ≤ r ≤ 9 follow the predicted scaling (19) nicely.

Importantly, the corrections to scaling (19) act at all cluster sizes, so they can not be
neglected even for the intermediate clusters, not only for the largest ones. Indeed, their
effect decreases with L, but this decrease is very slow. Notably, as shown by Morein et
al. [18] (their Fig. 5) even for lattices as large as L = 30, 000 during the process when
clusters as large as 2% of the lattice size are removed, the cluster size distribution clearly
exhibits the upward deviations at large ranks (r = 11, 12, 13.) For smaller systems these
deviations become dominant and may lead to an artificial decrease of the observed slope
of cluster size distribution; this is demonstrated in Fig. 6,7 and is also seen in the analysis
of Turcotte et al. [39] (their Fig. 9).

4.4.2 Dynamics of scaling corrections

Since the finite size effects play an important role in shaping the observed cluster size
distribution, it is worth studying their dynamics. Specifically, we will be interested in
transition of the cluster size distribution from the convex shape (in semi- or bilogarithmic
scale) at ρ � ρc to formation of the upward bend at percolation.
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For this we introduce a measure of convexity for the rank distribution, defined as an
area between log nr(ρ) and a chord connecting its first and last points as shown in Fig. 13
(the point r = 1 is not considered being affected by the deviations from scaling):

µ(ρ) :=
∫ rmax

2
[log10 nr(ρ) − (Ar + B)] d r, (20)

with

A =
log10 (nrmax/n2)

rmax − 2
, B = log10 n2 − 2A.

The values of µ are positive when nr(ρ) is convex in semilogarithmic scale, negative when
it is concave, and vanish when it is linear. The measure µ(ρ) averaged over 1,000 runs
on the lattice L = 2000 is shown in Fig. 13; the bell-shaped form of µ is decorated by
the logperiodic oscillations for (ρc − ρ) > 10−2 explained by creation of new ranks, which
temporarily increases convexity. Zero level is crossed at about (ρc − ρ) = 2 · 10−3, after
that the rank distribution is concave. A detailed analysis (not shown) demonstrates that
the distribution is never exactly linear; the transition from convex to concave shape is
realized through the wave-shaped form when the distribution is still convex for the lower
r, but is already concave for the higher ones. Qualitatively the same picture is observed
for the mass distribution nm(ρ) (in bilogarithmic scale).

The transformation of the cluster size distribution prior to percolation is not unlike a
well-known pattern “upward bend” first described by Narkunskaya and Shnirman [19, 20]
in an early static model of defect development. Later it was found in steel samples and
seismicity of California [28], and confirmed by the dynamical modeling of failure in a
hierarchical system (so-called colliding cascade models) [10, 43].

4.5 Mass dynamics of a given rank

Here we consider the dynamics of total and average mass of rank r clusters:

Mr =
∑

mnrm, mr =

∑
mnrm∑
nr

=
Mr

nr
. (21)

Here nrm denotes the number of clusters of rank r and mass m. Figure 14 shows nr, Mr,
and mr for rank 5; the similar picture is observed for other ranks. It is tempting to use
Gaussian approximation for Mr and predict the Gaussian dynamics of mr (as a ratio of
two Gaussians) and relate their parameters. Detailed analysis however demonstrates that
under this approach the peak of mr for ranks r ≥ 9 should be observed after percolation;
while in simulations this peak is always prior to percolation (not shown). Note that one
still might approximate Mr and mr by Gaussians with properly scaled parameters; such
approximations will be good for rough curve fitting, but will fail to reproduce deeper
properties of cluster dynamics. This demonstrates the general limitations of Gaussian
approximations in the percolation problem.

15



5 Cluster fractal structure

In this section we evaluate the fractal structure of clusters considering the mass-circumference
relation

m ∝ CDr , (22)

where C is the number of empty neighbors of a cluster of mass m. For percolation
cluster at infinite grid we have Dr = 1, which shows that the percolation cluster is a
“linear” rather than a space-filling object [34]. Figure 15a shows the cluster masses as a
function of their circumference for different ranks. It is easily seen how the linear scaling
Dr = 1 gradually develops as rank increases. Figure 15b shows the index Dr estimated
for 1 ≤ r ≤ 9.

Figure 16 shows the dynamics of D5 prior to percolation; noteworthy, its steady state
behavior is altered by a gradual increase as ρ → ρc. Similar increase is observed for
clusters of other ranks.

To explain the increase of Dr we recall that the rate of cluster coalescence is propor-
tional to their circumference (see e.g. [11]). Thus, for a given mass, clusters with a lower
Dr have larger circumference, and a higher chance to coalesce. When a sufficient number
of rank r clusters have been formed, the clusters with low Dr start to coalesce leaving
the high-Dr clusters on the grid.

Another reason for the increase of Dr is the finite-size effects. Specifically, this is an
effect of having clusters that on an infinite grid have already gained higher ranks, but on
our finite lattice are still small.

6 Dynamical constraint

Here we report an interesting regularity in rank dynamics that put a notable constraint
on analytical modeling of percolation process. Specificaly, we consider the slope between
two consecutive points of the rank distribution:

θr(ρ) := log
nr(ρ)

nr+1(ρ)
.

Dynamics of θ4 is shown in Fig. 17a together with that of n6. Noteworthy, the peaks of
two curves (minimum of θ4 and maximum of n6) coincide. This happens to be true for all
ranks: positions of corresponding peaks are shown as a function of rank in Fig. 17b. Such
perfect matching is very unlikely to be accidental. Thus we conjecture that in order for
nr(ρ) to properly describe the time-dependent behavior of rank population, the following
system of differential equations must have a solution:{

θ̇r = 0
ṅr+2 = 0

⇒
{

ṅr nr+1 − nrṅr+1 = 0
ṅr+2 = 0

(23)
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Applying this constraint to the three-exponent scaling of Eqs. (12),(14),(15) we find

σ2 = σ1 + log10

(
1 − 10−2σ1

)
. (24)

According to (24), the observed value σ1 = 0.23 gives σ2 = 0.04, which is 33% larger
than the observed value σ2 = 0.03. The discrepancy is due to the approximate character
of the Gaussian approximation (15) for g0.

7 Discussion

The goal of this study was to describe the evolution of percolation model in terms of
consecutive aggregation of smaller clusters into larger ones using the Horton-Strahler
hierarchical scheme. First, this contributes to a novel understanding of the percolation
phenomenon as a time-dependent hierarchical inverse cascade process. Second, this allows
one to test the validity of the approach introduced by Gabrielov et al. [11] and further
developed by Morein et al. [18] for a steady-state approximation to a general aggregation
process.

We considered dynamical and scaling properties of site-percolation on a 2D square
lattice. Following [11] we described clusters by hierarchical trees that reflect the history
of cluster formation; the Horton-Strahler scheme was used to rank the trees and thus
the corresponding clusters. We concentrated on the development of the first percolation
cluster, thus working with a system that does not exhibit the steady-state dynamics, con-
trary to the studies [11, 18] that have developed mean-field steady-state approximations
to the system.

Combining the results obtained in the classical percolation studies with the Tokunaga
constraint on the cluster branching structure we derived various rank-dependent scaling
laws connecting the number nr of clusters of rank r, their average mass mr, and the rank
r. We have compared the parameters of these laws with those predicted and observed by
[11, 18] in steady-state aggregation models. The values of parameters are shown to be in
a perfect agreement, confirming the validity of the approach used in [11, 18]. In absence
of the steady-state behavior, we derived the time-dependent versions of the scaling laws.
We reported the three-index scaling (12), (14) for the number nr(ρ) of clusters of a given
rank, which deviates from the classical two-exponent scaling for masses.

We studied in detail the transition of the system from earlier stages to the vicinity
of percolation and reported several characteristic phenomena observed as ρ → ρc. They
include transformation of the cluster size distribution not unlike that observed in seis-
micity, steel samples, and previous models of hierarchical fractures [19, 28, 10, 43]; and
increase of the cluster fractal dimension. In our simple model these phenomena are partly
explained (qualitatively as well as quantitatively) by finite-size effects; nevertheless we
believe that they should not be neglected as irrelevant side-effects of numerical simula-
tion. In fact, in practice we often work with systems that are described by intermediate
depth hierarchies (in other words they have intermediate number of degrees of freedom).
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The percolation results related to small and intermediate lattices might be of high rele-
vance in describing such systems. In addition, simulations on large lattices (L = 30, 000)
performed by Morein et al. [18] show that finite-size effects are still present even for large
L.

We have formulated an empirical constraint of Eq. (23) for the time-dependent be-
havior of rank population size nr(ρ); the constraint follows very clearly from the observed
values of nr(ρ). It would be interesting to check this condition in real systems tradition-
ally described by the percolation model.

Our closing remark is on the index τ of cluster mass distribution at percolation
(Eq. (6)). The studies of Gabrielov et al. [11] and Morein et al. [18] predict τ = 2;
which slightly deviates from the well established theoretical value of the Fisher exponent
τ = 187/91 ≈ 2.05. The index of the mass distribution is an essential characteristic of a
system, thus even this slight difference of 2.5% might seem disappointing implying the
intrinsically approximate character of the modeling of [11, 18]. In fact, this implication
is not true. To validate the approach of [11, 18] we notice that the Fisher exponent is
tightly connected to the precise count of cluster particles on a site-level, hardly feasible
in practice. At the same time, the studies [42, 6] have demonstrated that when we
“characterize the size distribution of clusters in a way that circumvents the site-level
description” considering any “macroscopic measure of the length scale of the cluster”,
the exponent of the corresponding scaling law becomes 2, universally for all 2D systems.
An example of a “macroscopic measure” is the linear size in arbitrary direction, the radius
of gyration, the diameter of the covering disk, etc. Clearly, the modeling of [11, 18] deals
with such a macroscopic measure of cluster size, and hence predicts the correct scaling
exponent.
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Figure 1: Multiple coalescence of clusters. a) Coalescence of clusters is materialized by
adding to the lattice a new particle N (black) that is a neighbor to one, two, three, or
four existing clusters (numbered gray sites). The relative frequencies Qk , k = 1, 2, 3, 4
of k-coalescences based on similations with L = 2, 000 are shown in the figure. The
corresponding tree is constructed as shown in panel b) (for k = 1) and c) (for k = 2).
The cases k = 3, 4 are analogous to k = 2. Note that about 95% of coalescences result
in merging two clusters. See text for details.
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Moment of percolation is depicted by a vertical dashed line.
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Figure 9: Dynamics of population nr of a given rank, 1 ≤ r ≤ 11 in semilogarithmic
scale. Moment of percolation is depicted by a vertical dashed line. (Cf. Fig. 7 from [39]).
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Figure 10: Scaling for rank dynamics. a) Ratios νr(z)/ν1(z) do not collapse thus rejecting
the two-exponent scaling hypothesis; see details in Sect. 4.2.3. b) Position of percolation
on the normalized Gaussian g0(z − 0.51); see details in Sect. 4.2.3.
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Figure 11: Three-exponent scaling for rank dynamics. The master Gaussians g0(z) for
different ranks collapse when using the renormalization given by Eqs. (12),(14).
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Figure 12: Corrections to scaling. The pure exponential rank distribution of Eq. (9)
suggests a horizontal plateau for the normalized function Nr = 10brnr, while the observed
values clearly deviate from the plateau at small and large clusters (panel a). The large
cluster deviation is due to finite size efffects and is described by an exponential correction
of Eq. (19) with d ≈ 0.33 (panel b).
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Figure 13: Dynamics of scale corrections. A convexity measure µ(ρ) is defined by Eq. (20)
and illustrated in the insert. It is positive for convex, and negative for concave rank
distribution. The downward bend of the rank distribution observed at early stages (µ >
0) is changed to the upward one (µ < 0) for (ρc − ρ) < 2 · 10−3. See details in Sect. 4.4.2.
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Figure 14: Dynamics of number of clusters nr (solid line), total mass Mr (dashed line),
and average mass mr (dash-dotted line) for clusters of rank r = 5.
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Figure 15: Fractal structure of clusters. a) Mass-circumference relation for clusters of
different ranks. The asymptotic power relation with slope 1.0 is gradually develops as
rank increases. b) Values of fractal dimension Dr (Eq. (22)) for different ranks. Both
panels correspond to a 2, 000× 2, 000 lattice at percolation.
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Figure 16: Premonitory increase of cluster fractal dimension. The steady-state dynamics
of fractal dimension D5 (Eq. 22) changes, and D5 starts to increase, as system approaches
percolation. Similar phenomenon is observed for other ranks.
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Figure 17: Dynamical constraint for nr(ρ). Dynamics of θ4 = log(n4/n5) and n6 is shown
in panel a: peaks of two curves coincide. The similar phenomenon is observed for other
ranks: panel b shows the times of maxima of nr (circles) and minima of θr−2 (triangles)
for 3 ≤ r ≤ 9.
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