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Abstract: An effective estimate for the local multiplicity of a complete
intersection of complex algebraic and Pfaffian varieties is given, based on a
local complex analog of the Rolle-Khovanskii theorem. The estimate is valid
also for the properly defined multiplicity of a non-isolated intersection. It im-
plies, in particular, effective estimates for the exponents of the polar curves,
and the exponents in the  Lojasiewicz inequalities for Pfaffian functions. For
the intersections defined by sparse polynomials, the multiplicities outside the
coordinate hyperplanes can be estimated in terms of the number of non-zero
monomials, independent of degrees of the monomials.

Introduction. The theory of Pfaffian manifolds, i.e. analytic manifolds defined by

systems of Pfaffian equations with polynomial coefficients, was developed by Khovanskii

[1, 2], see [2] for additional references. In the real domain, using a generalization of the

Rolle theorem, Khovanskii showed that the number of isolated solutions of any system of

Pfaffian equations can be effectively estimated in terms of the complexity of the Pfaffian

functions involved. This allows also to estimate effectively global topological invariants of

real varieties defined by Pfaffian equations.

The sparse polynomials (fewnomials) constitute an important class of Pfaffian func-

tions. Fewnomials are defined as polynomials with a few non-zero monomials of arbitrary

degree. Outside the coordinate hyperplanes, these polynomials can be defined as Pfaf-

fian functions of complexity depending on the number of non-zero monomials only. This

representation allows to estimate the topological complexity of a set of real solutions of a

system of fewnomial equations in terms of the number of non-zero terms, independent of

the degrees of these terms.



Pfaffian multiplicities Page 2

In the present paper, we develop the local complex analog of the Khovanskii theory,

in order to give effective estimates for the multiplicities of the intersections of varieties

defined by Pfaffian functions in the complex domain.

One difficulty that arises on this way, also in the real domain, is the emergence of non-

isolated intersections in the process of reduction from Pfaffian to polynomial equations,

even when the original intersection is isolated. To overcome this, we have to work with

non-isolated intersections, and define the multiplicity of a one-parameter deformation of

the intersection at the origin as the number of isolated solutions converging to the origin as

the parameter of the deformation tends to 0. For a deformation of an isolated intersection,

this number does not depend on the deformation and coincides with the usual multiplicity.

For a non-isolated Pfaffian intersection, our method allows to estimate the maximum of

the multiplicities over all deformations preserving complexity of the Pfaffian functions.

The principal technical tool, the estimate of the multiplicity of a non-isolated inter-

section of zeroes of a complex analytic function with an analytic curve, in terms of the

number of zeroes of the differential of the function on the curve, is developed in section 1.

Applying this to the Pfaffian functions in section 2, we use a technique similar to

that of Khovanskii [2] to estimate the multiplicity of a Pfaffian intersection through the

multiplicity of a properly chosen polynomial intersection, the latter being estimated with

the Bezout theorem. This gives our main result: the multiplicity of a Pfaffian intersection

is effectively estimated in terms of the complexity of the Pfaffian functions involved.

This main result allows to estimate different geometric and analytic characteristics

of the sets of solutions of Pfaffian equations, in complex and real domains. One of such

applications is presented in section 3 where we give effective estimates of the exponents

of the polar curve of a pair of Pfaffian functions, and of the exponent in the  Lojasiewicz

inequality for a Pfaffian function in the real domain.

The important special cases of exponential and sparse polynomials are considered at

the end of the paper (section 4). In particular, for fewnomials in m complex variables with
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r non-zero monomials, the multiplicity of any solution of a system of m equations outside

the coordinate hyperplanes does not exceed 2r(r−1)/2(m+ 1)r.

More sophisticated applications, including the complexity of elimination of universal

quantifiers from semi-Pfaffian expressions and the complexity of the resolution of singu-

larities of analytic sets defined by Pfaffian equations, will appear in separate papers.

It is known [3-9] that any expression containing real analytic functions, equalities,

inequalities, arithmetic and logical operations, and universal and existential quantifiers,

is equivalent to an expression of the same kind without universal (or without existential)

quantifiers, as soon as all the eliminated variables remain bounded. The algorithm for

the elimination of universal quantifiers suggested in [9] reduces the problem to certain

finiteness properties of semi-analytic sets. If the original expression contains only Pfaffian

functions, the algorithm in [9] allows to find an equivalent existential (i.e. without uni-

versal quantifiers) expression containing also only Pfaffian functions. Combined with the

estimates for Pfaffian functions given in this paper, it allows to derive an explicit bound

on the complexity of an equivalent existential expression, in terms of the complexity of

the original expression and the degrees of the polynomials involved in the definition of the

Pfaffian functions in the original expression. The first step in this direction, the estimate

of complexity of a stratification of a semi-Pfaffian set, is presented in [10].

Note that this works only for the Pfaffian functions in a bounded domain, although

the elimination of universal quantifiers from Pfaffian expressions is probably possible in an

unbounded domain as well. In a special case of exponential polynomials this was shown

by Wilkie [11] (see also [12]).

Finally, the algorithm of resolution of singularities suggested by Bierstone and Milman

[7,13,14] allows, in the case when all the equations are Pfaffian, to produce the resolution

of singularities where all the centers of the necessary blowing-ups are Pfaffian manifolds,

and the complexity of these manifolds, as well as the number of the necessary blowings up

can be effectively estimated.
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1. Multiplicities of non-isolated intersections.

Definition 1.1. Let M be an n-dimensional complex analytic manifold, 0 ∈M , and let

φ0(x) be a germ of an analytic function in (M,0). A germ of an analytic function φ(x, ε)

in (M ×C, 0× 0), with φ(x, 0) = φ0(x), is called a deformation of φ0(x). We denote by

φε(x) the function φ(x, ε) for a fixed value of ε.

Let Z̃ be a germ of a reduced analytic subspace ofM×C without component imbedded

in ε = 0. The space Z̃ is called a deformation of Z0 = Z̃ ∩ {ε = 0}. As before, we define

Zε = Z̃ ∩ {ε = const}. Note that the spaces Zε are reduced, for small ε 6= 0, while Z0 is

not necessarily reduced.

Definition 1.2. Let dim Z̃ = 2, hence dimZε = 1, for small ε, and let φ(x, ε) be a defor-

mation of an analytic function φ0(x). We define the multiplicity #(φ, Z̃) of the intersection

{φ = 0} ∩ Z̃ at 0 as the number of isolated zeroes, counted with their multiplicities, of

φ|Zε , ε 6= 0, converging to 0 as ε→ 0. For a meromorphic function τ(x, ε) = φ(x, ε)/ψ(x, ε),

we define the multiplicity #(τ, Z̃) = #(φ, Z̃)−#(ψ, Z̃).

Lemma 1.1. Let φ and ψ be two analytic functions, with {φ = 0}∩Zε discrete, for small

ε 6= 0, and {ψ = 0} ∩ Z0 = 0. For small ψ 6= 0, let Zj = Zj(ψ) be the decomposition of

the germ of the one-dimensional set Z̃ ∩{ψ = const} at ε = 0 into irreducible components,

and let νj be the degree of π|Zj . Let

φ|Zj = uj(ψ)εkj + o(εkj ) (1)

be the Puiseux expansion at ε = 0, with uj 6≡ 0 and rational kj ≥ 0. Then

uj(ψ) = ψµjfj(ψ), fj(0) 6= 0, (2)

with rational µj , and the multiplicity #(φ, Z̃) is equal to
∑
j νjµj .

Proof. As {ψ = 0} ∩ Z0 = 0, the map π = (ψ, ε) : Z̃ → C2 is finite, of the degree

ν = #(ψ0, Z0). Due to the Weierstrass preparation theorem, the function φ|Z̃ satisfies an
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equation P (φ, ψ, ε) = 0 where P is a distinguished pseudopolynomial in φ of the degree ν,

with coefficients analytic in (ψ, ε).

The function φ|Zj does not vanish identically because the intersection {φ = 0}∩Zε is

discrete, for ε 6= 0. Hence φ|Zj has the Puiseux expansion (1) at ε = 0. Here o(εkj ) is also

a root of a distinguished pseudopolynomial with coefficients analytic in ψ and ε.

Let kj = p/q, with integer p and q. Let us define Qj(u, ψ, δ) as a result of reduction of

the common power of δ in the coefficients of P (δpu, ψ, δq). We find that uj(ψ, δ) = φ|Zj/δp

is a root of the pseudopolynomial Qj , and uj(ψ) = limδ→0 uj(ψ, δ) is a root of a non-zero

(not distinguished) pseudopolynomial Qj(u, ψ) = Qj(u, ψ, 0) of degree ν′ ≤ ν in u, with

the coefficients analytic in ψ in the vicinity of ψ = 0. Let the term uν
′
appear in Qj(u, ψ)

with a coefficient that has a zero of the order κj at ψ = 0. Then ψκjuj(ψ) is a root of

the monic pseudopolynomial ψ(ν′−1)κjQ(u/ψκj , ψ), and has a Puiseux expansion (2) at 0,

with a rational exponent µj ≥ −κj and a multi-valued analytic function fj(ψ), i.e. fj(ψ)

is a root of a monic pseudopolynomial in f with analytic coefficients in ψ.

Let ζ(ψ, ε) = P (0, ψ, ε) be the product of φ(x, ε) over x ∈ π−1(ψ, ε), with the proper

multiplicities. The function ζ is analytic in ψ and ε, and the multiplicity µ = #(φ, Z̃) is

equal to the number of zeroes (with multiplicities) of ζ|ε=const converging to 0 as ε→ 0.

Let D be a small disk in Cψ centered at 0 and Γ = ∂D, a circle. For small enough

ε 6= 0, the multiplicity µ is equal to the degree of the map ψ 7→ ζ(ψ, ε)/|ζ(ψ, ε)| : Γ→ S1.

Due to the asymptotics (1) and (2) of φ|Zj , we have µ =
∑
j νjµj , q.e.d.

Theorem 1.1. Let Z̃ be a deformation of a 1-dimensional space Z = Z0. Let φ(x, ε)

and ψ(x, ε) be deformations of analytic functions φ0 and ψ0 such that the intersection

{φ = 0} ∩ Zε is discrete, for small ε 6= 0, and {ψ0 = 0} ∩ Z = 0. Then

#(φ, Z̃) = #(θ, Z̃) (3)

where the meromorphic on Z̃ function θ is defined as

θ =

(
ω ∧ (ψdε+ cεdψ)

)∣∣
Z̃

(dψ ∧ dε)|Z̃
(4)
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with an analytic 1-form ω = dφ + φ
(
ω0(x, ε)dε+

∑
i ωi(x, ε)dxi

)
and µj 6= ckj , for all j.

Here the numbers kj and µj are defined in the lemma 2.1.

Remark. Note that, for kj = 0, we have always µj > 0. This means that all but finitely

many values of c satisfy the condition in the theorem 1.1. For an isolated intersection, we

have kj = 0, for all j, and the statement of the theorem 1.1 is valid for all c.

Proof. Let x = (x1, . . . , xn). For i = 1, . . . , n, let xi|Zj = vij(ψ) + o(1) where vij

are multi-valued analytic functions in ψ, vij(0) = 0, and o(1) is a multi-valued analytic

function in ε and ψ, identically zero for ε = 0. Let vj(ψ) =
(
v1j(ψ), . . . , vnj(ψ)

)
, so that

x|Zj = vj(ψ) + o(1) as ε→ 0.

Consider the asymptotics of the 1-forms ω|Zj when ε→ 0. Due to the lemma 1.1,

ω|Zj =

[
εkjψµj

(
µjfj(ψ)

ψ
+
dfj(ψ)

dψ
+ fj(ψ)

n∑
i=1

ωi
(
vj(ψ)

)dvij(ψ)

dψ

)
+ o(εkj )

]
dψ

+
[
kjε

kj−1ψµjfj(ψ) + o(εkj−1)
]
dε.

Deriving this, we have taken into account that the derivative ∂/∂ψ of a multi-valued

analytic function does not change the order in ε at ε = 0, and the derivative ∂/∂ε decreases

this order at most by 1. This implies

θ|Zj = εkjψµj

(
(µj − ckj)fj(ψ) + ψ

dfj(ψ)

dψ
+ ψfj(ψ)

n∑
i=1

ωi
(
vj(ψ)

)dvij(ψ)

dψ

)
+ o(εkj ).

Note that all the terms in this expression except the first one vanish at ψ = 0. Hence

θ|Zj = εkj (ψµj (µj − ckj)fj(0) + o(ψµj ) + o(εkj ).

The same arguments as in the lemma 1.1 show that #(θ, Z̃) =
∑
j νjµj = #(φ, Z̃), as long

as µj 6= ckj , for all j.

Example. It is easy to show that, for an exceptional value of c in the theorem 1.1, we

can have #(φ, Z̃) < #(θ, Z̃). The following example shows that the opposite inequality is

also possible.
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Let n = 2, x = (y, z), φ = z, ψ = y, ω = dz, Z̃ = {z2 − 2yz + εy = 0}. Here

µ = 1, ν = 2. We have

Z1 =
{
z = y +

√
y2 − εy = 2y +O(ε)

}
, Z2 =

{
z = y −

√
y2 − εy =

ε

2
+
ε2

8y
+O(ε3)

}
.

Hence k1 = 0, µ1 = 1, ν1 = 1, k2 = 1, µ2 = 0, ν2 = 1. Next,

θ(y, ε)|Z1,2 = y ± 2y2 + (c− 1)εy

2
√
y2 − εy

.

Hence, for c 6= 0,

θ|Z1 = 2y +O(ε), θ|Z2 = −cε
2

+O(ε2),

and #(φ, Z̃) = #(θ, Z̃) = 1. The function θ|Zε has 2 zeroes and 1 pole converging to 0 as

ε→ 0.

For an exceptional value c = 0,

θ|Z1 = 2y +O(ε), θ|Z2 = − ε
2

8y
+O(ε3),

and 1 = #(φ, Z̃) > #(θ, Z̃) = 0. The function θ|Zε has 1 zero and 1 pole converging to 0

as ε→ 0.

At the end of this section, we formulate several results concerning the multiplicities

of non-isolated intersections, which can be considered as local complex analogues of the

Rolle-Khovanskii theorem ([2], p.43). We do not use these results in the following sections,

although they can be used to estimate Pfaffian multiplicities in the same way as the theorem

1.1. Originally, the estimate for the Pfaffian multiplicities was done with the theorem 1.2

below. The modification (4) was suggested to the author by A. Khovanskii.

Theorem 1.2. Let x = (x1, . . . , xn), and let Z0, Z̃, φ0, ψ0, φ(x, ε), and ψ(x, ε) be the

same as in the theorem 1.1. Then

#(Θ, Z̃) ≤ #(φ, Z̃) ≤ #(Θ, Z̃) + #(ψ0, Z0) (5)
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where the meromorphic on Z̃ function

Θ =
(ω ∧ γ)|Z̃

(dψ ∧ dε)|Z̃
(6)

is defined by an analytic 1-form ω = dφ+ φ
(
ω0(x, ε)dε+

∑
i ωi(x, ε)dxi

)
and by an ana-

lytic 1-form γ satisfying the following condition: γ = dε+ ε
∑
i γi(x, ε)dxi and the vector(

γ1(0, 0), . . . , γn(0, 0)
)

does not belong to a subset Σ ⊂ Cn, independent of ψ, which is a

union of at most #(ψ0, Z0) affine hyperplanes.

For an isolated intersection {φ = 0} ∩ Z = 0, the set Σ is empty and

#(φ, Z̃) = #(φ0, Z) = #(Θ, Z̃) + #(ψ0, Z). (7)

This theorem can be proved with the same arguments as the theorem 1.1, based on the

lemma 1.1.

Suppose now that Z̃ is a non-singular deformation of Z0, i.e. Zε is non-singular, for

small ε 6= 0. For an analytic 1-form ω, we define the zeroes of ω|Zε , for ε 6= 0, as the

zeroes of a function ω|Zε/dz where z is any local parameter on Zε. We define #(ω, Z̃) as

the number of isolated zeroes of ω|Zε , counted with their multiplicities, converging to 0 as

ε → 0. For an analytic 2-form Ω on Z̃, we can define the zeroes of Ω at Zε, for ε 6= 0, as

the zeroes of a function

Ω

dz ∧ dε|Z̃
,

where z is any local parameter on Zε. We denote #(Ω, Z̃) the number of the isolated

zeroes of Ω at Zε, counted with their multiplicities, converging to 0 as ε→ 0.

Theorem 1.3. Let Z̃ be a non-singular deformation of Z, and let ψ be an analytic

function such that {ψ = 0} ∩ Z = 0. Then

#(ψ,Z)−#(dψ, Z̃) = χ(Zε),

the Euler characteristics of the non-singular fiber Zε of the deformation Z̃ in a small open

ball centered at 0.
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Proof. Consider the mapping ψ : Zε → D where D is a small open disk in C. The

number #(ψ,Z) is equal to the degree of this mapping, and the number #(dψ, Z̃) is equal

to the number of ramification points of this mapping, each counted with the multiplicity

of the ramification order in it minus 1. Standard Riemann-Hurwitz type arguments show

that χ(Zε) is equal to the difference of these two numbers.

Remark. For n = 2, this problem was considered in [15].

Theorem 1.4. In the conditions of the theorem 1.2, Let φ, ω, and γ be the same as in

the theorem 1.2. Let Z̃ be a non-singular deformation of Z0. Then

#(ω ∧ γ, Z̃) + χ(Zε)− ν ≤ #(φ, Z̃) ≤ #(ω ∧ γ, Z̃) + χ(Zε).

Here ν is the multiplicity of the intersection of Z0 with a generic non-singular hypersurface

through 0 in M .

Proof. The statement follows from the theorem 1.2 applied to a generic function ψ(x)

with dψ(0) 6= 0, and from the theorem 1.3 for isolated intersections. In this case, it is easy

to check that ν = #(ψ,Z0) and #(Θ, Z̃) = #(ω ∧ γ, Z̃)−#(dψ, Z0) = #(ω ∧ γ, Z̃)− ν +

χ(Zε).

2. Pfaffian multiplicities.

Definition 2.1. (Cf. [1, 2].) A Pfaffian chain at 0 ∈ Cm+r
x is defined by a sequence of

differential 1-forms ω1, . . . , ωr with polynomial coefficients of degrees α1, . . . , αr in x such

that ω1 ∧ . . . ∧ ωr 6= 0 at 0, and by a sequence S1 ⊃ . . . ⊃ Sr 3 0 of integral manifolds

for ω1, . . . , ωr at 0, i.e. Sj is a germ at 0 of an analytic manifold of codimension j and

ωj |Sj ≡ 0, for j = 1, . . . , r. The number r is called the rank of the Pfaffian chain.

A special Pfaffian chain is a Pfaffian chain with the forms

ωj = dxj +
m∑
i=1

gij(x)dxr+i, j = 1, . . . , r, (8)
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where gij is a polynomial in x of degree not exceeding α.

Theorem 2.1. Let the polynomial 1-forms ω1, . . . , ωr of degrees α1, . . . , αr and the

manifolds S1, . . . , Sr define a Pfaffian chain at 0 ∈ Cm+r
x . Let φ1(x), . . . , φm(x) be poly-

nomials of degrees β1, . . . , βm, and let φ1(x, ε), . . . , φm(x, ε) be an arbitrary deformation

of φ1(x), . . . , φm(x) such that φj(x, ε) is a polynomial in x of degree βj , for j = 1, . . . ,m.

Then the multiplicity µ of the deformation φ1, . . . , φm in (Sr,0) does not exceed

β1 · · ·βmβm+1 · · ·βm+k

where

βm+j+1 = 2j(α1 + . . .+ αr + β1 + . . .+ βm −m) + 1−
j∑
i=1

2i−1αr−j+i,

for j = 0, . . . , r − 1. In particular,

µ ≤ 2r(r−1)/2β1 · · ·βm(α1 + . . .+ αr + β1 + . . .+ βm −m+ 1)r.

Proof. Adding cjε
N , with generic cj and large enough N , to φj(x, ε), for j = 1, . . . ,m,

we reduce the problem to the case when, for small ε 6= 0, the intersection

Zε = Sr−1 ∩ {φ1(x, ε) = . . . = φm(x, ε) = 0} ∩ {ε = const}

is a non-singular one-dimensional set transversal to Sr. Let Z̃ be the Zariski closure of

∪ε6=0Zε and Z0 = Z̃ ∩ {ε = 0}. Let ψ(x) be a linear function in Cm+r such that {ψ = 0}

is transversal to Sr at 0 and Z0 ∩ {ψ = 0} = 0. Let n = m + 1. Let us choose an

analytic function φ(x) such that Sr = {φ(x) = 0} and dφ(0) 6= 0. Then the deformations

Z̃, φ(x, ε) ≡ φ(x) and ψ(x, ε) ≡ ψ(x) satisfy the conditions of the theorem 1.1.

Let us define a function

φm+1(x, ε) =
[ψ(x)dε+ cε dψ(x)] ∧ ω1 ∧ . . . ∧ ωr ∧ dφ1(x, ε) ∧ . . . ∧ dφm(x, ε)

dx1 ∧ . . . ∧ dxm+r ∧ dε
, (9)
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which is a polynomial in x of degree not greater than βm+1 = α1 + . . .+ αr + β1 + . . .+

βm−m+1. We want to show that, for a generic a ∈ C, the multiplicity of the deformation

φ1(x, ε), . . . , φm(x, ε), φm+1(x, ε) in (Sr−1,0) is not less than µ. It is easy to check that

the zeroes of the function φm+1 coincide with the zeroes of the function θ from (4), for

ω = ωr. For a generic c ∈ C, the necessary estimate follows from (3).

Applying this inductively in j = 1, . . . , r and taking into account the relation

βm+j+1 = α1 + . . .+ αr−j + β1 + . . .+ βm+j −m− j + 1 = 2βm+j − αr−j+1 − 1

valid for j = 1, . . . , r−1, we reduce the statement of the theorem 2.1 to the Bezout theorem

for the polynomial intersection φ1(x, ε) = . . . = φm+r(x, ε) = 0, which is discrete, for a

fixed small ε 6= 0.

Theorem 2.2. Let the polynomial 1-forms ω1, . . . , ωr of degrees not exceeding α and

the manifolds S1, . . . , Sr define a special Pfaffian chain at 0 ∈ Cm+r
x . Let φ1(x), . . . , φm(x)

be polynomials of degrees β1, . . . , βm, and let φ1(x, ε), . . . , φm(x, ε) be an arbitrary de-

formation of φ1(x), . . . , φm(x) such that φj(x, ε) is a polynomial in x of degree βj , for

j = 1, . . . ,m. Then the multiplicity µ of the deformation φ1, . . . , φm in (Sr,0) does not

exceed

β1 · · ·βmβm+1 · · ·βm+k

where

βm+j+1 = 2j [min(m, r)α+ β1 + . . .+ βm −m] + 1,

for j = 0, . . . , r − 1. In particular,

µ ≤ 2r(r−1)/2β1 · · ·βm[min(m, r)α+ β1 + . . .+ βm −m+ 1]r.

Proof. The proof is similar to the proof of the theorem 2.1. For a special Pfaffian chain,

the degree of the polynomial (9) does not exceed

βm+1 = min(m, r)α+ β1 + . . .+ βm + 1−m
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because only the terms containing dxr+1, . . . , dxm+r appear with coefficients of degree α

in ωj , and the external product of more than m such terms is always zero. Applying this

procedure inductively in j = 1, . . . , r and taking into account the relation

βm+j+1 = m(α− 1)− j + β1 + . . .+ βm+j + 2 = 2βm+j − 1

valid for j = 1, . . . , r−1, we reduce the statement of the theorem 2.2 to the Bezout theorem

for the polynomial intersection φ1(x, ε) = . . . = φm+r(x, ε) = 0, for a fixed ε 6= 0.

3. Polar curves and the  Lojasiewicz inequality.

Definition 3.1. Let M be an analytic manifold, 0 ∈M , and let f(x) and g(x) be germs

of analytic functions on M at 0, f(0) = g(0) = 0. The set ∆ ⊂ C2 of the critical values of

the mapping (f, g) : (M,0)→ (C2, 0) is called the polar curve of f relative to g [16,17]. *

Theorem 3.1. Let the polynomial 1-forms ω1, . . . , ωr of degrees α1, . . . , αr, and the

manifolds S1 ⊃ . . . ⊃ Sr define a Pfaffian chain at 0 ∈ Cm+r
x . Let f(x) and g(x) be

polynomials of degrees β and γ respectively, f(0) = g(0) = 0. Let ∆ be the polar curve

of f |Sr relative to g|Sr , and let ∆′ 6= {f ≡ 0} be an irreducible component of ∆. Let

f =
∑

i≥1 cig
λi be the Puiseux expansion of ∆′, with c1 6= 0, λ1 < λ2 < . . ., and let

λ1 = p/q where q is the least common denominator of the exponents λi. Then

p ≤ 2r(r−1)/2β(α1 + . . .+αr + β+ γ− 2)m−1[m(α1 + . . .+αr + β+ γ− 3)− γ+ 3]r, (10)

q ≤ 2r(r−1)/2γ(α1 + . . .+αr + β+ γ− 2)m−1[m(α1 + . . .+αr + β+ γ− 3)− β+ 3]r. (11)

For a special Pfaffian chain with coefficients of degree α,

p ≤ 2r(r−1)/2β(2α+ β + γ − 2)m−1[min(m, r)α+ (m− 1)(2α+ β + γ − 3) + β]r, (12)

q ≤ 2r(r−1)/2γ(2α+ β + γ − 2)m−1[min(m, r)α+ (m− 1)(2α+ β + γ − 3) + γ]r. (13)

* Usually a non-zero linear function is taken as g.
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Proof. Let Σ′ be an irreducible component of the critical set Σ = {df ∧ dg|Sr = 0} of

(f, g)|Sr such that the image of Σ′ under (f, g) is ∆′. Then, for small ε 6= 0, the number of

solutions of an equation f(x) = ε, x ∈ Σ′, converging to 0 as ε→ 0 is not less than p, and

the number of solutions of an equation g(x) = ε, x ∈ Σ′, converging to 0 as ε→ 0 is not less

than q. We can suppose these solutions to be isolated, for a fixed ε 6= 0. Otherwise, after

restriction of the forms ωi and the functions f and g to a generic linear hyperplane L, ∆′

remains a component of the polar curve of f |Sr∩L relative to g|Sr∩L, and the problem can

be reduced to the same problem in a lower dimension, with a better estimate for p and q.

As {f = ε} ∩ Sr is non-singular for small ε 6= 0, we can choose linear functions

l1(x), . . . , lm−1(x) so that, for small ε 6= 0,

w1(x) ∧ . . . ∧ ωr(x) ∧ df(x) ∧ dl1(x) ∧ . . . ∧ dlm−1(x) 6= 0 when x ∈ Σ′. (14)

Let

φj =
ω1 ∧ . . . ∧ ωr ∧ df ∧ dg ∧ dl1 ∧ . . . ∧ dlj−1 ∧ dlj+1 ∧ . . . ∧ dlm−1

dx1 ∧ . . . ∧ dxm+r
,

a polynomial of degree not greater than α1 + . . .+ αr + β + γ − 2.

Due to (14), the points of Σ′ ∩ {f = ε} are isolated roots of the system of equations

x ∈ Sr, f(x) = ε, φ1(x) = . . . = φm−1(x) = 0, (15)

and the points of Σ′ ∩ {g = ε} are isolated roots of the system of equations

x ∈ Sr, g(x) = ε, φ1(x) = . . . = φm−1(x) = 0, (16)

Hence (15) and (16) have not less than, respectively, p and q isolated roots converging to

0 as ε→ 0. Applying the theorem 2.1, we get the estimates (10) and (11).

For a special Pfaffian chain, the functions l1, . . . , lm−1 can be chosen as generic linear

combinations of xr+1, . . . , xm+r because the set xr+1 = . . . = xm+r = 0 is transversal to

Sr. As only the terms containing dxr+1, . . . , dxm+r appear with coefficients of degree α

in ωj , and the product of more than m such terms is always zero, φj(x, ε) is a polynomial
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in x of degree not greater than 2α + β + γ − 2. Applying the theorem 2.2, we get the

estimates (12) and (13).

Theorem 3.2. ( Lojasiewicz inequality.) Let the real polynomial 1-forms ω1, . . . , ωr of

degrees α1, . . . , αr and the real manifolds S1 . . . , Sr define a Pfaffian chain at 0 ∈ Rm+r.

Let f(x) and g(x) be real polynomials of degrees β and γ respectively, f(0) = g(0) = 0.

Let C ⊂ Sr be a connected component of {g > 0} ∩ Sr such that 0 belongs to the closure

of C. Suppose that f(x) > 0, for small x ∈ C. Then, for small δ > 0,

min
x∈C,|x|≤δ,g(x)=ε

f(x) = cεp/q + o(εp/q),

with c > 0, where p and q do not exceed the right sides of (10) and (11) respectively.

For a special Pfaffian chain with the coefficients of degree α, the same is true with p

and q not exceeding the right sides of (12) and (13) respectively.

Proof. Let Σδ be the set where f achieves its minimum over {g = δ} ∩ C. We can

suppose that the closure of the union of the sets Σδ over δ > 0 contains 0, otherwise the

problem reduces to the same problem in smaller dimension, and the estimate improves. In

this case, the image of Σδ under (f, g) belongs to the polar curve of f relative to g. The

statement of the theorem 3.2 follows now from the theorem 3.1.

Applying the theorem 3.2 to f =
(
grad (g|Sr)

)2
, we have the following variant of the

 Lojasiewicz inequality.

Theorem 3.3. Let the real polynomial 1-forms ω1, . . . , ωr of degrees α1, . . . , αr and

the real manifolds S1 . . . , Sr define a Pfaffian chain at 0 ∈ Rm+r. Let g(x) be a real

polynomial of degree γ such that g(0) = 0. Then, for small δ > 0,

min
x∈Sr,|x|≤δ,g(x)=ε

∣∣grad (g|Sr)(x)
∣∣ = cεp/q + o(εp/q) as ε→ 0,

with c > 0, where p < q and q does not exceed

21+r(r−1)/23m−1γ(α1 + . . .+αr+γ−1)m−1[(3m−2)(α1 + . . .+αr+γ−2)+m+1]r. (17)
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For a special Pfaffian chain with the coefficients of degree α, the same is true with q not

exceeding

21+r(r−1)/23m−1γ(α+ γ − 1)m−1[min(m, r)α+ (m− 1)(3α+ 3γ − 5) + γ]r. (18)

Proof. The estimates (17) and (18) follow from the estimates (11) and (13) after we

represent f =
(
grad (g|Sr)

)2
as a Pfaffian function of degree β = 2(α1 + . . .+ αr + γ − 1)

or, in the case of a special Pfaffian chain, of degree β = 2(α + γ − 1). To do this, we

represent the m components of grad (g|Sr) as

ω1 ∧ . . . ∧ ωr ∧ dl1 ∧ . . . ∧ dli−1 ∧ dli+1 ∧ . . . dlm ∧ dg
dx1 ∧ . . . ∧ dxm+r

,

with the properly chosen linear functions l1(x), . . . , lm(x). For a special Pfaffian chain, we

can take li = xr+i.

To show that p < q, choose a germ Γ of an analytic curve adjacent to 0 in the set

where grad (g|Sr)|g=const is minimal. If such a curve does not exist, the statement can be

reduced to the same statement in a smaller dimension. We can suppose that g|Sr has a

critical point at 0. Then, for x ∈ Γ, the function g(x) is equivalent to |x|ν , with ν > 1.

Hence the derivative of g along Γ is equivalent to |x|ν−1. As this derivative does not exceed

|grad (g|Sr)|, we have p/q ≤ (ν − 1)/ν < 1.

Simple analytic arguments (see [18] and [14, sect. 2]) show that an estimate |grad g(x)|

≥ cg(x)κ, with c > 0 and 0 ≤ κ < 1, yields, for any C1 function g, an estimate |g(x)| ≥

a
(
dist(x, {g = 0})

)1/(1−κ)
, with a1−κ = c(1 − κ). Combining this with the theorem 3.3,

we have the  Lojasiewicz inequality in its standard form.

Theorem 3.4. Let the real polynomial 1-forms ω1, . . . , ωr of degrees α1, . . . , αr and

the real manifolds S1 . . . , Sr define a Pfaffian chain at 0 ∈ Rm+r. Let g(x) be a real

polynomial of degree γ such that g(0) = 0. Then, for small x ∈ Sr,

|g(x)| ≥ a
(
dist(x, {g = 0} ∩ Sr)

)q
,
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with a > 0 and q not exceeding (17). For a special Pfaffian chain, the same is true for q

not exceeding (18).

4. Exponential and sparse polynomials.

Definition 4.1. Let K be a set of r vectors aj = (aj1, . . . , ajm) ∈ Cm. A pseudopoly-

nomial, or exponential polynomial, of pseudodegree β with the support K is a polynomial

of degree β in xi, i = 1, . . . ,m, and yj(x) = exp(ajx) = exp(aj1x1 + . . . + ajmxm), for

aj ∈ K, j = 1, . . . , r.

Let now all the components of the vectors a ∈ K be non-negative integers. A fewno-

mial, with the support K is a polynomial in m variables u = (u1, . . . , um) with monomials

ua present with non-zero coefficients only when a ∈ K.

A polynomial P (u1, . . . , um, y1(u), . . . , yr(u)) of degree β in ui and yj where yj(u) =

uaj , aj ∈ K, is called a sparse polynomial of pseudodegree β with the support K. Note

that β is not equal to the actual degree of the polynomial P after substitution yj = yj(u).

Theorem 4.1. The multiplicity of any solution of a system of m pseudopolynomial

equations in Cm of degrees β1, . . . , βm, with a common support K with |K| = r, does not

exceed

2r(r−1)/2β1 · · ·βm[min(0, r −m) + β1 + . . .+ βm + 1]r. (19)

The multiplicity of any solution in Cm \ {x1 · · ·xm = 0} of a system of m equations

with sparse polynomials of pseudodegrees β1, . . . , βm, with a common support K, does not

exceed (19). In particular, the multiplicity of any solution in Cm \ {x1 · · ·xm = 0} of a

system of m fewnomial equations with a common support K does not exceed

2r(r−1)/2[min(m, r) + 1]r.

Here the multiplicity of a non-isolated solution of a system of pseudopolynomial (sparse

polynomial) equations is defined as the maximum of the multiplicities of the one-parameter
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analytic deformations of the original system of equation within the class of the pseudopoly-

nomial (sparse polynomial) equations of the same pseudodegree and with the same support.

Proof. The statement for pseudopolynomials follows from the theorem 2.2, because the

functions yj(x) = exp(ajx), aj ∈ K, j = 1, . . . , r, define a special Pfaffian chain of rank r

with the polynomial 1-forms ωj = dyj − yj(x)(aj, dx) of degree α = 1 and the manifolds

Sj = {y1 = exp(a1x), . . . , yj = exp(ajx)}.

The statement for sparse polynomials follows from the statement for pseudopolyno-

mials after substitution ui = exp(xi), for i = 1, . . . ,m.
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