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Abstract

We find all solutions of the Painlevé VI equations with the property

that they have no zeros, no poles, no 1-points and no fixed points.
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Painlevé VI is the following second order ODE:
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(1)

where (α, β, γ, δ) are complex parameters.
It is known that each solution has a meromorphic continuation along

every curve in D = C\{0, 1}, see, for example, [10]. A solution y(t) is called
exceptional if y(t) 6∈ {0, 1,∞, t} for all t ∈ D (and for all branches of y). In
[2] such solutions are called “smooth”.

An interesting problem is to classify all exceptional solutions. As a moti-
vation we mention a problem of Poincaré [17] of existence of a linear second
order equation with 4 regular singularities and prescribed projective mon-
odromy. It is known that generic monodromy representation with 4 gener-
ators can be realized by an equation with 5 regular singularities, 4 of them
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prescribed, say (0, 1,∞, t) and the fifth, y(t) apparent [8]. To obtain an equa-
tion with 4 singularities one can perform an isomonodromic deformation: to
move t until y(t) collides with one of the singularities at (0, 1,∞, t). It is
known that such an isomonodromic deformation is described by the Painlevé
VI equation which y(t) must satisfy [9]. So the desired collision of singular-
ities can be achieved if and only if this solution y(t) is not exceptional. See
[13, 7] on the related problems.

When
(α, β, γ, δ) = (0, 0, 0, 1/2),

equation (1) was studied by Picard [16] 16 years before Painlevé, Gambier
and R. Fuchs discovered it. Picard found all solutions for this case, and some
of them are exceptional (see below). The following two results are known.

When
(α, β, γ, δ) = (1/8,−1/8, 1/8, 3/8),

there are exactly three exceptional solutions [2].

Local solutions are considered the same if they are obtained by an analytic
continuation from each other.

When
(α, β, γ, δ) = (9/8,−1/8, 1/8, 3/8)

there is exactly one exceptional solution defined by the equation

3y4 − 4ty3 − 4y3 + 6ty2 − t2 = 0. (2)

This was recently found in [3].

We give a simple proof of these results. Moreover, we determine all values
of parameters for which exceptional solutions exist, find their number for
such values of parameters, and write down explicit representations of these
solutions.

It will be convenient to work with the elliptic form of Painlevé VI dis-
covered by Picard in a special case and by Painlevé in in the general case.
Consider the lattice Λτ = {m+nτ : m,n ∈ Z}, where τ is in the upper half-
plane H . The Weierstrass function ℘(z|τ) is the solution of the differential
equation

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3),
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with the initial condition ℘(0) = ∞. Here the ej are distinct and their sum
is 0. We denote

ω0 = 0, ω1 = 1/2, ω2 = τ/2, ω3 = (1 + τ)/2; (3)

then ek = ℘(ωk), 1 ≤ k ≤ 3, and ℘ is periodic with periods in Λτ .
Let us define the functions t(τ) and p(τ) by

t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
, y(t) =

℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
. (4)

The function t(τ) is the fundamental invariant of the group Γ[2] of the linear
fractional transformations represented by matrices A ∈ SL(2,Z) satisfying
A ≡ I (mod 2).

Then p(τ) satisfies the elliptic form of Painlevé VI,

d2p(τ)

dτ 2
= − 1

4π2

3
∑

k=0

αk℘
′(p(τ) + ωk|τ). (5)

Here
(α0, α1, α2, α3) = (α,−β, γ, 1/2− δ). (6)

For the proof that (5) is equivalent to (1) we refer to [14].
Suppose that y is an exceptional solution. By (4) this means that

p(τ) 6≡ ωk mod Λτ , τ ∈ H, k = 0, . . . , 3. (7)

Moreover, as the only critical points of z 7→ ℘(z, τ) are those congruent to
ωk, we can locally solve the second equation in (4) with respect to p, and the
implicit function theorem implies that p is holomorphic in H .

We use the following result of Earle [5, Thm. 4.13]:

Theorem A. Let p : H → C be a holomorphic function with the property
that p(τ) 6= m+ nτ for all τ ∈ H and all integers m,n. Then

p(τ) = µ+ ντ, (8)

where µ and ν are real, and (µ, ν) 6∈ Z× Z.

Applying this theorem, we obtain that a solution y(t) of (1) described
by (4) is exceptional if and only if p is of the form (8), with real (µ, ν) 6∈
(Z/2)× (Z/2). Substituting to (5), we obtain

3
∑

k=0

αk℘
′(µ+ ντ + ωk|τ) ≡ 0. (9)
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Such solutions are called Picard’s solutions. They are exceptional when µ and
ν are real. Picard [16] found that they exist in the case αj = 0, 0 ≤ j ≤ 3.
But of course they also exist whenever (9) holds. We mention the following

Corollary of Theorem A. Let y(t) be a multi-valued analytic function in
C\{0, 1}, which has an analytic continuation along every curve in C\{0, 1}.
Suppose that y(t) 6∈ {0, 1, t} for all t ∈ C\{0, 1} and for all branches of y.
Then y(t) is of the form (4) with p as in (8). In particular, y is a solution
of (1) with parameters (0, 0, 0, 1/2).

Now our problem of classification of exceptional solutions is reduced to a
problem about elliptic functions:

For which αk, µ, ν do we have the identity (9)?
To simplify (9) we use the formulas

℘(z + ωk) = ek +
(ek − ei)(ek − ej)

℘(z)− ek
, {i, j, k} = {1, 2, 3}.

Differentiating these formulas with respect to z, we obtain

℘′(z + ωk) = −(ek − ei)(ek − ej)

(℘(z)− ek)2
℘′(z),

and substituting to (9) we obtain after simplification

α0(w−e1)
2(w−e2)

2(w−e3)
2 =

3
∑

k=1

αk(w−ei)
2(w−ej)

2(ek−ei)(ek−ej), (10)

where w(τ) = ℘(µ+ ντ |τ).
Proposition 1. If at least one αk 6= 0, the equation (10) can only hold when
µ, ν are rational.

Proof. The functions ej are the roots of the equation

4x3 − g2x− g3 = 0, (11)

whose coefficients are modular forms. In particular, if we set Tτ = τ + 1,
then the gj are invariant with respect to T and thus the ej are invariant with
respect to T 3. Then it follows from (10) that w(T 18τ) = w(τ). Now

w(T nτ) = ℘(µ+nν+ ντ |τ +n) = ℘(µ+nν+ ντ |τ) = ℘(µ+ ντ +m+nν|τ),
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for all integers m,n. If ν is irrational we can arrange a sequence (mk, nk)
such that nk are divisible by 18, and sk = mk + nkν → 0. Then

w(τ) = w(τ + sk), sk → 0, sk 6= 0,

which cannot happen for a non-constant analytic function. This contra-
diction shows that ν is rational. A similar argument shows that µ is also
rational.

Proposition 2. If at least one αk 6= 0, then all exceptional solutions of (1)
are algebraic.

Proof. A direct computation shows that equation (10) is non-trivial if at
least one αj 6= 0.

The function w satisfying (10) can take only finitely many values (at most
6) on any orbit of Γ[2]. Therefore y can take only finitely many values at
each point. As y omits 0, 1,∞, Picard’s Great Theorem implies that the
singularities at 0, 1,∞ are algebraic.

Actually one can write an explicit algebraic equation which all exceptional
solutions must satisfy. For this we express w in terms of y and the ej in terms
of t from (4) and substitute this expression to (10). We obtain:

α0y
2(y − 1)2(y − t)2 − α1t(y − 1)2(y − t)2 − α2(1− t)y2(y − t)2 (12)

−α3t(t− 1)y2(y − 1)2 = 0.

To determine how many exceptional solutions are possible, one has to find
for each (α0, . . . , α3) the number of irreducible factors of this equation, and
to check which of these factors define algebraic solutions of (1). For example,
in the case considered in [2], when all αj are equal, we obtain three factors:

y2(y − 1)2(y − t)2 − t(y − 1)2(y − t)2 − (1− t)y2(y − t)2 + t(t− 1)y2(y − 1)2

= (y2 − t)(y2 − 2y + t)(y2 − 2yt+ t). (13)

In this case, each of the three factors determines a solution of (1). So we
obtained a simple proof of the main theorem of [2]. We can state the result
as follows:

Proposition 3. When not all αj = 0, exceptional solutions are algebraic
functions given by the polynomial equation (12). Their number is the number
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of non-trivial irreducible factors of this polynomial that satisfy (1). A factor
is called non-trivial if it depends on both y and t and is not a constant multiple
of y − t.

It is easy to see that an exceptional solution cannot be rational, see, for
example, [4, Proposition 6], so the number of exceptional solutions is at most
3, and they are at most 6-valued.

Next we determine all cases when the polynomial in (12) is reducible.

Proposition 4. When α3 = 0, the polynomial (12) factors as

(y − t)2P0(y, t),

where
P0(y, t) = α0(y − 1)2y2 − α2y

2 − t
(

α1(y − 1)2 − α2y
2
)

has no non-trivial factors.

In this case we may have at most one exceptional solution defined by
P0(y, t) = 0.

Proposition 5. If α3 6= 0, then the polynomial (12) has a non-trivial fac-
torization if

αj = u2

j , where

3
∑

j=0

±uj = 0,

for any choice of signs. An equivalent condition is

(

α2

0
+ α2

1
+ α2

2
+ α2

3
− 2(α0α1 + α0α2 + α0α3 + α1α2 + α1α3 + α2α3)

)2

= 64α0α1α2α3. (14)

The surface defined by (14) contains three lines

{α0 = α1, α2 = α3} , (15)

{α0 = α2, α1 = α3} , (16)

{α0 = α3, α1 = α2} . (17)

The polynomial (12) is a product of three non-trivial irreducible factors if
(α0, α1, α2, α3) belongs to one of these lines, and α0α1α2α3 6= 0.
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Using Maple and Mathematica we determined that the cases listed in
Proposition 5 exhaust all factorizations of our polynomial. But this fact will
not be used in the proof of our main result.

When (14) does not hold, computation indicates that the polynomial
(12) is irreducible, and can define at most one exceptional solution of (1).
It remains to determine which algebraic functions defined by factors of (12)
actually satisfy (1). Computation with Maple indicates that in the case when
(12) is irreducible, the resulting algebraic function with 6 branches does not
satisfy (1). In the case (14) when (12) splits into two irreducible factors,
algebraic functions arising from these factors are of degrees 2 and 4. The
function determined by the factor of degree 2 never satisfies (1), while the
function determined by the factor of degree 4 satisfies (1) if and only if three
of the αj are equal and the fourth is equal to the sum of these three. If one of
the equations (15), (16), or (17) is satisfied, then one of the factors satisfies
the equation and the other two factors do not.

We will prove all these facts below without reliance on a computer. Our
main result is the following.

Theorem 1. The complete list of exceptional solutions of Painlevé VI is the
following:
If αj = 0, 0 ≤ j ≤ 3, they are Picard’s solutions with real (µ, ν) ∈ R2\Z2.
If α0 = α1, α2 = α3, then there is a solution

y(t) =
√
t. (18)

If α0 = α2, α1 = α3, then there is a solution

y(t) = 1 +
√
1− t. (19)

If α0 = α3, α1 = α2, then there is a solution

y(t) = t+
√
t2 − t. (20)

If α0 = 9α1 = 9α2 = 9α3 6= 0, then there is a unique solution defined by

3y4 − 4ty3 − 4y3 + 6ty2 − t2 = 0. (21)

If 9α0 = α1 = 9α2 = 9α3 6= 0, then there is a unique solution defined by

y4 − 6ty2 + 4t(t+ 1)y − 3t2. (22)
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If 9α0 = 9α1 = α2 = 9α3 6= 0, then there is a unique solution defined by

y4 − 4y3 + 6ty2 − 4t2y + t2. (23)

If 9α0 = 9α1 = 9α2 = α3 6= 0, then there is a unique solution defined by

y4 − 4ty3 + 6ty2 − 4ty + t2. (24)

Equations (18), (19), (20) are permuted by the group generated by

(t, y) 7→ (1− t, 1− y), and (t, y) 7→ (1/t, y/t), (25)

which is isomorphic to S3. Equations (21), (22), (23), (24) are permuted by
the group isomorphic to S4 which is obtained by adding the transformation

(t, y) 7→ (1/t, 1/y) (26)

to (25).
All curves (21), (22), (23), (24) are of genus zero. A uniformization of

(21) is

y =
1

1− z2
, t =

2z − 1

(z − 1)3(z + 1)
.

The rest are obtained by substitutions (26), (25):

y = 1− z2, t =
(z + 1)(z − 1)3

2z − 1
for (22),

y = z2, t = −z3(z − 2)

2z − 1
for (23),

y = − 2z − 1

z(z − 2)
, t = − 2z − 1

z3(z − 2)
for (24).

Remark. If αj 6= 0 for at least one j ∈ {0, 1, 2, 3}, and we have an exceptional
solution y as in (4), then (8) and (9) hold. So y also solves Picard’s equation,
and the whole one-parametric family of equations with parameters kαj , k ∈
C. All such cases when a single solution satisfies a one-parametric family of
Painlevé VI equations have been classified in [1]. Using this classification one
can obtain an alternative proof of Theorem 1, as suggested by the referee.
Our solutions correspond to the entries 2A, 2B, 2C, 3A, 3B, 3C, 3D in Table
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2.1, [1, p. 3629]. We give an elementary proof of Theorem 1 independent of
the results in [1].

Proof of Theorem 1. We have proved that all exceptional solutions are
Picard solutions parametrized by

y(τ) =
℘(µ+ ντ |τ) − e1(τ)

e2(τ)− e1(τ)
, t =

e3(τ)− e1(τ)

e2(τ)− e1(τ)
.

Two such solutions are the same (obtained by an analytic continuation) if,
and only if,

(µ, ν)A = ±(µ, ν) (mod Z× Z), where A ∈ Γ[2].

Let us say that two rational vectors (µ, ν) and (µ′, ν ′) are equivalent if

(µ, ν) = ±(µ′, ν ′) (mod Z× Z).

Then the group Γ[2] acts on the equivalence classes, and we need the list of
all classes whose orbit has length at most 6.

We have the following

Lemma 1. [15, Lemma 3] Every Γ[2] orbit contains a vector equivalent to
one of the following:

(0,M/N), (M/N, 0), (M/N,M/N), (27)

where M,N are defined as follows. Let µ = µ1/µ0, ν = ν1/ν0 be the reduced
representations. Then N is the least common multiple of µ0, ν0 and M is the
greatest common divisor of µ1N/µ0, ν1N/ν0, so that M,N are coprime, and

µ = mM/N, ν = nM/N,

where m,n are coprime.
Then the orbit of (µ, ν) contains a vector of the list (27) if, and only if,

(m,n) is (even,odd), (odd,even) or (odd,odd), respectively.
The three solutions corresponding to the vectors (27) are permuted by the

group generated by (25)

To understand the orbits completely, it remains to check which of the
three vectors (27) are on the same orbit.
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Lemma 2. Let M,N be coprime integers. If N is odd, then the three points
(27) are in one Γ[2] orbit. If N is even, they are in three distinct orbits.

Proof. The vectors (0,M/N) and (M/N, 0) are on the same orbit if, and
only if, there exists a matrix in Γ[2] such that

(

a b
c d

)(

M/N
0

)

= ±
(

0
M/N

)

(mod Z× Z), (28)

which is equivalent to
a ≡ 0 (mod N), (29)

and
cM ≡ ±M (mod N). (30)

As a is odd, we conclude from (29) that N must be odd.
In the opposite direction, if N is odd, we can take

(

a b
c d

)

=

(

−N N + 1
−1 −N2 1 +N(N + 1)

)

∈ Γ[2], (31)

and (28) will be satisfied.
Now let us investigate when (M/N, 0) and (M/N,M/N) are on the same

orbit. We have
(

a b
c d

)(

M/N
M/N

)

= ±
(

M/N
0

)

(mod Z× Z), (32)

which is equivalent to
c+ d ≡ 0 (mod N), (33)

and
(a+ b)M = ±M (mod N). (34)

As c + d is always odd, we conclude from (33) that N must be odd. In the
opposite direction, if N is odd, use the same matrix as in (31) and (32) will
be satisfied.

Now it is easy to find the number of elements in an orbit. When N is odd,
all vectors (µ1/N, ν1/N) with the greatest common factor of µ1, ν1 coprime
to N belong to one orbit. This orbit is of length greater than 6 when N ≥ 5.

When N is even, such vectors lie on three orbits of equal length, cor-
responding to the three vectors (27), when N = 4 we have three orbits of
length 2, and when N = 6 we have three orbits of length 4.
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Thus the result is that exceptional solutions correspond to the following
pairs (µ, ν):

a) (1/4, 0), (0, 1/4), (1/4, 1/4), representing three distinct two-valued
solutions.

b) (1/3, 1/3), representing one four-valued solution.
c) (1/6, 0), (0, 1/6), (1/6, 1/6), representing three four-valued solutions.
As one equation cannot have two different four-valued exceptional solu-

tions, the three solutions in c) must belong to different equations. The three
solutions in a) may belong to one equation, or to three different equations.
The group (25) permutes solutions of the type a) and permutes solutions of
the type b).

One can verify that vectors a) correspond to solutions (18), (19), (20) in
Theorem 1, vector b) corresponds to (21), and vectors, c) correspond to the
remaining three solutions (22), (23), (24).

For a) this is easy. To check b) and c), we write the tripling formula for
the elliptic function

w(z) =
℘(z)− e1
e2 − e1

,

which can be obtained from the well-known addition theorem for ℘. We have

w(3z) = y

(

y4 + 4yt− 6y2t− 3t2 + 4yt2

4y3t− 6y2t + 4y3 − 3y4 + t2

)2

=: y

(

f(y, t)

g(y, t)

)2

, (35)

where y = w(z). At the points z of third order, we have w(3z) = ∞, while at
the points of 6-th order, w(3z) ∈ {0, 1, t}. So we have to solve four equations

f(y, t) = 0, g(y, t) = 0, yf(y, t)− g(y, t) = 0, yf(y, t)− tg(y, t) = 0.

The first two polynomials are irreducible. Factoring the other two we obtain:

f(y, t)− g(y, t) = (y − 1)(4y3 − y4 − 6y2t− t2 + 4yt2)2

and
f(y, t)− tg(y, t) = (y − t)(y4 − 4yt+ 6y2t− 4y3t+ t2)2,

which together with f and g gives the four polynomials in (21), (22), (23),
(24).

Remarks.

1. The equation (14) defines a Kummer surface [11, p. 21, footnote].
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2. All algebraic solutions of Painlevé VI have been classified in [12]. How-
ever this classification is only up to Bäcklund transformations, and Bäcklund
transformations in general do not map exceptional solutions to exceptional
solutions [2].

We thank Chang-Shou Lin who sent us [2] and communicated the solu-
tion (2) before [3] was released, Clifford Earle for showing us an unpublished
letter of Carleson with an elementary proof of Theorem A, and the referee for
bringing [1] to our attention. We also thank Oleg Lisovyy, T. N. Venkatara-
mana and Math Overflow participants [6] for illuminating discussions.
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[14] Y. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror
of P 2, Geometry of differential equations, 131–151, Amer. Math. Soc.
Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998.

[15] M. Mazzocco, Picard and Chazy solutions to the Painlevé VI equation,
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