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Abstract

We introduce the “relative closure” operation on one-parametric families of semi-Pfaffian sets. We show
that finite unions of sets obtained with this operation (“limit sets”) constitute a structure, i.e., a Boolean
algebra closed under projections. Any Pfaffian expression, i.e., an expression with Boolean operations,
quantifiers, equations and inequalities between Pfaffian functions, defines a limit set. The structure of limit
sets is effectively o-minimal: there is an upper bound on the complexity of a limit set defined by a Pfaffian
expression, in terms of the complexities of the expression and the Pfaffian functions in it.

1 Introduction

Pfaffian functions [14, 15] are solutions of a triangular system of first-order partial differential equations
with polynomial coefficients (see Definition 2.1 below). A semi-Pfaffian set, defined by a Boolean formula
with equations and inequalities between Pfaffian functions, is characterized by global finiteness properties.
This means that the geometric and topological complexity of a semi-Pfaffian set admits an upper bound
in terms of the complexity of its defining formula.

A sub-Pfaffian set Y is the image of a projection of a semi-Pfaffian set X into a subspace. Many
finiteness properties of Y can be derived from the corresponding properties of X . These finiteness prop-
erties make semi- and sub-Pfaffian sets one of the favorite objects in the theory of o-minimal structures
(see [3, 2]).

Upper bounds on the topological complexity of semi-Pfaffian sets were established in [15]. Different
aspects of the geometric complexity of semi-Pfaffian and sub-Pfaffian sets, such as the order of tangency
(Lojasiewicz inequality), stratification, frontier and closure, were addressed in [4, 5, 6, 7, 8].

For a restricted sub-Pfaffian set Y (projection of a restricted semi-Pfaffian set, see Definition 2.4)
the complement of Y is sub-Pfaffian [5, 8, 22]). The algorithm in [8] provides an upper bound on the
complexity of an existential expression for the complement of Y in terms of the complexity of an existential
expression for Y .

For non-restricted semi-Pfaffian sets, Charbonnel [1] and Wilkie [23] introduced the “closure at infin-
ity” operation. Charbonnel-Wilkie theorem ([23], see also [18, 13, 21]) implies that the sets constructed
from non-restricted semi-Pfaffian sets by a finite sequence of projections and closures at infinity constitute
an o-minimal structure.

In this paper, we introduce the “relative closure” operation (see Definition 3.5 below) on one-parametric
families of semi-Pfaffian sets. A “limit set” is a finite union of the relative closures of semi-Pfaffian fam-
ilies. Every semi-Pfaffian set is a limit set. The main results of this paper (Theorems 3.10 and 6.1) state
that limit sets constitute an effectively o-minimal structure, i.e., any expression with limit sets defines a
limit set, with an upper bound on the complexity of the resulting limit set in terms of the complexity
of the expression and of the limit sets in it. Since the number of connected components of a limit set
admits an upper bound in terms of its complexity (Theorem 3.13) this provides an efficient version of the
Charbonnel-Wilkie theorem for Pfaffian expressions.
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2 Relative Closure and the Complexity of Pfaffian Elimination

2 Pfaffian functions and semi-Pfaffian sets

For a set X ⊂ Rn, let X and ∂X = X \X denote its closure and frontier. We assume that the closure
points of X at infinity are included in X and ∂X . To avoid the separate treatment of infinity, we assume
that Rn is embedded in the projective space, and all constructions are performed in an affine chart U
such that X is relatively compact in U . To achieve this, it may be necessary to subdivide X into smaller
pieces, each of them relatively compact in its own chart.

Definition 2.1 (See [15]). A Pfaffian chain of order r ≥ 0 and degree p ≥ 1 in Rn is a sequence of
functions y(x) = (y1(x), . . . , yr(x)), each yi defined and analytic in an open domain Gi ⊂ Rn, satisfying
a system of Pfaffian equations

dyi(x) =
n∑
j=1

Pij
(
x, y1(x), . . . , yi(x)

)
dxj , for x ∈ Gi, i = 1, . . . , r. (1)

Here Pij(x, y1, . . . , yi) are polynomials of degree at most p. The system (1) is triangular: Pij does not
depend on yk with k > i.

Each domain Gi should satisfy the following conditions:

(i) The graph Γi = {x ∈ Gi, t = yi(x)} of yi(x) belongs to an open domain

Ωi = {x, t : x ∈ Gi−1, Siν(x, y1(x), . . . , yi−1(x), t) > 0, for ν = 1, . . . , Ni}

with Siν polynomial in x, y1, . . . , yi−1, t, and ∂Γi ⊂ ∂Ωi.

(ii) Γi is a separating submanifold (“Rolle leaf”) in Ωi, i.e., Ωi is a disjoint union of Γi and two open
domains Ω−i and Ω+

i . This is true, for example, when Gi is connected and Ωi simply connected ([15],
p.38).

A Pfaffian function of degree d > 0 with the Pfaffian chain y(x) is a function q(x) = Q(x, y(x)), where
Q(x, y) is a polynomial of degree at most d. The function q(x) is defined in a semi-Pfaffian domain

G =
⋂
Gi = {Siν(x, y1(x), . . . , yi(x)) > 0, for i = 1, . . . , r, ν = 1, . . . , Ni}. (2)

Remark 2.2. The above definition of a Pfaffian chain corresponds to the definition of a special Pfaffian
chain in [4] (see also [7]). It is more restrictive than definitions in [15] and [4] where Pfaffian chains are
defined as sequences of nested integral manifolds of polynomial 1-forms. Both definitions lead to (locally)
the same class of Pfaffian functions.

More general definitions of Pfaffian functions, where the coefficients of equations (1) can be non-
polynomial, are considered in [LR] and [MS]. Most of our constructions can be adjusted to this more
general definition. However, efficient upper bounds on the complexity do not hold in this case.

Example 2.3 (Iterated exponential and logarithmic functions). For r = 1, 2, . . . , let er(t) =
exp(er−1(t)), with e0(t) = t. The functions e1, . . . , er constitute a Pfaffian chain of order r and de-
gree r, since der = er · · · e1 dt.

For r = 1, 2, . . . , let lr(t) = ln(lr−1(t)) for t > er−1(0), with l0(t) = t. Define

ηr(λ) = 1/lr(1/λ). (3)

The function ηr(λ) is defined in Gr = {0 < λ < 1/er(0)}. The functions η0, . . . , ηr constitute a Pfaffian
chain of order r + 1 and degree r + 2, since

dη0 = −η2
0 dλ, dη1 = η0η

2
1 dλ, . . . , dηr = (−1)r−1η0 · · · ηr−1η

2
r dλ.

In the following, we fix a Pfaffian chain y(x) = (y1(x), . . . , yr(x)) and, if not explicitly stated otherwise,
consider only Pfaffian functions with this particular Pfaffian chain, without explicit reference to the
functions yi(x) and their domains of definition Gi.
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Definition 2.4. A basic semi-Pfaffian set X of the format (I, J, n, r, p, d) in a semi-Pfaffian domain
G ⊂ Rn is defined by a system of equations and inequalities

X = {x ∈ G, φi(x) = 0, ψj(x) > 0, for i = 1, . . . , I, j = 1, . . . , J} (4)

where φi and ψj are Pfaffian functions in G of degree not exceeding d, with a common Pfaffian chain
of order r and degree p. We assume that G satisfies conditions (i) and (ii) of Definition 2.1, and the
inequalities (2) for G are included in the definition of X .

The set X is restricted in G if X ⊂ G.

A semi-Pfaffian set of the format (N, I, J, n, r, p, d) is a finite union of at most N basic semi-Pfaffian
sets of the formats not exceeding (I, J, n, r, p, d) component-wise, all with the same Pfaffian chain. A
semi-Pfaffian set X is restricted if it is a finite union of restricted basic semi-Pfaffian sets.

We need the following properties of semi-Pfaffian sets.

Proposition 2.5. Semi-Pfaffian sets in G constitute a Boolean algebra. The format of a set defined by
a Boolean formula with semi-Pfaffian sets admits an upper bound in terms of the formats of these sets
and the complexity of the Boolean formula.

Theorem 2.6 (Khovanskii [15], see also [24]). The number of connected components of a semi-Pfaff-
ian set X is finite, and admits an upper bound in terms of the format of X.

Definition 2.7. A semi-Pfaffian set X is nonsingular of codimension k if, in a neighborhood of any point
x0 ∈ X , it coincides with a basic semi-Pfaffian set {φ1(x) = · · · = φk(x) = 0} with the differentials of the
functions φ1, . . . , φk independent at x0.

Proposition 2.8 (See [7]). Every semi-Pfaffian set X can be represented as a disjoint union of semi-
Pfaffian subsets Xk, nonsingular of codimension k. For each k,

⋃
l≥kX

l is relatively closed in X. The

formats of Xk admit upper bounds in terms of the format of X.

Definition 2.9. Dimension of a semi-Pfaffian set X is the maximum d such thatXn−d in Proposition 2.8
is nonempty.

Proposition 2.10. Let X be a semi-Pfaffian set in a semi-Pfaffian domain G. Then X ∩G and ∂X ∩G
are semi-Pfaffian sets. The formats of these sets admit upper bounds in terms of the format of X.

Proof. This follows from the algorithm [6] for the frontier and closure of a semi-Pfaffian set, and from
the complexity estimates in [8].

Lemma 2.11 (Curve selection). Let X be a semi-Pfaffian set in a semi-Pfaffian domain G such that
0 ∈ X \ {0}. There exists a one-dimensional nonsingular semi-Pfaffian subset γ of X \ {0} such that
0 ∈ γ. The format of γ admits an upper bound in terms of the format of X.

Proof. Due to Proposition 2.8, we can suppose X to be a nonsingular basic semi-Pfaffian set of codimen-
sion k such that the differentials of φ1, . . . , φk in (4) are independent at each point of X . Let ψ be the
the product of all functions ψj in (4) multiplied by 1 + (c, x), with a generic vector c. If there are no
inequalities in (4), we set ψ = 1 + (c, x).

We assume (see Definition 2.4) that the functions ψj include the inequalities for G. In particular, ψ
vanishes on ∂X .

Consider the set where |ψ| is maximal over Xε = {x ∈ X : |x| = ε}. This set is contained in the set γε
of critical points of ψ|Xε . It follows from Lemma 2.15 below that, for a generic c, these critical points are
non-degenerate, for small ε > 0. Hence, for a small δ > 0, the set γ = {(ε, γε) : 0 < ε < δ} is nonsingular
one-dimensional. It is clear that γ is semi-Pfaffian and 0 ∈ γ.
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Proposition 2.12 (Exponential Lojasiewicz inequality, [12, 16, 17]). Let X be a semi-Pfaffian
set in G ⊂ Rn with a Pfaffian chain of order r, and let q(x) be a Pfaffian function in Rn. Suppose
that 0 belongs to the closure of X ∩ {q(x) > 0}. Then 0 belongs to the closure of

x ∈ X : q(x) ≥ 1/er(|x|−N ), (5)

for some N > 0. Here er(λ) is the iterated exponential function from Example 2.3.

Proof. Let Xε = X ∩ {|x| = ε}. Due to Lemma 2.11, we can suppose that X ∩ {q > 0} is a nonsingular
curve. Let us choose a branch γ of this curve such that 0 ∈ γ. Let y(x) = (y1(x), . . . , yr(x)) be the
Pfaffian chain for X . We have γ ⊂ {φ1(x) = · · · = φn−1(x) = 0} where φj(x) = Qj(x, y(x)) are Pfaf-
fian functions, with Qj polynomial in (x, y), and the differentials of φj(x) are independent on γ. This
implies that the differentials of Q1(x, y), . . . , Qn−1(x, y) are independent on Γ = {x ∈ γ, y = y(x)}. In
particular, there is a (r + 1)-dimensional irreducible component Z of the algebraic set {Q1(x, y) = · · · =
Qn−1(x, y) = 0} in Rn+r such that Γ ⊂ Z. After a linear change of variables in Rn, we can suppose
that |xn| = maxi |xi| on γ in the neighborhood of 0. Since Z 6⊂ {xn = 0}, there exist linear functions
l1(x, y), . . . , lr(x, y) in Rn+r such that R[x, y]/I(Z) is algebraic over R[xn, l1, . . . , lr]. In particular, func-
tions x1, . . . , xn−1 and y1(x), . . . , yr(x) restricted to γ are algebraic over the field generated by r + 1
functions xn, l1(x, y(x)), . . . , lr(x, y(x)) restricted to γ.

Consider t = 1/|xn| as a parameter on γ in the neighborhood of x = 0. Restrictions of Pfaffian
functions to γ can be considered as functions in t defined for large t. Due to the finiteness properties of
Pfaffian functions [15], germs at t =∞ of these functions generate a Hardy field H . The above arguments
imply that H has transcendence degree at most r over R(t). Due to Proposition 5 of [20], rank of H does
not exceed r+1. From Theorem 2 of [20], any function h(t) in H is dominated by an iterated exponential
function er (see Example 2.3 above): |h(t)| < er(t

N ) for some N > 0 as t → ∞. Our statement follows
from this inequality applied to h = (1/q)|γ , since |xn| = maxi |xi| ≥ |x|/

√
n on γ in the neighborhood of

0.

Lemma 2.13. Let X be a smooth manifold in Rn. Let fc(x) = f(x)−
∑
α cαgα(x) be a family of smooth

functions on X depending on parameters c ∈ Rm. Suppose that, for any x ∈ X, the differentials of gα
generate the cotangent space to X at x. Then, for a generic c, fc(x) has only non-degenerate critical
points. More precisely, the values of c such that fc(x) has a degenerate critical point constitute a zero
measure set S ⊂ Rm.

Proof. This is a variant of Thom’s transversality theorem (See, e.g., [11], Ch. II). For convenience, we
give a proof here. Let d = dimX . Fix x0 ∈ X . One can renumber gα so that the differentials of g1, . . . , gd
generate the cotangent space to X at x0. Let us change coordinates in a neighborhood U of x0 so that
gi(x) = xi− ai, for x ∈ U, i = 1, . . . , d. Consider the mapping df : U → Rd in these coordinates. The set
of critical points of fc in U coincides with df−1(c), and all these points are non-degenerate when c is not
a critical value of df . From Sard’s theorem, the set SU of critical values of df has zero measure. Since
the sets U selected for different points x0 cover X , a countable covering of X by these sets can be found.
Accordingly, the set S, a countable union of the sets SU , has zero measure.

Lemma 2.14. Let X be a smooth manifold in Rn, and f(x) a smooth non-vanishing function on X.
For a generic c = (c1, . . . , cn), all critical points of a function f(x)(1 + (c, x)) are non-degenerate. More
precisely, the values of c such that f(x)(1+(c, x)) has a degenerate critical point constitute a zero measure
set V ⊂ Rn.

Proof. Consider the following family: fa,c = f(x)−af(x)+(c, x)f(x). It is easy to see that the differentials
of f(x) and xif(x) generate the cotangent space to X at each point x0 ∈ X . Lemma 2.13 implies that
the set

S = {(a, c) : fa,c has a degenerate critical point}

has zero measure in Rn+1. Since multiplication by a constant does not change critical points and their
degeneracy, S ∩ {a 6= 1} is a cylinder over the set V . Hence V has zero measure in Rn.
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Lemma 2.15. Let X be a smooth manifold in Rn, and F (x, λ) a smooth non-vanishing function on
X × Rd. For a fixed λ, consider fλ(x) = F (x, λ) as a function on X. For a generic c, the set

Wc = {λ : fλ(x)(1 + (c, x)) has a degenerate critical point}

has zero measure in Rd.

Proof. Lemma 2.14 implies that, for each λ, the set

Sλ = {c : fλ(x)(1 + (c, x)) has a degenerate critical point}

has zero measure in Rn. Let S = ∪λ(Sλ, λ) ⊂ Rn × Rd. Due to Fubini theorem, S has measure zero in
Rn × Rd. This implies that, for a generic c, the set Wc = S ∩ {c = const} has zero measure in Rd.

3 Relative closure and limit sets

Let Rn×R be (n+1)-dimensional space, with coordinates x = (x1, . . . , xn) and λ. For a set X ⊂ Rn×R,
we define X+ = X ∩{λ > 0}, Xλ = X ∩{λ = const}, and X̌ = X+∩{λ = 0}. Coordinate λ is considered
as a parameter, and the set X is considered as a family of sets Xλ in Rn.

Definition 3.1. Let G be a semi-Pfaffian domain (see Definition 2.1) in Rn × R. A subset X ⊂ G is a
semi-Pfaffian family if X is a semi-Pfaffian set with a Pfaffian chain defined in G and, for any ε > 0, the
set X ∩ {λ > ε} is restricted in G. The format of X is defined as the format of a semi-Pfaffian set Xλ

for a small λ > 0.

Remark 3.2. In all constructions below, upper bounds on the complexity can be established for semi-
Pfaffian families considered as semi-Pfaffian sets in Rn × R. However, the upper bounds in terms of the
format of a family (i.e., the complexity of the fibers Xλ) are more important in applications, since they
provide better estimates for the geometric and topological complexity of limit sets.

Proposition 3.3. Let X be a semi-Pfaffian family. Then X+ and (∂X)+ are semi-Pfaffian families.
The formats of these families admit upper bounds in terms of the format of X.

Proof. Since X ∩ {λ > ε} is restricted in G, for any ε > 0, the set X+ is contained in G. Proposition 3.3
implies that X+ and (∂X)+ are semi-Pfaffian sets in G. The sets X+ ∩ {λ > ε} and (∂X)+ ∩ {λ > ε}
are restricted in G, for any ε > 0, since this is true for X .

The statement on the formats follows from Proposition 2.10, since (X)λ = Xλ and (∂X)λ = ∂(Xλ) for
a generic λ > 0. These equalities can be derived from Proposition 2.8, Sard’s theorem, and the finiteness
properties of semi-Pfaffian sets.

Definition 3.4. Two semi-Pfaffian families X and Y form a semi-Pfaffian couple (X,Y ) if Y is relatively
closed in {λ > 0} (i.e., Y + = Y+) and contains (∂X)+. The format of the couple (X,Y ) is defined as the
component-wise maximum of the formats of X and Y .

Definition 3.5. Let (X,Y ) be a semi-Pfaffian couple in G ⊂ Rn × R. The relative closure of (X,Y ) is
defined as

(X,Y )0 = X̌ \ Y̌ ⊂ Ǧ ⊂ Rn. (6)

If Y = (∂X)+, we write X0, the relative closure of X , instead of (X,Y )0. The format of (X,Y )0 is
defined as the format of the couple (X,Y ).

Definition 3.6. A limit set in Ω ⊂ Rn is a finite union of the relative closures (Xi, Yi)0 of semi-Pfaffian
couples (Xi, Yi) in Gi ⊂ Rn × R, such that Ǧi = Ω for all i. The format of a limit set is defined
as (K,N, I, J, n, r, p, d) where (N, I, J, n, r, p, d) is the component-wise maximum of the formats of the
couples (Xi, Yi), and K is the number of these couples.
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Proposition 3.7 (Complement of a limit set). Let (X,Y ) be a semi-Pfaffian couple in G ⊂ Rn×R.
Then the complement Ǧ \ (X,Y )0 of (X,Y )0 in Ǧ is a limit set. The format of this limit set admits an
upper bound in terms of the format of (X,Y ).

Proof. We assume that inequalities siν(x, λ) = Siν(x, y1(x, λ), . . . , yi(x, λ)) > 0 (see (2)) defining G are
included in the definition of X . Let s(x, λ) be the product of all functions sν(x, λ) in these inequalities,
so that s > 0 in G and s = 0 on ∂G. Let G′ = G ∩ {λ > 0, s(x, λ) ≥ 1/er(λ

−N )}. Here r is the order of
the Pfaffian chain for X and N is a positive integer. Let Z = G \X and Z ′ = Z ∩ G′. It is clear that
Z ′ is a semi-Pfaffian family in G, and its format (as a family) does not depend on N (since 1/er(λ

−N ),
for a fixed λ, is a constant). It follows from Proposition 2.12 that Ž = Ž ′ for large N . We are going to
prove that

Ǧ \ (X,Y )0 = (Z ′, X+)0 ∪ (Y, ∅)0. (7)

By definition of the relative closure, the right side of (7) equals (Ž ′ \ X̌) ∪ Y̌ = (Ž \ X̌) ∪ Y̌ . Since
(X,Y )0 ∩ (Ž \ X̌) = ∅ and (X,Y )0 ∩ Y̌ = ∅, the left side of (7) contains its right side. Let now
x ∈ Ǧ \ (X,Y )0. Note that x belongs either to X̌ or to Ž (or to both). If x ∈ X̌ then x ∈ Y̌ . Otherwise,
x ∈ Ž \ X̌. This implies that the right side of (7) contains its left side.

Proposition 3.8 (Product of limit sets). Let (X,Y ) and (X ′, Y ′) be two semi-Pfaffian couples in
G ⊂ Rn × R and G′ ⊂ Rm × R, respectively. Then the product of (X,Y )0 and (X ′, Y ′)0 is a limit set in
Ǧ× Ǧ′ ⊂ Rn × Rm:

(X,Y )0 × (X ′, Y ′)0 = (X ×R X ′, Z)0, where Z = (X+ ×R Y ′) ∪ (Y ×R X ′+). (8)

Here X ×R X ′ = {(x, x′, λ) : (x, λ) ∈ X, (x′, λ) ∈ X ′} is the fibered product over R.

Proof. Let z ∈ X̌ and z′ ∈ X̌ ′. From Lemma 2.11, one can find continuous functions x = x(λ) and x′ =
x′(λ) defined for small λ > 0 such that (x(λ), λ) ∈ X, (x′(λ), λ) ∈ X ′, and limλ↘0(x(λ), x′(λ)) = (z, z′).
Hence (z, z′) ∈ (̌X ×RX ′). This implies X̌ × X̌ ′ = (̌X ×RX ′). Similarly, (X̌ × Y̌ ′)∪ (Y̌ × (X̌ ′) = Ž. The
statement then follows from standard set-theoretic arguments.

Proposition 3.9 (Intersection of limit sets). Let (X,Y ) and (X ′, Y ′) be two semi-Pfaffian couples.
Then (X,Y )0 ∩ (X ′, Y ′)0 is a limit set. The format of this limit set admits an upper bound in terms of
the formats of the couples (X,Y ) and (X ′, Y ′).

Proof. We are going to prove that, for large integer N ,

(X,Y )0 ∩ (X ′, Y ′)0 = ((X ×R X ′) ∩WN , Z)0 (9)

where Z is defined in (8) and

WN = {(x, x′, λ) : |x− x′| ≤ ηr(λ)1/N}. (10)

Here r is the order of the Pfaffian chain for X,Y,X ′, Y ′, ηr is the iterated logarithmic function de-
fined in (3), and Ǧ is identified with its diagonal embedding in Rn × Rn. The statement follows from
Propositions 2.12 and 3.8, and the identity

(X,Y )0 ∩ (X ′, Y ′)0 = [(X,Y )0 × (X ′, Y ′)0] ∩ {x = x′}.

We only have to show that

(̌(X ×R X ′) ∩WN ) = (̌X ×R X ′) ∩ {x = x′}.

Due to Lemma 2.11, a point (z, z) belongs to (̌X ×R X ′) if and only if z belongs to X̌ ∩ X̌ ′. From
(5) applied to q ≡ λ, the point (z, 0) belongs to the closures of X ∩ {(x, λ) : ηr(λ) ≥ |x − z|N} and
X ′ ∩ {(x′, λ) : ηr(λ) ≥ |x′ − z|N}, for large enough N . Let (x, λ) and (x′, λ) be two points in X and X ′,
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respectively, satisfying these two inequalities. Then |x− x′| ≤ |x− z|+ |x′ − z| ≤ 2(ηr(λ))1/N . For small
λ, this implies |x− x′|N+1 ≤ ηr(λ), hence (z, z, 0) belongs to the closure of (X+ ×R X ′+) ∩WN+1, q.e.d.

To derive an upper bound for the format of (X,Y )0 ∩ (X ′, Y ′)0, note that, for a fixed λ, ηr(λ)1/N is
a constant, and (WN )λ is a semialgebraic set of degree 2.

Theorem 3.10. Limit sets constitute a Boolean algebra. The format of a limit set defined by a Boolean
formula with limit sets X1, . . . , XN admits an upper bound in terms of the complexity of the formula and
the formats of X1, . . . , XN .

Proof. This follows from Propositions 3.7 and 3.9.

Proposition 3.11. Let (X,Y ) be a semi-Pfaffian couple, and X ′ a semi-Pfaffian family such that X ′ is
a relatively closed subset of X. Then (X \X ′, Y ∪X ′) and (X ′, Y ) are semi-Pfaffian couples, and (X,Y )0

is a disjoint union of (X \X ′, Y ∪X ′)0 and (X ′, Y )0.

Proof. Since X ′ is relatively closed in X , we have (∂X ′)+ ⊂ (∂X)+ ⊂ Y . In particular, (X ′, Y ) is a
semi-Pfaffian couple, and Y ∪X ′ is relatively closed in {λ > 0}. Since a point in ∂(X \X ′) belongs either
to ∂X or to X ′, we have

(
∂(X \X ′)

)
+
⊂ Y ∪X ′, hence (X \X ′, Y ∪X ′) is a semi-Pfaffian couple.

It is clear that (X \X ′, Y ∪X ′)0 and (X ′, Y )0 are disjoint subsets of (X,Y )0. If a point x0 ∈ (X,Y )0

belongs to X̌ ′, then x0 ∈ (X ′, Y )0. Otherwise, x0 belongs to (X \X ′, Y ∪X ′)0.

Proposition 3.12. Let (X,Y ) be a semi-Pfaffian couple. Then (X,Y )0 is a disjoint union of sets
(Xk, Y k)0 with nonsingular k-dimensional sets Xk. Here k = 0, . . . ,dimX. The formats of the semi-
Pfaffian couples (Xk, Y k) admit upper bounds in terms of the format of (X,Y ).

Proof. This follows from Propositions 2.8 and 3.11.

Theorem 3.13 (See also [10]). Let (X,Y ) be a semi-Pfaffian couple. Then the number of connected
components of (X,Y )0 is finite, and admits an upper bound in terms of the format of (X,Y ).

Proof. Let Ψ(x) = minx′∈Y̌ (x− x′)2 be the (squared) distance from x to Y̌ and, for λ > 0, let Ψλ(x) =
miny∈Yλ(x− y)2 be the distance from x to Yλ. Let Zλ be the set of local maxima of Ψλ|Xλ .

For every connected component C of (X,Y )0, the function Ψ(x) is positive on C and vanishes on ∂C,
hence Ψ has a local maximum x0 ∈ C. For small λ > 0, there exist xλ ∈ Xλ such that |xλ − x0| → 0
as λ ↘ 0. This implies limλ↘0 Ψλ(xλ) = Ψ(x0) > 0. In particular, there exists a positive constant ε
such that Ψλ(xλ) > ε for small λ > 0. Let Wλ,ε = {x ∈ Xλ, Ψλ(x) > ε, and let Cλ be the connected
component of xλ in Wλ,ε. Since Ψλ(x) > ε for any x ∈ Cλ, the sets Cλ are close to C for small positive
λ, i.e., the closure of

⋃
λ>0 Cλ intersected with {λ = 0} is a connected subset of (X,Y )0 containing x0,

hence a subset of C. From the definition of Cλ, there exists a local maximum zλ of Ψλ|Xλ in Cλ, and
a connected component Vλ of Zλ containing zλ belongs to Cλ. Hence Vλ is close to C for small positive
λ. This implies that the number of connected components of (X,Y )0 does not exceed the number of
connected components of Zλ, for small positive λ.

Since Zλ is a restricted sub-Pfaffian set, an upper bound on the number of its connected components
in terms of the format of (X,Y ) can be obtained either from [8] or from the bounds on the Betti numbers
of restricted sub-Pfaffian sets in [9].

4 Regular families and dimension of limit sets

We consider Rn equipped with the standard Euclidean metric |x|2 =
∑
x2
i . For a linear subspace L ⊂ Rn,

we define L⊥ to be its orthogonal complement in Rn. Let πL : Rn → L⊥ be a projection along L. For
x ∈ Rn or z = πLx ∈ L⊥, let L+ x = L+ z denote an affine subspace of Rn through x parallel to L.
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For I = {i1, . . . , id} ⊂ {1, . . . , n}, let RI be the (n−d)-dimensional coordinate subspace of Rn defined
by xI = (xi1 , . . . , xid) = 0. Let πI denote a projection along RI .

Definition 4.1. Let L and T be two linear subspaces in Rn. We define internal distance from L to T as

dist i(L, T ) = sup
x∈L, |x|=1

inf
y∈T, |y|=1

|x− y|. (11)

Note that dist i(L, T ) 6= dist i(T, L), and dist i(L, T ) > 0 if and only if L 6⊂ T . External distance between
L and T in Rn is defined as

dist e(L, T ) = inf
x∈T⊥, |x|=1

inf
y∈L⊥, |y|=1

|x− y|. (12)

Note that dist e depends on the ambient space Rn. When it is necessary to specify the ambient space,
we write dist e(L, T ;Rn) instead of dist e(L, T ). We have dist e(L, T ;Rn) > 0 if and only if L and T are
transversal: L+ T = Rn.

Lemma 4.2. For fixed dimensions, d and k, of L and T , both dist i(L, T ) and dist e(L, T ) are con-
tinuous nonnegative semialgebraic functions on Gd,n × Gk,n, where Gd,n denotes the Grassmannian of
d-dimensional subspaces in Rn.

Proof. This follows from Definition 4.1 and the Tarski-Seidenberg principle.

Lemma 4.3. Let d and n be two positive integers, d < n. There exists a constant Cd,n > 0 such
that, for any d-dimensional subspace L of Rn, there is a subset I = {i1, . . . , id} ⊂ {1, . . . , n} with
dist e(L,RI) > Cd,n.

Proof. For any d-dimensional subspace L of Rn, there exists I = {i1, . . . , id} ⊂ {1, . . . , n} such that L is
transversal to RI . This implies that

ρ(L) = max
I:|I|=d

dist e(L,RI)

is positive. Since ρ is a continuous function on Gd,n, its minimum value Cd,n is positive.

Definition 4.4. Let X be a semi-Pfaffian family in Rn×R, and L a linear subspace of Rn. We say that
X is L-regular at x0 ∈ Rn if there exists a neighborhood Ω of x0 and a constant C > 0 such that, for
small λ > 0, the set Xλ ∩ Ω is nonsingular and

dist e(L, TxXλ;Rn) > C. (13)

for all x ∈ Xλ ∩ Ω. In other words, for any sequence (xν , λν) ∈ X+ converging to (x0, 0), the limit of
TxνXλν , if exists, is transversal to L.

A couple (X,Y ) is L-regular if X is L-regular at each point x0 ∈ (X,Y )0. For L = RI , an L-regular
couple is called I-regular.

Proposition 4.5. Let (X,Y ) be a semi-Pfaffian couple in G ⊂ Rn × R. Let L be a linear subspace in
Rn. Suppose that (X,Y ) is L-regular at x0 ∈ (X,Y )0. Let T = (L+ x0)× R. Then x0 ∈ (X ∩ T, Y )0.

Proof. From the definition of L-regularity, there exists a neighborhood Ω of x0 and a constant C > 0
such that (13) holds for small λ > 0 and x ∈ Xλ ∩ Ω. One can choose Ω a cylinder over a neighborhood
U of z0 = πLx

0 in L⊥.

Let (xν , λν) be a sequence of points in X+ converging to (x0, 0). We have xν ∈ Xλν ∩ Ω for large
ν. Since x0 ∈ (X,Y )0, we have also ∂Xλν ∩ Ω = ∅ for large ν. Let zν = πLx

ν . Let us connect (z0, λν)
with (zν , λν) by a line segment Sν of the length sν = |zν − z0|. We have Sν ⊂ U for large ν. Let us
parametrize Sν by t ∈ [0, sν], with t = 0 corresponding to zν and t = sν to z0. Let ξν = ∂/∂t be a unit
tangent vector field to Sν . For large ν the set Zν = Xλν ∩π−1

L Sν ∩Ω is nonsingular, and there is a unique
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smooth vector field ζν on Zν orthogonal to Zν ∩ (L+ xν) such that πLζν = ξν . Due to (13), supZν |ζν | is
bounded uniformly in ν.

Let γν be a trajectory of ζν starting at (xν , λν). Since ζν is uniformly bounded, we can assume, taking
U small enough, that γν cannot escape Ω at a point x ∈ ∂Ω such that πLx ∈ U . Since X ∩ {λ > ε}
is restricted in G, for every ε > 0, γν cannot escape G other than through ∂X . Since ∂X ⊂ Y and
Yλν ∩ Ω = ∅ for large ν, the only possibility for γν is to end at a point (uν , λν) ∈ Xλν ∩ Ω such that
πLu

ν = z0, hence (uν , λν) ∈ X+ ∩ T . Since xν → x0 and ζν is uniformly bounded, we have uν → x0 as
ν →∞. This implies x0 ∈ (̌X ∩ T ). Since x0 /∈ Y̌ , we have x0 ∈ (X ∩ T, Y )0.

Definition 4.6. Let L be a linear subspace in Rn. A subset Z of Rn is L-Lipschitz if, in a neighborhood
of each point x0 ∈ Z, the set Z coincides with a finite union of graphs of Lipschitz functions fν : L⊥ → L.
For L = RI , L-Lipschitz sets are called I-Lipschitz.

Proposition 4.7. Let L be a linear subspace of Rn of codimension d. Let (X,Y ) be a L-regular semi-
Pfaffian couple in Rn × R with dimX = d+ 1. Then (X,Y )0 is an L-Lipschitz set.

Proof. Let x0 ∈ (X,Y )0. Due to Proposition 4.5, (x0, 0) belongs to the closure of Γ = X+ ∩ T where
T = (L + x0) × R. The set Γ is nonsingular one-dimensional in the neighborhood of (x0, 0). Let Γk be
distinct branches of Γ such that (x0, 0) ∈ Γk.

Let Ω be a neighborhood of x0 in Rn such that, for small λ > 0, we have Yλ ∩ Ω = ∅ and (13) holds
at each point of Xλ ∩ Ω. We can choose Ω a cylinder over U ⊂ L⊥ where U is a small neighborhood of
z0 = πLx

0 in L⊥. With the same arguments as in the proof of Proposition 4.5, one can show that, for
small λ > 0, the set Xλ ∩ Ω is a finite union of graphs of smooth functions fk,λ on U with values in L,
with the graph of fk,λ passing Γk.

Since X is L-regular at x0, the gradients of fk,λ are uniformly bounded, independent of λ. For a fixed
z ∈ U and a fixed k, the values fk,λ(z) are bounded and depend monotonously on λ as λ → 0. Let Xk

be the union over λ > 0 of the graphs of fk,λ. Then Zk = X̌k ⊂ X̌ ∩Ω is a graph of a Lipschitz function
in U with values in L, and (X,Y )0 ∩Ω = ∪kZk.

Proposition 4.8. Let (X,Y ) be a semi-Pfaffian couple in G ⊂ Rn × R with dimX = d+ 1. Then

(X,Y )0 =
⋃

(XI , YI)0, (14)

union over I ⊂ {1, . . . , n} with |I| ≤ d, so that

(a) (XI , YI) is an I-regular semi-Pfaffian couple in G,

(b) XI ⊂ X is either empty or (|I| + 1)-dimensional, and dimYI ≤ max(dim Y, d). The formats of

(XI , YI) admit upper bounds in terms of the format of (X,Y ).

Proof. For d = 0, we can suppose X to be nonsingular 1-dimensional. Then (X,Y ) is I-regular for I = ∅.
Due to Proposition 2.8, there exists a relatively closed subset V ⊂ X such that X \ V is nonsingular

(d + 1)-dimensional, and dimV ≤ d. For I ⊂ {1, . . . , n} with |I| = d, let XI = {(x, λ) ∈ X \ V :
dist e(RI , TxXλ) > Cd,n}, where Cd,n is defined in Lemma 3.3. Then X \ V =

⋃
|I|=dXI and ∂XI is

relatively closed in X \ V . Due to Proposition 3.11,

(X,Y )0 =
⋃
|I|=d

(XI , YI)0 ∪ (W,Y )0, where YI = Y ∪ V ∪ ∂XI and W = V
⋃
|I|=d

(X ∩ ∂XI).

Note that each couple (XI , YI) is I-regular, and dimW ≤ d. The statement follows now from the
induction hypothesis.

Definition 4.9. For a semi-Pfaffian couple (X,Y ) in Rn ×R, dimension dim(X,Y )0 is defined as max-
imum of |I| over I ⊂ {1, . . . , n} such that (XI , YI)0 6= ∅ in (14).
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Proposition 4.10. Let K ⊂ {1, . . . , n}. Suppose that (X,Y ) in Proposition 4.8 satisfies the following
property: X ⊂ Z where Z is a (|K|+ 1)-dimensional semi-Pfaffian family, K-regular at all x ∈ (X,Y )0.
Then the union in (14) can be taken over I ⊂ K.

Proof. We repeat the arguments in the proof of Proposition 4.8, replacing the condition on TxXλ in the
definition of XI by the corresponding condition on πKTxXλ. Let d = dimX− 1 and k = |K|. For I ⊂ K
with |I| = d, let

XI = {(x, λ) ∈ X \ V : dist e(πKRI , πK(TxXλ);R⊥K) > Cd,k},

where V is the singular set of X and Cd,k is defined in Lemma 3.3. Then

X \ V =
⋃

I⊂K, |I|=d
XI and (X,Y )0 =

⋃
I⊂K, |I|=d

(XI , YI)0

⋃
(W,Y )0,

where YI = Y ∪ V ∪ ∂XI and W = V
⋃
I⊂K, |I|=d(X ∩ ∂XI).

5 L-tangent families and projections of limit sets

Definition 5.1. Let L be a linear subspace in Rn. A nonsingular family X in Rn×R is L-tangent at x0 ∈
Rn if, for any sequence (xν , λν) of points in X+ converging to (x0, 0), we have limν→∞ dist i(L, TxνXλν ) =
0. In other words, the limit of TxνXλν , if exists, is contained in L. A couple (X,Y ) is L-tangent if X is
L-tangent at each point of (X,Y )0. For L = RI , an L-tangent couple is called I-tangent.

Proposition 5.2. Let (X,Y ) be an L-tangent semi-Pfaffian couple in Rn×R. Then (X,Y )0 is contained
in a finite number of affine subspaces parallel to L. The number of these planes admits an upper bound
in terms of the format of (X,Y ).

Proof. One can assume L = RK where K = {1, . . . , k}. Due to Proposition 4.8, (X,Y )0 = ∪I(XI , YI)0

with XI ⊂ X either empty or (|I|+ 1)-dimensional, and (XI , YI) I-regular, for each I ⊂ {1, . . . , n}. Let
x0 ∈ (XI , YI)0, for some I. In particular, (XI , YI)0 6= ∅. Since X is K-tangent at x0 and XI ⊂ X, XI

is K-tangent at x0. This is only possible when I ∩K = ∅, i.e., R⊥K ⊂ RI . According to Proposition 4.7,
(XI , YI)0 is an I-Lipschitz set. In the neighborhood of x0, it is a finite union of graphs of Lipschitz
functions fν : R⊥I → RI . Since XI is K-tangent, the first k components of each fν are constants. This
implies that (XI , YI)0 is contained in at most countable set of affine planes parallel to RK . The number
of these planes does not exceed the number of connected components of (XI , YI)0, which admits an upper
bound in terms of the format of (X,Y ) (Theorem 3.13 and Proposition 4.8).

Proposition 5.3. Let (X,Y ) be a semi-Pfaffian couple in Rn×R with dimX = d+1, and J ⊂ {1, . . . , n}.
Then

(X,Y )0 =
⋃

(XI , YI)0, (15)

union over I ⊂ {1, . . . , n} with |I| ≤ d, so that

(a) (XI , YI) is an I-regular semi-Pfaffian couple in Rn × R,

(b) XI ⊂ X is either empty or (|I|+ 1)-dimensional, and dimYI ≤ max(dim Y, d).

(c) for any affine space T ⊂ Rn × R parallel to RI∩J × R, (XI ∩ T, YI) is J-tangent.

Proof. We use induction on d, as in the proof of Proposition 4.8. For d = 0, the set X is 1-dimensional.
Then (X,Y ) is I-regular for I = ∅ and J-tangent for any J .



A. Gabrielov 11

Let V be a relatively closed subset in X such that X \ V is nonsingular (d + 1)-dimensional, and
dimV ≤ d. Let I ⊂ {1, . . . , n} with |I| = d. Let K = I ∩ J, k = |K|, m = |J |. Define

XI = {(x, λ) ∈ X \ V : dist e(RK , TxXλ;Rn) > Ck,m,

dist e(RI ,RK ∩ TxXλ;RK) > Cd−k,n−m,

dist i(RJ ,RK ∩ TxXλ) < ηr(λ
N )}

where N is a large number, r is the order of the Pfaffian chain for X , and ηr is defined in (3). The
constants Ck,m and Cd−k,n−m are defined in Lemma 3.3.

It can be shown, using Proposition 2.12, that

(X,Y )0 =
⋃
|I|=d

(XI , YI)0

⋃
(W,Y )0 where YI = Y ∪ V ∪ ∂XI and W = V

⋃
|I|=d

(X ∩ ∂XI).

The statement follows from the induction hypothesis, since (XI , YI) satisfy conditions (a)–(c) and dimW ≤
d.

Definition 5.4. For J ⊂ {1, . . . , n}, let πJ : Rn → R⊥J be a natural projection along RJ . For a
semi-Pfaffian couple (X,Y ) in Rn × R, dimension dim πJ(X,Y )0 is defined as maximum of |I ∩ J |
over I ⊂ {1, . . . , n} such that (XI , YI)0 6= ∅ in a decomposition (15) satisfying conditions (a)–(c) of
Proposition 5.3.

Proposition 5.5. Let K, J ⊂ {1, . . . , n}. Suppose that (X,Y ) in Proposition 5.3 satisfies the following
property: X ⊂ Z where Z is a semi-Pfaffian family in Rn × R such that

(i) dimZ = |K|+ 1,

(ii) Z is K-regular at all x ∈ (X,Y )0,

(iii) for any affine space T ⊂ Rn ×R parallel to RK∩J ×R, Z ∩ T is J-tangent at all x ∈ (X,Y )0. Then

the union in (15) can be taken over I ⊂ K.

Proof. The proof is similar to the proof of Proposition 4.10.

Lemma 5.6 (Fiber cutting). Let (X,Y ) be a semi-Pfaffian couple in Rn × R. Let K, J ⊂ {1, . . . , n}
and π = πJ . Suppose that (X,Y ) is K-regular and, for any affine subspace T ⊂ Rn × R parallel to
RJ∩K × R, the couple (X ∩ T, Y ) is J-tangent. In particular, d = dimπ(X,Y )0 = |J ∩K|. Let R2n =
Rn × Rn, and ρ : R2n → Rn a projection to the first factor.

There exist semi-Pfaffian couples (V,W ) and (V ′,W ′) in R2n × R such that

(i)ρV, ρV ′ ⊂ X,

(ii)π(X,Y )0 = πρ(V,W )0 ∪ πρ(V ′,W ′)0,

(iii)dim πρ(V ′,W ′)0 < d,

(iv)(V,W ) is (J ∩K)-regular,

(v) V is (d+ 1)-dimensional,

(vi)for any λ > 0 and any affine subspace L of R2n parallel to RJ∩K × Rn, the set Vλ ∩ L is finite. The

formats of (V,W ) and (V ′,W ′) admit upper bounds in terms of the format of (X,Y ).

Proof. Due to Proposition 4.5, (X,Y )0 is the union of (X ∩T, Y )0 over all affine T parallel to RK∩J ×R.
Due to Proposition 5.2, π(X ∩ T, Y )0 is finite, for any such T .

We want to apply the arguments in the proof of Theorem 3.13 to each couple (X ∩ T, Y ). Let
Y = ∪kY k be a weak stratification of Y (see Proposition 2.8). For a generic 2n-vector (c, c′), consider
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a “distance” function Φ(x, x′) = [1 + (c, x) + (c′, x′)](x − x′)2 on R2n. Suppose that (c, c′) is chosen so
that 1 + (c, x) + (c′, x′) is positive on X × Y . For z ∈ R⊥K∩J , let Tz = {x ∈ Rn : πJ∩Kx = z} be an affine
subspace parallel to RJ∩K . Define semi-Pfaffian families V ∗ =

⋃
z,λ Vz,λ and W ∗ =

⋃
z,λWz,λ in R2n×R

as follows:
V kz,λ = {x ∈ Xλ ∩ Tz, x′ ∈ Y kλ , (x, x′) is a critical point of Φ|(Xλ∩Tz)×Y kλ };

Vz,λ =
⋃
k

V kz,λ; Wz,λ =
⋃
k

{(x, x′) ∈ V kz,λ a degenerate critical point of Φ|(Xλ∩Tz)×Y kλ }.

Note that V ∗ and W ∗ are relatively closed in X×R Y . The set Vz,λ contains all points x0 ∈ (Xλ∩Tz)\Y
where Ψλ(x) = minx′∈Yλ Φ(x, x′) has a local maximum on Xλ∩Tz at x0. This implies πρ(V ∗, Y ×RY )0 =
π(X,Y )0.

Let S be the set of those (z, λ) for which Wz,λ is non-empty. Due to Lemma 2.15, for a generic (c, c′)
the set S has zero measure in RJ∩K × R. Since W ∗ ⊂ X ×R Y and (X,Y ) is K-regular, Proposition 5.5
implies that dimπ(W ∗, Y ×R Y )0 < d.

For (z, λ) /∈ S, the set Vz,λ is discrete. Since V ∗ ⊂ X ×R Y , proposition 5.5 applied to Z = X × Rn
and K ′ = K ∪ {n+ 1, . . . , 2n} implies that

(V ∗, (Y ×R Y ) ∪W ∗)0 =
⋃

(VI ,WI)0,

union over I ⊂ K ′, where (VI ,WI) satisfy conditions (a)–(c) of Proposition 5.3 and the sets (VI ,WI)0

are empty for all I ⊃ J ∩K unless I = J ∩K.

Let V = VJ∩K and W = WJ∩K . The set WJ∩K in the proof of Proposition 5.5 can be chosen so
that (V ∗, (Y ×R Y ) ∪W ∗)0 = (V,W )0 ∪ (W, (Y ×R Y ) ∪W ∗)0. and dimπρ(W, (Y ×R Y ) ∪W ∗)0 < d
Let V ′ = W ∗ ∪ W and W ′ = Y ×R Y . Then the couples (V,W ) and (V ′,W ′) satisfy conditions of
Lemma 5.6.

6 Projection theorem

In this section, we fix J = {1, . . . ,m} ⊂ {1, . . . , n} and denote π = πJ : Rn → Rm. For x ∈ Rn, let
x = (y, z) where y = (x1, . . . , xm) and z = (xm+1, . . . , xn).

Theorem 6.1 (Projection of a limit set). Let (X,Y ) be a semi-Pfaffian couple in G ⊂ Rn×R. Then
π(X,Y )0 is a limit set in πǦ ⊂ Rm, and its format admits an upper bound in terms of the format of
(X,Y ).

Proof of this theorem will be given at the end of this section. First, we prove it for X relatively closed
in {λ > 0}, in two special cases: when Y is empty, and when each fiber of π restricted to X̌ contains at
most one point. Next, we reduce the case of finite fibers to the case of one-point fibers. Finally, general
case is reduced to the case of finite fibers by fiber-cutting.

Proposition 6.2. Let X be a semi-Pfaffian family in G ⊂ Rn × R. Suppose that X is relatively closed
in {λ > 0}, i.e., X+ = X ∩ {λ > 0}. Then πX̌ is a limit set in πǦ ⊂ Rm.

Proof. Let f1(x, λ), . . . , fr(x, λ) be a Pfaffian chain for X . Define a “z-cone over X” as

CX = {(y, z, λ) ∈ Rn × R : λ > 0, (y,
z

λ
, λ) ∈ X}.

This is a semi-Pfaffian family in the z-cone CG over G, with the Pfaffian chain

f1(y,
z

λ
, λ), . . . , fr(y,

z

λ
, λ).

Note that (̌CG) = πǦ. We have πX̌ = (̌CX) = (CX, ∅)0.
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Proposition 6.3. Let (X,Y ) be a semi-Pfaffian couple in G ⊂ Rn × R and Z a limit set in πǦ ⊂ Rm.
Suppose that X is relatively closed in {λ > 0} and, for each y ∈ π(X,Y )0 \Z, the set X̌ ∩ π−1y contains
at most one point. Then π(X,Y )0 \ Z is a limit set in πǦ.

Proof. Due to Proposition 6.2, πX̌ is a limit set in Rm. Let y = πx ∈ πX̌ \ Z, where x = (y, z) ∈ X̌.
If y /∈ π(X,Y )0 then x ∈ Y̌ , hence y ∈ π(X̌ ∩ Y̌ ). Conversely, if y ∈ π(X̌ ∩ Y̌ ) then y /∈ π(X,Y )0.
Otherwise, x would be a unique point in X̌ ∩ π−1y, hence x ∈ X̌ ∩ Y̌ , and y = πx /∈ π(X,Y )0. This
implies π(X,Y )0 \ Z = πX̌ \ (π(X̌ ∩ Y̌ ) ∪ Z). From (8) and (9) follows that X̌ ∩ Y̌ = (̌(X ×R Y ) ∩W ),
for a closed semi-Pfaffian family W ⊂ Rn × Rn × R. Due to Proposition 6.2, π(X̌ ∩ Y̌ ) is a limit set.
Hence π(X,Y )0 is a limit set.

Proof of Theorem 6.1. We proceed by induction on d = dimπ(X,Y )0. Due to Proposition 5.3, we can
suppose that, for some I ⊂ {1, . . . , n}, the couple (X,Y ) is I-regular, X is (|I| + 1)-dimensional, and
(X ∩ (T × R), Y ) is J-tangent for any affine space T parallel to RI∩J . Due to the induction hypothesis,
we can consider only those I for which |I ∩ J | = d.

Due to Lemma 5.6 (with K = I) we can replace (X,Y )0 by (V,W )0 ∪ (V ′,W ′)0, where V is (d +
1)-dimensional and projection of (V ′,W ′)0 to Rm is less than d-dimensional. Due to the induction
hypothesis, projection of (V ′,W ′)0 to Rm is a limit set, hence it is enough to prove that projection of
(V,W )0 to Rm is a limit set. Accordingly, we can suppose from the very beginning that X is (d + 1)-
dimensional. Applying Proposition 5.3 to (X, ∂X), we can suppose that, for a semi-Pfaffian family
S ⊃ ∂X with dimS ≤ d, the semi-Pfaffian couple (X,S) is K-regular, for K ⊂ J with |K| = d. Let ∆
be projection of S0 to Rd. Due to the induction hypothesis, ∆ is a limit set.

Let ρ denote projection from Rm to Rd, and y = (u, v) where u = (x1, . . . , xd) and v = (xd+1, . . . , xm).
For u ∈ Rd \∆ and λ > 0, the sets Xu,λ = Xλ∩{(x1, . . . , xd) = u} are finite. Let Nmax be the maximum,
over u ∈ Rd \∆ and λ > 0, number of points in Xu,λ. For N = 1, . . . , Nmax, let

XN = {u, v1, z1, . . . , vN , zN , λ : λ > 0,

(u, v1, z1) ∈ Xλ, . . . , (u, vN , zN) ∈ Xλ,

(v1, z1) < · · · < (vN , zN )}.

Here “<” is the lexicographic order. Each XN is a semi-Pfaffian family in Rd+N(n−d) × R, such that
XN,u,λ = XN ∩ {(u, λ) = const} contains exactly one point when Xu,λ contains exactly N points, and
XN,u,λ is empty when Xu,λ contains less than N points. For j = 1, . . . , N , let πN,j(u, v1, z1, . . . , uN , zN) =
(u, vj).

Let Z = ρ−1∆ ∩ π(X,Y )0. It is easy to show that Z is a projection of a limit set, and dimZ < d.
Due to the induction hypothesis, Z is a limit set.

For y0 = (u0, v0) ∈ π(X,Y )0 \Z, let N be the maximum number such that (y0, 0) ∈ πN,jXN , for some
j. Let x0 = (y0, z0) be a point in (X,Y )0 ∩ π−1y0. Since X is K-regular at each point of π−1ρ−1u0, the
point (x0, 0) belongs to the closure of X ∩{u = u0}, due to Proposition 4.5. Since (y0, 0) does not belong
to πN+1,jXN+1, for all j, the set Xu0,λ contains exactly N points, for small λ > 0. Hence XN,u0,λ contains
exactly one point, for small λ > 0. This implies that XN,u0∩{λ = 0} contains exactly one point. It is easy
to see that XN is K-regular at each point of π−1ρ−1u0. Hence, XN ∩ π−1

N,j(y
0, 0) = XN,u0 ∩ π−1

N,j(y
0, 0)

contains exactly one point.

Let

YN,j = ∂XN

⋃
{u, v1, z1, . . . , uN , zN , λ : (u, vj , zj , λ) ∈ Y },

and ZN = ∪jπN,j(XN , YN,j)0. Here we consider all sets πN,j(XN , YN,j)0 as subsets of the same space
Rm.

For N = Nmax, each set πN,j(XN , YN,j)0 \ Z is a limit set due to Proposition 6.3. In particular,
ZNmax \ Z is a limit set. Applying the same arguments to N = Nmax − 1 and Z ∪ ZNmax instead
of Z, we prove that each set πN, j(XN , YN,j)0 \ (Z ∪ ZN) is a limit set, for N = Nmax − 1, hence
ZNmax−1 \ (Z ∪ZNmax) is a limit set. Repeating these arguments for decreasing N , we prove that each set
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ZN \ (Z ∪ ZN+1) is a limit set. Finally, π(X,Y )0 = (π(X,Y )0 ∩ Z) ∪N (ZN \ (Z ∪ ZN+1) is a limit set,
since π(X,Y )0 ∩ Z = π(X,Y )0 ∩ ρ−1∆ is a projection of a limit set and its dimension is less than d.
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