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Abstract

This paper considers fractal trees with self-similar side branching. The Tokunaga classification
system for side branching is introduced, along with the Tokunaga self-similarity condition.
Area filling (D = 2) and volume filling (D = 3) deterministic fractal tree constructions are
introduced both with and without side branching. Applications to diffusion limited aggregation
(DLA), actual drainage networks, as well as biology are considered. It is suggested that the
Tokunaga taxonomy may have wide applicability in nature.

1. INTRODUCTION
Fractal trees have been employed in a wide variety
of applications including drainage networks, actual
plants and trees, root systems, bronchial systems,
cardiovascular systems, and evolution. Prior to the
introduction of fractals by Mandelbrot,1 empirical
studies of drainage networks2 had given power-law
relations between stream numbers, stream lengths,
drainage areas, and stream slopes.

The original branch ordering taxonomy for frac-
tal trees was developed as a stream-ordering sys-
tem in geomorphology by Horton2 and Strahler3.
Streams on a standard topographic map with no
upstream tributaries are defined to be first order
(i = 1). When two first-order streams combine they
form a second-order (i = 2) stream. When two
second-order streams combine, they form a third-
order (i = 3) stream, and so forth. Horton2 also
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introduced the bifurcation ratio

Rb =
Ni

Ni+1
(1)

and the length-order ratio

Rr =
ri+1

ri
(2)

where Ni is the number of streams of order i, and
ri is the mean length of streams of order i. Em-
pirically it was found that Rb and Rr were nearly
constant, independent of order, for actual drainage
networks.

With the introduction of the fractal dimension
D as the power-law scaling exponent between num-
ber and length, it was recognized that the fractal
dimension of a stream network is given by

D =
lnRb
lnRr

. (3)

Typical drainage networks have fractal dimensions
near 1.8.

A small example of a typical drainage network
is given in Fig. 1(a). The 100 m scale is shown,
without the specified scale it would be impossible
to tell whether the drainage network covered 1 km
or 1000 km. An example of a binary deterministic
fractal tree is given in Fig. 1(b). This is a highly or-
dered structure in which the single stem bifurcates
into two branches, each with one-half the length
of the stem, these two branches in turn bifurcate to
form four branches each with one-quarter the length
of the stem. Obviously this construction could be
carried to higher and higher orders. The stream-
ordering system is illustrated for this tree which has
Rb = 2, Rr = 2, and D = 1.

However, there is a major difference between the
binary fractal tree illustration in Fig. 1(b) and the
drainage network illustrated in Fig. 1(a). Drainage
networks have side-branching; that is, some first-
order streams intersect second-order, third-order,
and all higher-order streams. Similarly, second-
order streams intersect third-order and higher-order
streams, and so forth. To classify side branching
Tokunaga4–6 extended the Strahler3 ordering sys-
tem. A first-order branch intersecting a first-order
branch is denoted “11” and the number of such
branches is N11, a first-order branch intersecting a
second-order branch is denoted “12” and the num-
ber of such branches is N12, a second-order branch
intersecting a second-order branch is denoted “22”
and the number of such branches is N22 and so
forth. The total number of streams of order i, Ni,
is related to the Nij by

Ni =
n∑
j=1

Nij (4)

for a fractal tree of order n. A deterministic fractal
tree with side branching is illustrated in Fig. 1(c).
This fractal construction has Rr = 2 but Rb is not
constant. However, it is easy to show that Rb → 4
for large i. Thus from Eq. (3) D → 2 for large i.

The branch numbers Nij , i < j, constitute a
square upper-triangular matrix. This formulation is
illustrated in Fig. 2(a), the branch-number matrices
for the drainage network and deterministic fractals
illustrated in Fig. 1(a)–(c) are given in Fig. 2(b)–
(d). This class of fractal trees can also be quantified
in terms of branching ratios Tij, these are the aver-
age number of branches of order i joining branches
of order j. Branching ratios are related to branch

(a) (b) (c)

Fig. 1 (a) Example of a fourth-order drainage network. (b) Binary self-similar fractal tree. (c) Binary self-similar fractal
tree with side branches.
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Fig. 2 (a) Illustration of the branch-number matrix.
(b)–(d) Branch number matrices for the fractal trees illus-
trated in Fig. 1 (a)–(c).

Fig. 3 (a) Illustration of the branching-ratio matrix. (b)–
(d) Branching-ratio matrices for the fractal trees illustrated
in Fig. 1 (a)–(c).

numbers by

Tij =
Nij

Nj
. (5)

Again the branching ratios Tij constitute a square,
upper-triangular matrix as illustrated in Fig. 3(a).
The branching ratio matrices for the drainage
network and deterministic fractals illustrated in
Fig. 1(a)–(c) are given in Fig. 3(b)–(d).

We now define self-similar trees to be the sub-
set of trees for which Ti,i+k = Tk where Tk is a
branching ratio that depends on k but not on i.
Tokunaga4–6 introduced a more restricted class of
self-similar, side-branching trees by requiring for
self-similarity of side branching that

Tk = a ck−1 . (6)

This is now a two parameter family of trees and we
will define fractal trees in this class to be Tokunaga
trees. For the fractal tree illustrated in Fig. 1(c) we
have a = 1 and c = 2.

2. AREA AND VOLUME FILLING
FRACTAL TREES

We will now consider a sequence of deterministic
fractal trees that are either area filling (D = 2) or
volume filling (D = 3). We will consider trees with
and without side branching and will begin with ex-
amples of area filling trees. A deterministic space-
filling fractal tree without side branching is illus-
trated in Fig. 4. For this binary tree we have Rb = 2
and Rr = 21/2 so that D = 2. When carried to in-
finite order this fractal tree fills the rectangular re-
gion of unit height and width 21/2 without overlap.

(a) (b)

(c) (d)

(e)

Fig. 4 Deterministic binary fractal tree. With Rb = 2 and
Rr = 21/2 we have D = 2, the construction is area filling
without overlap. (a) First-order example. (b) Second-order
example. (c) Third-order example. (d) Fourth-order exam-
ple. (e) Ninth-order example.

The generator for this construction is the branch
with length 1/2 that extends at first order from the
center of the boundary to the center of the rectan-
gular region [Fig. 4(a)]. There is a tip node at the
end of this branch. The rectangular region is then
divided into two equal parts and the construction
is extended to second order. Two tip branches with
lengths 1/23/2 emanate from the first-order node
[Fig. 4(b)]. There are two second-order tip nodes
at the ends of these branches. This construction
can be extended to arbitrarily high order.
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(a) (b)

(c) (d)

Fig. 5 Deterministic ternary fractal tree with side branch-
ing based on a square. With Rr = 2 this construction is area
filling. (a) Third-order example. (b) Fifth-order example.

A deterministic area-filling fractal tree with side
branching is illustrated in Fig. 5. The first three it-
erations, and the fifth-order example of this ternary
tree are given. In order to construct this fractal
tree we use a generator A given in Fig. 6(b). The
first-order branch extends from a corner of the unit
square to its center and there is a tip node at its
end. The unit square is then divided into four
equal squares with r = 1/2. These four squares
are numbered 1 to 4 as shown in Fig. 6(a). As the
second-order branches, we use the scaled genera-
tor A, extending it from the tip of the first-order
branch to the centers of the four squares, and place
tip nodes at the end of each new branch. Squares
2, 3, and 4 are now scaled versions of the origi-
nal square. However, in square 1 we have overlap-
ping with the previously drawn tree, and an internal
second-order node appears at the center of the first-
order branch. Geometrically, it is the same as using
a second generator B [Fig. 6(c)]. Each of the four
squares at second order is further divided to give
four squares with r3 = 1/4 at third order. Each of
the squares 2, 3, and 4 produces three squares with
generator A and one square with generator B, while
square 1 produces two squares with generator A and

(a) (b)

(c) (d)

Fig. 6 (a) At each order the square is divided into four
equal sized squares, the numbering of the squares is given.
(b) Generator A required in the construction illustrated in
Fig. 5. (c) Generator B required in the construction illus-
trated in Fig. 5(d). (d) Flow chart indicating how the gen-
erators A and B in Fig. 6 are used to construct the fractal
tree illustrated in Fig. 5.

two squares with generator B. At third order there
are nine tip branches, two side branches, eleven tip
nodes, and five internal nodes. These steps are re-
peated at all higher orders. A flow chart illustrat-
ing the construction of this fractal tree is given in
Fig. 6(d).

The length-order ratio for this construction is
Rr = 2. The branch-number and branch-ratio ma-
trices for this construction are given in Fig. 7(a) and
7(c). The branching ratios for arbitrary order are
given by

Tk =

{
0, k=1

2k−1, k= 2, 3, . . .
. (7)

The construction is a Tokunaga fractal tree. The
branch numbers and bifurcation ratios are given in
Fig. 8(b). For large-order trees Rb becomes inde-
pendent of order and Rb → 4; thus D → 2 and the
construction becomes space filling.

The number of squares requiring generator A at
order i is nA(i) and the number of squares requir-
ing generator B at order i is nB(i). From the flow
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Fig. 7 (a) Branch number matrix for the Tokunaga tree
illustrated in Fig. 5. (b) Branch numbers and bifurcation
ratios. The bifurcation ratio approaches 4 (D → 2) for high
orders. (c) Branch-ratio matrix for the tree.

(d)

Fig. 8 Deterministic ternary fractal tree with side branch-
ing based on an equilateral triangle. With Rr = 2 the con-
struction is area filling without overlap. (a) First-order ex-
ample. (b) Second-order example. (c) Third-order example.
(d) Fifth-order example.

chart, Fig. 6(d), we have the recursive map

nA(i+ 1) = 3na(i) + 2nb(i) (8)

nb(i+ 1) = nA(i) + 2nB(i) . (9)

Defining the vector

~ni =

(
nA(i)
nB(i)

)
(10)

we can write

~ni+1 = A~ni (11)

where the matrix A is given by

A =

(
3 2
1 2

)
. (12)

The eigenvalues of this matrix are λ = 4, 1. For
large orders the eigenvalue λ = 4 dominates and
this is consistent with Rb → 4.

The space filling construction considered above
is far from unique. An alternative deterministic
ternary fractal tree that is space filling is illustrated
in Fig. 8. This construction is based on equilateral
triangles. In order to construct this fractal tree we
require the six generators given in Fig. 9(b)–(g). At
first order we begin with generator O [Fig. 9(b)] and
divide the unit equilateral triangle into four equilat-
eral triangles with r2 = 1/2. These four equilateral
triangles are numbered 1 to 4 as shown in Fig. 9(a).
Generator 0 will not be used in further iterations.
In triangles 1, 2, and 3 we use generator A [Fig. 9(c)]
at second order and in square 4 we use generator P
[Fig. 9(d)] at second order. Generator P will also
not be used in further iterations. Each of the four
triangles at second order is further divided into four
triangles with r3 = 1/4 at third order. The triangles
generated using A require the use of generator A in
triangles 1, 2, and 3 and generator B [Fig. 9(e)] in
triangle 4. The triangle generated using P requires
the use of generator A in triangles 1, 2, and 3 and
generator C [Fig. 9(f)] in triangle 4. At the next
iteration it is necessary to specify the treatment of
the generators B and C. Considering generator B
we use generator A in triangles 1 and 2, generator
D [Fig. 9(g)] in triangle 3, and generator C in trian-
gle 4. Considering generator C, we use generator D
in triangles 1, 2, and 3 and generator C in triangle
4. At the next iteration it is necessary to specify
the treatment of generator D, we use generator A
in triangles 1 and 2, generator D in triangle 3, and
generator B in triangle 4. These steps are repeated
at all higher orders. A flow chart illustrating the
construction of the fractal tree is given in Fig. 9(h).

The length-order ratio for this construction is
Rr = 2. The branch-number and branch-ratio ma-
trices for this construction are given in Fig. 10(a)
and 10(c). Except for one initial branching this con-
struction is also a Tokunaga fractal tree that sat-
isfies Eq. (7). The branch number and bifurcation
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Fig. 9 (a) At each order the equilateral triangle is divided
into four equal sized equilateral triangles, the numbering
of the triangles is given. (b)–(g) The six generators re-
quired to carry out the construction illustrated in Fig. 8.
(h) Flow chart indicating how the generators O, P , A, B,
C, and D are used to construct the fractal tree illustrated in
Fig. 8.

ratios are given in Fig. 10(b). Again Rb → 4 and
D → 2 for large orders and the construction is space
filling.

The recursive map for this construction is

nA(i+ 1) = 3nA(i) + 2nB(i) + 2nD(i) (13)

nB(i+ 1) = nA(i) + nD(i) (14)

nC(i+ 1) = nB(i) + nC(i) (15)

nD(i+ 1) = nB(i) + 3nC(i) + nD(i) . (16)

Fig. 10 (a) Branch number matrix for the Tokunaga tree
illustrated in Fig. 8. (b) Branch numbers and bifurcation
ratios. The bifurcation ratio approaches 4 (D → 2) for high
orders. (c) Branch-ratio matrix for the tree.

(iv)

(a)

Fig. 11 Two deterministic binary fractal trees with side
branching based on right triangles. With Rr = 21/2 the
constructions are space filling without overlap. In each
case, first, second, third, and ninth order examples are
given.
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(iv)

(b)

Fig. 11 (Continued )

Again applying Eq. (11) the appropriate matrix A
is given by

A =


3 2 0 2
1 0 0 1
0 1 1 0
0 1 3 1

 . (17)

The eigenvalues of this matrix are λ = 4, 1, 0, 0. For
large orders the eigenvalue λ = 4 again dominates
which is consistent with Rb → 4.

Many other constructions that asymptotically
become space filling can be devised. Two exam-
ples based on right triangles are given in Fig. 13.
Fifth-order and ninth-order examples of each con-
struction are given.

Space filling fractal trees can also be constructed
in three dimensions. A binary example with no
side branching is illustrated in Fig. 12. For this
construction we have Rb = 2 and Rr = 21/3 so
that D = 3. When extended to infinite order
this construction becomes completely volume fill-
ing without overlap. The construction illustrated
in Fig. 12 is the three-dimensional analog to the
two-dimensional construction illustrated in Fig. 4.

We next illustrate a deterministic volume filling
fractal tree with side branching. The first three
iterations are illustrated in Fig. 13. Instead of be-
ing a ternary construction with three branches at-
tached to each tip node, this construction has seven

(a) (b)

(c) (d)

(e)

Fig. 12 Three-dimensional binary fractal tree. With Rb =
2 and Rr = 21/3 we have D = 3, the construction is volume
filling without overlap. (a) First-order example. (b) Second-
order example. (c) Third-order example. (d) Fourth-order
example. (e) Eighth-order example.

branches attached to each tip node. This construc-
tion is based on a hierarchy of body-centered cubic
lattices. We use a generator A given in Fig. 13(a).
At first order a branch extends from one corner of
cube to the center of the cube, with a tip node
placed at its end. The unit cube at first order is
divided into eight cubes with r2 = 1/2 at second
order. At second order branches extend from the
central node to the centers of the eight cubes. Due
to the overlapping with the first-order branch, one
of these cubes produces a new generator B (diago-
nal of the cube with an internal node at the center)
while the other seven cubes have no overlapping and
produce seven rescaled versions of the generator A.
Each of the eight cubes at second order is further
divided into eight cubes with r3 = 1/4 at third or-
der. The seven second-order cubes with generator
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(a) (b)

(c)

Fig. 13 Deterministic third-order, volume filling fractal
tree with side branching and Rr = 2. The construction is
based on a body-centered cubic lattice. Tip nodes emit seven
branches at each order and internal nodes emit six branches.

Fig. 14 Flow chart indicating how the terminal branch
generator A and internal branch generator B are used to
construct the volume filling fractal tree illustrated in Fig. 15.

A are treated in the exact same way at third or-
der. The eighth second-order cube, with generator
B, produces six third-order cubes with generator A,
and two cubes with generator B. These steps are
repeated at all higher orders. A flow chart illus-
trating the construction of this three dimensional
fractal tree is given in Fig. 14.

The length-order ratio for this construction is
Rr = 2. The branch-number and branch-ratio ma-
trices for this construction are given in Fig. 15(a)
and 15(c). The branching ratios for arbitrary order
are given by

Rk =

{
0 k=1

6× 2k−2 k= 2, 3, 4, . . .
. (18)

Fig. 15 (a) Branch number matrix for the Tokunaga tree
illustrated in Fig. 16. (b) Branch numbers and bifurcation
ratios. The bifurcation ratio approaches 8 (D → 3) for high
orders. (c) Branch-ratio matrix for the tree.

Again the construction is a Tokunaga fractal tree.
The branch numbers and bifurcation ratios are
given in Fig. 15(b). For large-order trees Rb → 8
so that D → 3, the construction becomes volume
filling.

The recursive map for this construction is

nA(i+ 1) = 7nA(i) + 6nB(i) (19)

nB(i+ 1) = nA(i) + 2nB(i) (20)

Again applying Eq. (11) the appropriate matrix A
is given by

A =

(
7 6

1 2

)
. (21)

The eigenvalues of this matrix are λ = 8, 1. For
large orders the eigenvalue 8 again dominates which
is consistent with Rb → 8.

3. APPLICATIONS

3.1 Diffusion Limited Aggregation
(DLA)

The concept of diffusion limited aggregation (DLA)
was introduced by Witten and Sander.7 They con-
sidered a grid of points on a two-dimensional lat-
tice and placed a seed particle near the center of
the grid. An accreting particle was randomly in-
troduced on a “launching” circle and was allowed
to follow a random path until: i) it accreted to
the growing cluster of particles by entering a grid
point adjacent to the cluster or ii) until it wandered
across a larger “killing” circle. The resulting sparse,



Fractal Trees with Side Branching 611

tree-like structure has been taken as an excellent
representation of dendritic growth patterns found
both in nature and in industrial applications.8

Fig. 16 A two-dimensional, off-lattice DLA cluster with
106 particles.9

Ossadnik9 has considered the branching statistics
of 47 off-lattice DLA clusters each with 106 parti-
cles, a typical example being illustrated in Fig. 16.
On average the networks were 11th order fractal
trees. The average bifurcation ratio for the clus-
ters was found to Rb = 5.15± 0.05 and the average
length-order ratio Rr = 2.86 ± 0.05, from Eq. (3)
the corresponding fractal dimension is D = 1.56.
In order to analyze the branching statistics of DLA
clusters Ossadnik9 utilized the ramification matrix
introduced for DLA by Vannimenus and Viennot.10

In terms of the branching ratios Tij the terms of the
ramification matrix are defined by

Rij =
Tij∑

i, i<j Tij
. (22)

The terms of the ramification-matrix obtained for
DLA by Ossadnik9 are given in Fig. 17. For a
Tokunaga self-similar fractal tree for which Eq. (6)
is valid, the terms of the ramification matrix are
given by

Rij =
cj−i−1∑
i, i<j cij

. (23)

Fig. 17 Dependence of the terms of the ramification matrix Rij for the branching statistics of a diffusion limited aggregation
(DLA) cluster on the branch order i for various branch orders j. Branches of order i join branches of order j so that i < j.
The data points are for an average of 47 off-lattice DLA clusters each with 106 particles.9 The straight-line correlation is with
the Tokunaga relation [Eq. (6)] taking c = 2.7.
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For large values of j this becomes

Rij =
1

ci−1

(
1− 1

c

)
. (24)

Taking c = 2.7 this relation is compared with the
DLA data given in Fig. 17. It is seen that DLA
clusters are Tokunaga self-similar fractal trees to a
good approximation.

3.2 River Networks

We now address the question of whether the statis-
tics of actual drainage networks are represented
by Tokunaga fractal trees. Peckham10 has deter-
mined branching-ratio matrices for the Kentucky
River basin in Kentucky and the Powder River
basin Wyoming. Both are 8th order basins with
the Kentucky River basin having an area of 13,500
km2 and the Powder River basin an area of 20,181
km2. For the Kentucky River basin the bifurca-
tion ratio is Rb = 4.6 and the length-order ratio is
Rr = 2.5; for the Powder River basin the bifurca-
tion ratio is Rb = 4.7 and the length-order ratio is
Rr = 2.4. From Eq. (3) the corresponding values of
the fractal dimension are D = 1.67 and D = 1.77
respectively. The branching-ratio matrices for the
two river basins are given in Fig. 18. We now deter-
mine values for Tk by averaging the values of Ti,i+k
over i

Tk =
1

n− k

n−k∑
i=1

Ti,i+k . (25)

The values of Tk for the two basins are given in
Fig. 19 as a function of k. It is seen that the re-
sults correlate well with Eq. (6) taking a = 1.2 and

Fig. 18 Branching-ratio matrices for (a) the Kentucky
River basin and (b) the Powder River basin as obtained by
Peckham.11

Fig. 19 Dependence of the mean branching ratios Tk on k
for the Kentucky River basin and the Powder River basin.
The straight-line correlation is with Eq. (6) taking a = 1.2
and c = 2.5.

c = 2.5. For these two basins, in quite different
geological settings, good agreement with Tokunaga
fractal trees is obtained with these values of the pa-
rameters a and c.

3.3 Biology

Fractal trees have had a number of applications in
biology.12,13 These include plants and trees, root
systems, bronchial systems, cardiovascular systems,
and the brain. Many authors have applied the
Strahler ordering system with a wide variety of re-
sults. There are clearly wide opportunities to apply
the Tokunaga ordering system in biology.

As a preliminary study of side branching in biol-
ogy we have obtained the branching statistics for
a shagbark hickory (carya ovata). The branch-
number matrix for this sixth-order example is given
in Fig. 20(a). The numbers of branches of each
order along with bifurcation ratios are given in
Fig. 20(b). The mean bifurcation ratio is Rb = 3.16.
The mean lengths of the branches of the five lowest
orders along with the length-order ratios are also
given in Fig. 20(b). The mean length-order ratio is
Rr = 2.26. From Eq. (3) the corresponding frac-
tal dimension is D = 1.41. The three-dimensional
canopy of branches is relatively sparse.

The branching-ratio matrix for the shagbark
hickory is given in Fig. 20(c). Taking averages to
find Tk using Eq. (22), we find T1 = 0.79, T2 = 1.07,
T3 = 0.79, T4 = 1.67, and T5 = 3. The scatter of
the data is considerable and the applicability of the
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(a)

(b)

(c)

Fig. 20 (a) Branch-number matrix for a sixth-order shag-
bark hickory (carya ovata). (b) Branch-numbers, bifur-
cation ratios, mean lengths, and length-order ratios. (c)
Branching-ratio matrix.

Tokunaga relation Eq. (6) can certainly be ques-
tioned. However, as an approximation we will take
a = 1 and c = 1. There is relatively little side
branching on the shagbark hickory. This example
is not meant to be a definitive study, but rather is
intended to illustrate how the Tokunaga ordering
system can be applied to biological problems.

4. CONCLUSIONS

The basic purpose of this paper is to address the
role of side branching in the consideration of self-
similar fractal trees. The classical Strahler ordering
system has been widely used to quantify hierarchi-
cal networks. Developed for drainage networks, the
Strahler classification defines constant bifurcation
ratios and length-order ratios for self-similar net-
works. The fractal dimension of these networks is
defined using Eq. (3). However, a uniform feature
of actual self-similar networks is side branching.
Tokunaga4,5,6 introduced a side-branching classifi-
cation system for quantification of side-branching
statistics. He further introduced a self-similar scal-
ing [Eq. (6)] for the side-branching statistics. The
Tokunaga classification scheme clearly provides an
improved taxonomy for self-similar networks.

We have introduced deterministic constructions
for space filling (D = 2) and volume filling (D = 3)
trees. In each case, we have given alternative con-
structions with and without side branching. The
examples with side branching conform with Toku-
naga self-similarity [Eq. (6)] statistics.

Diffusion limited aggregation (DLA) describes
a mechanism, as well as a numerical technique,
for generating self-similar networks. The side-
branching statistics of DLA clusters obey the Toku-
naga relation [Eq. (6)]. The side-branching statis-
tics of actual drainage networks have also been
shown to satisfy the Tokunaga relation [Eq. (6)].
A wide variety of models have been developed
for drainage networks. In general, these models
give fractal statistics that are in reasonable agree-
ment with observations. However, the require-
ment that models also produce the appropriate
Tokunaga statistics is a more robust requirement.
Masek and Turcotte14 proposed a model for head-
ward migration of drainage networks based on DLA.
This model yields Tokunaga statistics which are
in good agreement with the results obtained by
Peckham.10

One of the most promising areas for the future
application of the Tokunaga taxonomy is in biol-
ogy. Branching statistics are applicable to plants
and trees, root systems, bronchial systems, cardio-
vascular systems, and the brain. All of these bi-
ological applications clearly include extensive side
branching. The use of nodes (buds) to generate
growing networks with both tip and side branches
strongly resembles many growth processes in na-
ture. Other possible future applications include
evolutionary trees, the nervous system, and com-
puter networking.
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