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1. Introduction

The question of bi-Lipschitz classification of semialgebraic surfaces has become in recent

years one of the central questions of Metric Geometry of Singularities. There are two

natural structures of a metric space on a connected semialgebraic set X ⊂ Rn. The first

one is the inner distance, the length of a minimal path in X connecting two points. The

second one is the outer distance, defined as the distance in Rn between two points of X . A

germ X is called normally embedded (see [2]) if its inner and outer metrics are equivalent.

There are three natural equivalence relations associated with these distances. Two sets

X and Y are inner (resp., outer) equivalent if there is a inner (resp., outer) bi-Lipschitz

homeomorphism h : X → Y . The sets X and Y are ambient bi-Lipschitz equivalent if

the homeomorphism h : X → Y can be extended to a bi-Lipschitz homeomorphism H

of the ambient space. The ambient equivalence is stronger than the outer equivalence,

and the outer equivalence is stronger then the inner equivalence. Finiteness theorems

of Mostowski and Valette (see [9] and [10]) show that there are finitely many ambient

bi-Lipschitz equivalence classes in any semialgebraic family of semialgebraic sets.

The paper [1] of the first author presents a complete bi-Lipschitz classification of semi-

algebraic surface germs at the origin with respect to the inner metric. It is based on a

canonical partition of a surface germ into Hölder triangles and isolated arcs. The exponents

of these triangles, and the combinatorics of the graph defined by their links, constitute a

complete inner Lipschitz invariant.

The outer Lipschitz geometry of semialgebraic surface germs is considerably more com-

plicated, and their outer bi-Lipschitz classification is still work in progress. An important

step towards such classification was made in [3], where classification of the germs at the

origin of R2 of semialgebraic (or, more generally, definable in a polynomially bounded

o-minimal structure) Lipschitz functions with respect to contact Lipschitz equivalence

relation was suggested. It was based on a complete combinatorial invariant of contact

Lipschitz equivalence, called pizza.

Another important step was made in [7], where an “abnormal” semialgebraic surface

germ was canonically partitioned into normally embedded Hölder triangles. Several con-

structions and results from [7] are used in the present paper.

Normally embedded Hölder triangles are the simplest “building blocks” of semialgebraic

surface germs: the only Lipschitz invariant of a normally embedded Hölder triangle is its

exponent. In the present paper we consider the next, a little bit more complicated, case
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of a pair of normally embedded Hölder triangles: a surface germ X = T ∪ T ′ which is

the union of two normally embedded Hölder triangles T and T ′. Let f : T → R and

g : T ′ → R be the distances from the points in one of these two triangles to the other

one. The pizzas of f and g, being contact Lipschitz invariants of these two functions,

are outer Lipschitz invariants of X . The first question is whether X is outer bi-Lipschitz

equivalent to the union of T and the graph of the distance function f . Simple examples

(see Fig. 4) show that the answer may be negative. Another natural question is whether

the pizzas of f and g are equivalent. The answer, in general, is again negative. We show

(see Theorem 3.20) that the answers to both questions are positive if the pair (T, T ′) is

elementary (see Definition 2.10) and satisfies boundary conditions (5). The conditions

(5) appear naturally in the paper [7], where some standard building blocks (clusters) are

defined in the link of a singular surface. Any two Hölder triangles in a cluster satisfy (5).

Although a pair X satisfying (5) is simpler than the general pair of normally embedded

Hölder triangles, its outer Lipschitz geometry is still rather complicated. If one considers

a pair X = T ∪ T ′ of two normally embedded Hölder triangles, such that T ′ is a graph

of a Lipschitz function defined on T , then X automatically satisfies the condition (5).

A natural question is whether the opposite is true. Suppose that a pair X = T ∪ T ′

of normally embedded Hölder triangles satisfies (5). Is it true that X is outer Lipschitz

equivalent to the union of T and the graph of a function f defined on T ? The answer

is negative, and we present several examples when this is not true (see Section 4). In

this paper we define an outer Lipschitz invariant of a pair of normally embedded Hölder

triangles satisfying (5), called στ -pizza, and conjecture that it is a complete invariant: all

pairs with the same στ -pizza should be outer bi-Lipschitz equivalent.

In Section 2 we give basic definitions and reformulate the pizza invariant in the language

of zones (see Definition 2.20).

In Section 3 we establish properties of elementary pairs of Hölder triangles and give ex-

amples of non-elementary pairs for which these properties fail. We also discuss conditions

satisfied by a surface germ X = T ∪T ′ equivalent to the union of a Hölder triangle T and

the graph of the distance function f defined on T .

In Section 4 the στ -pizza is defined. The main result of the section, Theorem 4.13, states

that it is an outer Lipschitz invariant of a pair of normally embedded Hölder triangles

satisfying (5): the στ -pizzas of outer bi-Lipschitz equivalent pairs are combinatorially

equivalent. We conjecture that the converse of Theorem 4.13 is also true, but the proof

needs some additional work.

Some remarks about the figures. Since it is practically impossible to adequately show

outer Lipschitz geometry of a surface germ in a plot, we draw instead its link (intersection

with a small sphere centered at the singular point) indicating higher tangency orders by

smaller Euclidean distances. We hope these plots will help to create geometric intuition.

2. Preliminaries

All sets, functions and maps in this paper are germs at the origin of Rn definable

in a polynomially bounded o-minimal structure over R with the field of exponents F.

The simplest (and most important in applications) examples of such structures are real

semialgebraic and (global) subanalytic sets, with F = Q.
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Definition 2.1. A germ X at the origin inherits two metrics from the ambient space: the

inner metric where the distance between two points of X is the length of the shortest path

connecting them inside X , and the outer metric with the distance between two points of

X being their distance in the ambient space. A germ X is normally embedded if its inner

and outer metrics are equivalent.

For a point x ∈ X and a subset Y ⊂ X we define the outer distance dist(x, Y ) =

infy∈Y |x − y|, and the inner distance idist(x, Y ) as the infimum of the lengths of paths

connecting x with points y ∈ Y .

A surface germ is a closed germ X such that dimRX = 2, and it is pure dimensional.

Definition 2.2. An arc in Rn is (a germ at the origin of) a mapping γ : [0, ǫ) → Rn such

that γ(0) = 0. Unless otherwise specified, we suppose that arcs are parameterized by the

distance to the origin, i.e., |γ(t)| = t. We usually identify an arc γ with its image in Rn.

The Valette link of X is the set V (X) of all arcs γ ⊂ X .

Definition 2.3. Let f 6≡ 0 be (a germ at the origin of) a function defined on an arc γ.

The order of f on γ is the value q = ordγf ∈ F such that f(γ(t)) = ctq + o(tq) as t → 0,

where c 6= 0. If f ≡ 0 on γ, we set ordγf = ∞.

Definition 2.4. The tangency order of two arcs γ and γ′ is defined as tord(γ, γ′) =

ordγ|γ(t) − γ′(t)|. The tangency order of an arc γ and a set of arcs Z ⊂ V (X) is de-

fined as tord(γ, Z) = supλ∈Z tord(γ, λ). The tangency order of two subsets Z and Z ′ of

V (X) is defined as tord(Z,Z ′) = supγ∈Z tord(γ, Z ′). Similarly, itord(γ, γ′), itord(γ, Z)

and itord(Z,Z ′) denote the tangency orders with respect to the inner metric. If T is a

Hölder triangle and γ is an arc we are going to use the notation tord(γ, T ) instead of

tord(γ, V (T )) and itord(γ, T ) instead of itord(γ, V (T )).

The tangency order defines a non-Archimedean metric on the set of arcs: if tord(γ, γ′) >

tord(γ, γ′′) then tord(γ′, γ′′) = tord(γ, γ′′).

Remark 2.5. The inner metric on a semialgebraic set is bi-Lipschitz equivalent to a

semialgebraic metric (so-called pancake metric, see the theorem of Kurdyka and Orro [8]

and also [2]). The inner order of tangency of two arks itord(γ1, γ2)) is also defined in [6].

Definition 2.6. For β ∈ F, β ≥ 1, the standard β-Hölder triangle is (a germ at the origin

of) the set

(1) Tβ = {(x, y) ∈ R2 | x ≥ 0, 0 ≤ y ≤ xβ}.

The curves {x ≥ 0, y = 0} and {x ≥ 0, y = xβ} are the boundary arcs of Tβ.

Definition 2.7. A β-Hölder triangle is (a germ at the origin of) a set T ⊂ Rn that

is inner bi-Lipschitz homeomorphic to the standard β-Hölder triangle (1). The number

β = µ(T ) ∈ F is called the exponent of T . The arcs γ1 and γ2 of T mapped to the boundary

arcs of Tβ by an inner bi-Lipschitz homeomorphism are the boundary arcs of T (notation

T = T (γ1, γ2)). All other arcs of T are its interior arcs. The set of interior arcs of T is

denoted by I(T ). An arc γ ⊂ T is generic if itord(γ, γ1) = itord(γ, γ2). The set of generic

arcs of T is denoted by G(T ).

Definition 2.8. Let X be a surface germ. An arc γ ∈ V (X) is Lipschitz non-singular

if there exists a normally embedded Hölder triangle T ⊂ X such that γ ∈ I(T ) and

γ 6⊂ X \ T . Otherwise, γ is Lipschitz singular. A Hölder triangle T is non-singular if any

arc γ ∈ I(T ) is Lipschitz non-singular.
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Definition 2.9. For a Lipschitz function f defined on a Hölder triangle T , let

(2) Qf(T ) =
⋃

γ∈V (T )

ordγf.

It was shown in [3] that Qf(T ) is either a point or a closed interval in F ∪ {∞}.

Definition 2.10. A Hölder triangle T is elementary with respect to a Lipschitz function

f if, for any q ∈ Qf(T ) and any two arcs γ and γ′ in T such that ordγf = ordγ′f = q, the

order of f is q on any arc in the Hölder triangle T (γ, γ′) ⊂ T .

Remark 2.11. Examples 4.4, 4.5, 4.6 in [3] make the definition 2.10 more clear.

Definition 2.12. Let T be a Hölder triangle and f a Lipschitz function defined on T . For

each arc γ ⊂ T , the width µT (γ, f) of γ with respect to f is the infimum of exponents of

Hölder triangles T ′ ⊂ T containing γ such that Qf(T
′) is a point. For q ∈ Qf (T ) let µT,f(q)

be the set of exponents µT (γ, f), where γ is any arc in T such that ordγf = q. It was

shown in [3] that, for each q ∈ Qf (T ), the set µT,f(q) is finite. This defines a multivalued

width function µT,f : Qf (T ) → F ∪ {∞}. If T is an elementary Hölder triangle with

respect to f then the function µT,f is single valued. When f is fixed, we write µT (γ) and

µT instead of µT (γ, f) and µT,f .

The depth νT (γ, f) of an arc γ with respect to f is the infimum of exponents of Hölder

triangles T ′ ⊂ T such that γ ∈ G(T ′) and Qf (T
′) is a point. By definition, νT (γ, f) = ∞

when there are no such triangles T ′.

Definition 2.13. Let T be a non-singular Hölder triangle and f a Lipschitz function

defined on T . We say that T is a pizza slice associated with f if it is elementary with

respect to f and, unless Qf (T ) is a point, µT,f(q) = aq+ b is an affine function on Qf (T ).

If T is a pizza slice such that Qf (T ) is not a point, then the supporting arc γ̃ of T with

respect to f is the boundary arc of T such that µT (γ̃, f) = maxq∈Qf (T ) µT,f(q).

Proposition 2.14. (See [3].) Let T be a β-Hölder triangle which is a pizza slice associated

with a non-negative Lipschitz function f , such that Q = Qf(T ) is not a point. Then

µT 6≡ const and the following holds:

(1) β ≤ µT (q) ≤ max(q, β) for all q ∈ Q,

(2) µT (γ) = β for γ ∈ G(T ),

(3) If γ̃ is the supporting arc of T with respect to f , then µT (γ) = itord(γ̃, γ) for all arcs

γ ⊂ T such that µT (γ) < µT (γ̃).

Definition 2.15. (See [3].) Let f be a non-negative Lipschitz function defined on an

oriented β-Hölder triangle T . A pizza decomposition of T (or just a pizza on T ) associated

with f is a decomposition {Ti}
p
i=1 of T into βi-Hölder triangles Ti = T (λi−1, λi) ordered

according to the orientation of T , such that

(1) λ0 and λp are the boundary arcs of T ,

(2) Ti ∩ Ti+1 = λi for 1 ≤ i < p,

(3) Ti ∩ Tj = {0} when |i− j| > 1,

(4) each Hölder triangle Ti is a pizza slice associated with f .

We write qi = ordλi
f , Qi = Qf(Ti), µi(q) = µTi,f(q). If Qi is not a point, then γ̃i denotes

the supporting arc of Ti with respect to f .

Definition 2.16. A pizza decomposition {Ti} of T associated with f isminimal if Ti−1∪Ti

is not a pizza slice associated with f for any i > 1.
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Definition 2.17. For two non-negative Lipschitz functions f on T and g on T ′, a pizza

decomposition {Ti = T (λi−1, λi)} of T associated with f is equivalent to a pizza decom-

position {T ′
i = T (λ′

i−1, λ
′
i)} of T ′ associated with g if there is an orientation preserving

inner bi-Lipschitz homeomorphism h : T → T ′ such that h(λi) = λ′
i, ordλi

f = ordλ′

i
g,

Qf (Ti) = Qg(T
′
i ) and µTi,f ≡ µT ′

i ,g
, for all i, and moreover, h(γ̃i) = γ̃′

i if Qf (Ti) = Qg(T
′
i )

is not a point, where γ̃i and γ̃′
i are the supporting arcs for Ti and T ′

i with respect to f and

g.

Definition 2.18. Let T and T ′ be two β-Hölder triangles. Two Lipschitz function germs

f : (T, 0) −→ (R, 0) and g : (T ′, 0) −→ (R, 0) are Lipschitz contact equivalent if there

exist two germs of inner bi-Lipschitz homeomorphisms h : (T, 0) −→ (T ′, 0) and H :

(T ×R, 0) −→ (T ′ ×R, 0) such that H(T × {0}) = T ′ × {0} and the following diagram is

commutative:

(3)

(T, 0)
(id, f)
−→ (T × R, 0)

π
−→ (T, 0)

h ↓ H ↓ h ↓

(T ′, 0)
(id, g)
−→ (T ′ × R, 0)

π′

−→ (T ′, 0)

Here π : T × R → T and π′ : T ′ × R → T ′ are natural projections.

The main result of [3], reformulated for non-negative Lipschitz functions defined on

Hölder triangles, is the following theorem.

Theorem 2.19. Let T and T ′ be oriented Hölder triangles. Non-negative Lipschitz func-

tions f : T → R and g : T ′ → R are Lipschitz contact equivalent if and only if a

minimal pizza decomposition of T associated with f and a minimal pizza decomposition of

T ′ associated with g are equivalent. In particular, any two minimal pizza decompositions

associated with the same function f : T → R are equivalent.

Definition 2.20. (See [7, Definition 2.34].) Let X be a surface germ. A non-empty set

of arcs Z ⊂ V (X) is called a zone if, for any two arcs γ1 6= γ2 in Z, there exists a non-

singular Hölder triangle T = T (γ1, γ2) such that V (T ) ⊂ Z. A singular zone is a zone

Z = {γ} consisting of a single arc γ. A zone Z is normally embedded if, for any two arcs

γ1 6= γ2 in Z, there exists a normally embedded Hölder triangle T = T (γ1, γ2) such that

V (T ) ⊂ Z.

Definition 2.21. (See [7, Definition 2.37].) The order of a zone Z is defined as µ(Z) =

infγ,γ′∈Z tord(γ, γ′). If Z is a singular zone then µ(Z) = ∞. If µ(Z) = β then Z is called

a β-zone.

Definition 2.22. (See [7, Definition 2.40].) A β-zone Z is closed if there are two arcs γ

and γ′ in Z such that tord(γ, γ′) = β. Otherwise, Z is an open zone. By definition, any

singular zone is closed.

Definition 2.23. A zone Z ⊂ V (X) is perfect if, for any two arcs γ and γ′ in Z, there

exists a Hölder triangle T ⊂ X such that V (T ) ⊂ Z and both γ and γ′ are generic arcs

of T . By definition, any singular zone is perfect.

Definition 2.24. Let f : T → R be a Lipschitz function defined on a non-singular Hölder

triangle T . A zone Z ⊂ V (T ) is a q-order zone for f if ordγf = q for any arc γ ∈ Z. A
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q-order zone for f is maximal if it is not a proper subset of any other q-order zone for f .

The width zone WT (γ, f) of an arc γ ⊂ T with respect to f is the maximal q-order zone

for f containing γ, where q = ordγf . The order of WT (γ, f) is µT (γ, f). The depth zone

DT (γ, f) of an arc γ ⊂ T with respect to f is the union of zones G(T ′) for all triangles

T ′ ⊂ T such that γ ∈ G(T ′) and Qf(T
′) is a point. By definition, DT (γ, f) = {γ} when

there are no such triangles T ′. The order of DT (γ, f) is νT (γ, f).

Lemma 2.25. Let f : T → R be a Lipschitz function defined on a non-singular Hölder

triangle T . For any arc γ ⊂ T , the width zone WT (γ, f) is closed.

Proof. If f |γ ≡ 0, then either γ is an isolated arc in the closed subset T0 = {f(x) = 0}

of T and a singular zone WT (γ, f) = {γ} is closed by definition, or there is a maximal

Hölder triangle T̃0 ⊂ T0 containing γ. Then µ = µT (γ, f) is the exponent of T̃0, and

WT (γ, f) = V (T̃0) is a closed µ-zone. Otherwise, let f(γ(t)) = c0t
q + o(tq) where c0 6= 0,

and let T̃c be the maximal Hölder triangle containing γ in the subset Tc = {|f(x)| ≤ ctq}

of T , where c ≥ |c0|. Then the family {T̃c} is definable, Hölder triangles T̃c have the same

exponent µ = µT (γ, f) for large enough c, and WT (γ, f) =
⋃

c≥|c0|
V (T̃c). Thus WT (γ, f)

is a closed µ-zone. �

Definition 2.26. Let T be a non-singular Hölder triangle and f a Lipschitz function

defined on T . If Z ⊂ V (T ) is a zone, we define Qf (Z) as the set of all exponents ordγf

for γ ∈ Z. The zone Z is elementary with respect to f if the set of arcs γ ∈ Z such that

ordγf = q is a zone for each q ∈ Qf(Z).

For γ ∈ Z and q = ordγf , the width µZ(γ, f) of γ with respect to f is the infimum of

exponents of Hölder triangles T ′ containing γ such that V (T ′) ⊂ Z and Qf(T
′) is a point.

The width zone WZ(γ, f) of γ with respect to f is the maximal subzone of Z containing

γ such that q = ordλf for all arcs λ ⊂ WZ(γ, f). The order of WZ(γ, f) is µZ(γ, f). For

q ∈ Qf(Z) let µZ,f(q) be the set of exponents µZ(γ, f), where γ ∈ Z is any arc such that

ordγf = q. It follows from [3] that, for each q ∈ Qf (Z), the set µZ,f(q) is finite. This

defines a multivalued width function µZ,f : Qf (Z) → F∪{∞}. If Z is an elementary zone

with respect to f then the function µZ,f is single valued.

We say that Z is a pizza slice zone associated with f if it is elementary with respect to

f , Qf (Z) is a closed interval in F ∪ {∞} and, unless Qf (Z) is a point, µZ,f(q) = aq + b

is an affine function on Qf (Z). If Z is a pizza slice zone such that Qf (Z) is not a point,

then the supporting subzone Z̃ of Z with respect to f is the set of arcs λ ∈ Z such that

µZ(λ, f) = maxq∈Qf (Z) µZ,f(q).

Lemma 2.27. Let f be a Lipschitz function defined on a non-singular Hölder triangle

T . Let γ be an interior arc of T , so that T = T ′ ∪ T ′′ and T ′ ∩ T ′′ = {γ}. Then either

µT ′(γ, f) = µT ′′(γ, f) and νT (γ, f) = µT (γ, f), or νT (γ, f) = max(µT ′(γ, f), µT ′′(γ, f)) >

µT (γ, f). In both cases, DT (γ, f) is a closed perfect zone.

Proof. Let µ = µT (γ, f), µ
′ = µT ′(γ, f) and µ′′ = µT ′′(γ, f). By definition of the width,

µ = min(µ′, µ′′). By definition of the depth, νT (γ, f) ≥ max(µ′, µ′′). According to Lemma

2.25, the width zones WT ′(γ, f) and WT ′′(γ, f) are closed zones of orders µ′ and µ′′. If

µ′ = µ′′ = µ then there are two arcs γ′ ⊂ WT ′(γ, f) and γ′′ ⊂ WT ′′(γ, f) such that

tord(γ, γ′) = tord(γ, γ′′) = µ and ordλf = ordγf for all arcs λ ⊂ T (γ′, γ′′). Then γ is a

generic arc of a µ-Hölder triangle T (γ′, γ′′), thus νT (γ, f) ≤ µ. Since νT (γ, f) ≥ µ, we have

νT (γ, f) = µ in this case. Otherwise, if µ′ > µ′′ then, according to Lemma 2.25, there are
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two arcs γ′ ⊂ WT ′(γ, f) and γ′′ ⊂ WT ′′(γ, f) such that tord(γ, γ′) = tord(γ, γ′′) = µ′ and

ordλf = ordγf for all arcs λ ⊂ T (γ′, γ′′). Then γ is a generic arc of a µ′-Hölder triangle

T (γ′, γ′′), thus νT (γ, f) ≤ µ′. Since νT (γ, f) ≥ max(µ′, µ′′), we have νT (γ, f) = max(µ′, µ′′)

in this case.

To show that DT (γ, f) is a closed perfect zone, note first that its order is ν = νT (γ, f)

and, unless ν = ∞ and DT (γ, f) = {γ} is by definition closed perfect, γ is a generic

arc of a ν-Hölder triangle T̃ = T (γ′, γ′′) ⊂ T such that tordλf = tordγf for any arc

λ ⊂ T̃ . Then, since tord(γ, γ′) = tord(γ, γ′′) = ν < ∞, there is a generic arc λ of T̃ such

that tord(λ, γ) = ν, thus T̄ = T (λ, γ) is a ν-Hölder triangle and V (T̄ ) ⊂ DT (γ, f). This

implies that DT (γ, f) is a closed zone. If λ′ and λ′′ are any two arcs in DT (γ, f), then

there are two Hölder triangles T ′ ⊂ T and T ′′ ⊂ T containing γ such that λ′ ∈ G(T ′) and

λ′′ ∈ G(T ′′). Then both λ′ and λ′′ are generic arcs of T ′ ∪ T ′′, thus DT (γ, f) is a perfect

zone. �

Remark 2.28. Let h : T → T ′ be an inner bi-Lipschitz homeomorphism, and let f(x) =

g(h(x)) where g is a Lipschitz function defined on T ′. Then µT (γ, f) = µT ′(h(γ), g),

νT (γ, f) = νT ′(h(γ), g), h(WT (γ, f)) = WT ′(h(γ), g) and h(DT (γ, f)) = DT ′(h(γ), g), for

any arc γ ∈ V (T ).

Lemma 2.29. A zone Z ⊂ V (X) is perfect if and only if, for any two arcs γ and γ′ in

Z, there exists a Hölder triangle T ⊂ X such that V (T ) ⊂ Z, and an inner bi-Lipschitz

automorphism h : X → X such that h(γ) = γ′ and h(x) = x for all x ∈ X \ T .

Proof. Let Z ⊂ V (X) be a perfect zone and γ, γ′ two arcs in Z. Let T = T (γ1, γ2) be

a β-Hölder triangle such that V (T ) ⊂ Z and both γ and γ′ are generic arcs in T . Then

T = T (γ1, γ) ∪ T (γ, γ2) and T = T (γ1, γ
′) ∪ T (γ′, γ2) are two decompositions of T into

β-Hölder triangles. Let h1 : T (γ1, γ) → T (γ1, γ
′) and h2 : T (γ, γ2) → T (γ′, γ2) be inner

bi-Lipschitz homeomorphisms, such that h1|γ1=Id, h2|γ2 = Id and h1|γ = h2|γ. Then the

mapping h : T → T such that h = h1 on T (γ1, γ) and h = h2 on T (γ, γ2) is an inner

bi-Lipschitz homeomorphism such that h|γ1 = Id, h|γ2 = Id and h(γ) = γ′). Thus h

can be extended by identity outside T to an inner bi-Lipschitz homeomorphism X → X

preserving Z. �

Proposition 2.30. Let f be a non-negative Lipschitz function defined on a normally em-

bedded Hölder triangle T = T (γ1, γ2), oriented from γ1 to γ2. There exists a unique finite

family {Dℓ}
p
ℓ=0 of disjoint zones Dℓ ⊂ V (T ), the pizza zones associated with f , with the

following properties:

1. The singular zones D0 = {γ1} and Dp = {γ2} are the boundary arcs of T .

2. For any arc γ ∈ Dℓ, Dℓ = DT (γ, f) is a closed perfect νℓ-zone, where νℓ = νT (γ, f). In

particular, Dℓ is a qℓ-order zone for f , where qℓ = ordγf for γ ∈ Dℓ. Moreover, Dℓ is a

maximal qℓ-order zone for f of order νℓ: if Z ⊂ V (T ) is a qℓ-order zone for f containing

Dℓ and λ ∈ Z is an arc such that tord(λ,Dℓ) ≥ νℓ, then λ ∈ Dℓ.

3. Any choice of arcs λℓ ∈ Dℓ defines a minimal pizza {Tℓ = T (λℓ−1, λℓ)}
p
ℓ=1 on T associ-

ated with f .

4. Any minimal pizza on T associated with f can be obtained as a decomposition {Tℓ} of

T defined by some choice of arcs λℓ ∈ Dℓ.

Proof. Consider a decomposition {Tℓ}
p
ℓ=1, of T into βℓ-Hölder triangles Tℓ = T (λℓ−1, λℓ)

which is a minimal pizza for f . Let Qℓ ⊂ F ∪ {∞} be the set (either a point or a closed
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interval) of values tordγf for γ ⊂ Tℓ, and let µℓ : Qℓ → F ∪ {∞} be the affine width

function for f on Tℓ (a constant if Qℓ is a point). We assume that λ0 and λp are the

boundary arcs of T , and that Tℓ ∩ Tℓ+1 = λℓ for 1 ≤ ℓ < p.

Since each boundary arc of T is also a boundary arc of a pizza slice for any pizza

decomposition of T , we can define singular zones D0 = {λ0} and Dp = {λp}.

If the germ at zero of the set S = {x ∈ T, f(x) = 0} is non-empty, it is a union of

finitely many germs isolated arcs and germs of maximal in S Hölder triangles Sj . Each

isolated arc of S, and each boundary arc of one of the triangles Sj, must be a boundary

arc of a pizza slice for any minimal pizza on T associated with f . In particular, such an

arc λ must be one of the arcs λℓ, and the singular zone {λ} must be one of the zones Dℓ.

Assume now that 0 < ℓ < p and qℓ = ordλℓ
f < ∞. Consider the depth zone Dℓ =

DT (λℓ, f) (see Definition 2.24). Then Dℓ is a closed perfect zone of order νℓ = νT (λℓ, f),

which is also a qℓ-order zone for f . Moreover, if λ ⊂ Tℓ is an arc such that tord(λ, λℓ) ≥ νℓ
and ordγf = qℓ for any arc γ ⊂ T (λℓ, λ), then λ ∈ Dℓ by Definition 2.24. The same

argument works for λ ⊂ Tℓ−1. Thus Dℓ is a maximal qℓ-order zone for f of order νℓ.

We claim that, if the arc λℓ is replaced by any other arc θ ∈ Dℓ and the Hölder

triangles Tℓ = T (λℓ−1, λℓ) and Tℓ+1 = T (λℓ, λℓ+1) with the common arc λℓ are replaced

by the Hölder triangles T (λℓ−1, θ) and T (θ, λℓ+1) with the common arc θ, the resulting

decomposition of T is again a minimal pizza on T associated with f . Indeed, since Dℓ is

a perfect zone, and also a qℓ-order zone for f , by Lemma 2.29 one can construct an inner

bi-Lipschitz map φ : T → T , such that φ(λℓ) = θ and φ(γ) = γ for any arc γ ∈ V (T )\Dℓ.

In particular, ordφ(γ)f = ordγf for each arc γ ⊂ T , thus φ transforms the function f into a

v-equivalent function. This implies that φ preserves all zones Dℓ, and that decomposition

{φ(Tℓ)} defines a minimal pizza on T associated with f . Replacing all arcs λℓ with some

other arcs θℓ ∈ Dℓ, for ℓ = 0, . . . , p, we see that any choice of arcs λℓ ∈ Dℓ results in a

minimal pizza on T associated with f .

On the other hand, given a minimal pizza {Tℓ = T (λℓ−1, λℓ)} on T associated with

f , consider any other minimal pizza {T ′
ℓ = T (θℓ−1, θℓ)} on T associated with f . By the

Lipschitz contact invariance of a minimal pizza (see Theorem 2.19) there exists an inner

bi-Lipschitz homeomorphism h : T → T such that h(λℓ) = θℓ and h(Tℓ) = T ′
ℓ for all ℓ, and

also such that ordh(γ)f = ordγf for any arc γ ⊂ T . Thus h transforms f into a function of

the same contact (see Definition 2.2 from [4]) . Since the zones Dℓ are Lipschitz invariant,

we have h(Dℓ) = Dℓ for all ℓ, thus θℓ ∈ Dℓ. This proves that any minimal pizza can be

obtained by some choice of arcs λℓ ∈ Dℓ. �

Corollary 2.31. Let {Dℓ}
p
ℓ=0 be the pizza zones of a minimal pizza {Tℓ = T (λℓ−1, λℓ)}

p
ℓ=1

on T associated with f , as in Proposition 2.30. For each ℓ = 1, . . . , p, the set Yℓ =

Dℓ−1 ∪ Dℓ ∪ V (Tℓ) is a pizza slice zone associated with f , independent of the choice of

arcs λℓ ∈ Dℓ. Moreover, Yℓ is a maximal pizza slice zone: if a pizza slice zone Y ⊂ V (T )

associated with f contains Yℓ then Y = Yℓ.

3. Elementary pairs of normally embedded Hölder triangles

Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded β-Hölder triangles,

oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively.

Definition 3.1. A pair (γ, γ′) of arcs γ ⊂ T and γ′ ⊂ T ′ is regular if

(4) tord(γ, T ′) = tord(γ, γ′) = tord(γ′, T ).
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Proposition 3.2. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded β-

Hölder triangles. Let f(x) = dist(x, T ′) be the distance from x ∈ T to T ′, and let g(x′) =

dist(x′, T ) be the distance from x′ ∈ T ′ to T . Let Γ ⊂ T ×R and Γ′ ⊂ T ′×R be the graphs

of the functions f(x) and g(x′). Then the following conditions are equivalent:

1. There is a homeomorphism H : T ∪T ′ → T ∪Γ, bi-Lipschitz with respect to the outer

metric, such that H(γ1) = γ1 and H(γ2) = γ2.

2. There is a homeomorphism H ′ : T ∪ T ′ → T ′ ∪ Γ′, bi-Lipschitz with respect to the

outer metric, such that H ′(γ′
1) = γ′

1 and H ′(γ′
2) = γ′

2.

3. There exists a bi-Lipschitz homeomorphism h : T → T ′ such that h(γ1) = γ′
1,

h(γ2) = γ′
2 and tord(γ, h(γ)) = tord(γ, T ′) for any arc γ ⊂ T .

4. There exists a bi-Lipschitz homeomorphism h′ : T ′ → T such that h′(γ′
1) = γ1,

h′(γ′
2) = γ2 and tord(γ′, h′(γ′)) = tord(γ′, T ) for any arc γ′ ⊂ T ′.

5. There exists a bi-Lipschitz homeomorphism h : T → T ′ such that h(γ1) = γ′
1,

h(γ2) = γ′
2, and the pair of arcs (γ, h(γ)) is regular for any arc γ ⊂ T .

Proof. If condition 1 is satisfied, we may assume that H(T ) = T and H(T ′) = Γ. Since

f is a Lipschitz function on T and H is an outer bi-Lipschitz homeomorphism, we have

tord(γ, T ′) = tord(H(γ),Γ) = ordH(γ)f = tord(H(γ), f(H(γ)) for any arc γ ⊂ T . Since

H−1 is also an outer bi-Lipschitz homeomorphism, the mapping h : T → T ′ defined

as h(x) = H−1((H(x), f(H(x))) is a bi-Lipschitz homeomorphism satisfying condition

5, which implies conditions 3 and 4. Conversely, given a homeomorphism h : T → T ′

satisfying condition 3, the mapping H : T ∪ T ′ → T ∪ Γ which is the identity on T and

defined as H(x′) = (h−1x′, f(h−1(x′)))for x′ ∈ T ′ satisfies condition 1. Thus conditions 1,

3 and 5 are equivalent.

Similarly, conditions 2, 4 and 5 are equivalent.

If conditions 1 and 3 are satisfied, we may assume that T ′ = Γ and h(x) = (x, f(x)) for

x ∈ T . Then tord(γ, T ′) = tord(γ′, T ) for any arcs γ ⊂ T and γ′ = {(x, f(x)) : x ∈ γ} ⊂

T ′. Thus h′ = h−1 : T ′ → T satisfies condition 2. This implies that all five conditions are

equivalent. �

If conditions of Proposition 3.2 are satisfied then the pairs of arcs (γ1, γ
′
1) and (γ2, γ

′
2)

are regular:

(5) tord(γ1, T
′) = tord(γ1, γ

′
1) = tord(γ′

1, T ), tord(γ2, T
′) = tord(γ2, γ

′
2) = tord(γ′

2, T ).

In general, the opposite does not hold. However, Theorem 3.20 below states that conditions

of Proposition 3.2 are satisfied if T is elementary with respect to f and (5) holds. The

following Proposition from [7] is an important step in the proof of Theorem 3.20.

Proposition 3.3. (see [7, Proposition 2.20]) Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be

normally embedded β-Hölder triangles such that tord(γ1, γ
′
1) ≥ α, tord(γ2, γ

′
2) ≥ α, and

tord(γ, T ′) ≥ α for all arcs γ ⊂ T , for some α > β. Then there is a bi-Lipschitz home-

omorphism h : T → T ′ such that h(γ1) = γ′
1, h(γ2) = γ′

2, and tord(h(γ), γ) ≥ α for any

arc γ ⊂ T .

Remark 3.4. If a β-Hölder triangle T = T (γ1, γ2) and a β ′-Hölder triangle T ′ = T (γ′
1, γ

′
2)

are normally embedded and satisfy (5) then β ′ = β, unless tord(T, T ′) ≤ min(β, β ′).

Lemma 3.5. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded Hölder triangles.

Let λ1 6= λ2 be two arcs in T , and let θ1 ⊂ T ′, θ2 ⊂ T ′ and θ ⊂ T (θ1, θ2) ⊂ T ′ be
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three arcs such that tord(θ, T ) = q < min(tord(λ1, θ1), tord(λ2, θ2)). Then there is an arc

λ ⊂ T (λ1, λ2) ⊂ T such that tord(λ, T ′) ≤ q.

Proof. We may assume that θ1 ⊂ T ′
1 = T (γ′

1, θ) and θ2 ⊂ T ′
2 = T (θ, γ′

2). For x ∈ T , let

f1(x) = dist(x, T ′
1) and f2(x) = dist(x, T ′

2). Then f(x) = dist(x, T ′) = min(f1(x), f2(x)).

Since tord(θ, λ1) ≤ tord(θ, T ) = q and tord(λ1, θ1) > q, we have by the non-Archimedean

property tord(θ1, θ) = min(tord(λ1, θ1), tord(λ1, θ)) ≤ q. Since T ′ is normally embedded,

we have tord(θ1, T
′
2) = tord(θ1, θ) ≤ q. Since tord(λ1, θ1) > q, this implies tord(λ1, T

′
2) =

min(tord(λ1, θ1), tord(θ1, T
′
2)) ≤ q by the non-Archimedean property. Thus f |λ1

= f1|λ1
.

Similarly, f |λ2
= f2|λ2

, thus there is an arc λ ⊂ T (λ1, λ2) such that f |λ = f1|λ = f2|λ
(see Fig. 1). Then tord(λ, T ′) = ordλf ≤ q, otherwise we would have tord(λ, T ′

1) =

tord(λ, T ′
2) > q. Since tord(λ, θ) ≤ tord(θ, T ) = q, this would contradict to T ′ = T ′

1 ∪ T ′
2

being normally embedded. �

Corollary 3.6. Let T and T ′ be normally embedded Hölder triangles. Let T̃ = T (λ1, λ2) ⊂

T be a β-Hölder triangle such that tord(γ, T ′) = q > β for any arc γ ⊂ T̃ . If T̃ ′ =

T (θ1, θ2) ⊂ T ′ is a β-Hölder triangle such that tord(θ1, λ1) = tord(θ2, λ2) = q then, for

any arc θ ⊂ T ′ such that tord(θ, θ1) < q and tord(θ, θ2) < q, we have tord(θ, T ) = q.

Proof. Lemma 3.5 implies that tord(θ, T ) ≥ tord(θ, T̃ ) ≥ q for any arc θ ⊂ T̃ ′. If θ ⊂ T̃ ′

is an arc such that tord(θ, θ1) < q and tord(θ, θ2) < q, Proposition 3.3 implies that

tord(θ, T \ T̃ ) < q. If tord(θ, T ) > q and γ ⊂ T is an arc such that tord(γ, θ) > q, then

γ ⊂ T̃ and tord(γ, T ′) > q, a contradiction. Thus tord(θ, T ) = q. �

Definition 3.7. Let T and T ′ be normally embedded oriented Hölder triangles. A pair

of β-Hölder triangles T̃ = T (λ1, λ2) ⊂ T and T̃ ′ = T (θ1, θ2) ⊂ T ′ in Corollary 3.6 is called

positively oriented if their orientations induced from T and T ′ are either both the same

as their orientations from λ1 to λ2 and from θ1 to θ2 or both opposite. Otherwise, T̃ and

T̃ ′ is called a negatively oriented pair of Hölder triangles.

Remark 3.8. Any pair of α-Hölder triangles T (λ′
1, λ

′
2) ⊂ T̃ and T (θ′1, θ

′
2) ⊂ T̃ ′, where

α < q, satisfying conditions tord(θ′1, λ
′
1) = tord(θ′2, λ

′
2) = q is positively (resp., negatively)

oriented if, and only if, the pair (T̃ , T̃ ′) is positively (resp., negatively) oriented.

Proposition 3.9. Let T and T ′ be normally embedded Hölder triangles with the distance

functions f(x) = dist(x, T ′) and g(x′) = dist(x′, T ). Let Z ⊂ V (T ) be a maximal q-

order zone for f such that µ(Z) < q. Then there exists a unique maximal q-order zone

Z ′ ⊂ V (T ′) for g such that µ(Z ′) = µ(Z) and, for any arc γ ∈ Z such that νZ(γ, f) < q

and any arc γ′ ⊂ T ′ such that tord(γ, γ′) = q, we have γ′ ⊂ Z ′ and νZ′(γ′, g) = νZ(γ, f).

Conversely, if γ′ ∈ Z ′ is any arc such that νZ′(γ′, g) < q then, for any arc γ ⊂ T such

that tord(γ, γ′) = q, we have γ ⊂ Z and νZ(γ, f) = νZ′(γ′, g).

Proof. Let Z̃ ⊂ Z be the set of all arcs γ ⊂ Z such that νZ(γ, f) < q. Let λ1 and λ2

be any two arcs in Z̃ such that β = tord(λ1, λ2) < q. Consider the β-Hölder triangle

T̃ = T (λ1, λ2) ⊂ T . Since Z is a zone, we have V (T̃ ) ⊂ Z, thus tord(γ, T ′) = q for any arc

γ ⊂ T̃ . Also, νZ(γ, f) ≤ max(νZ(λ1, f), νZ(λ2, f)) < q for any arc γ ⊂ T̃ , thus V (T̃ ) ⊂ Z̃.

This implies that Z̃ is a q-order zone for f . Let Z̃ ′ be the set of all arcs γ′ ⊂ T ′ such that

tord(γ, γ′) = q for some arc γ ⊂ Z̃.

Let λ′
1 and λ′

2 be any two arcs in T ′ such that tord(λ1, λ
′
1) = tord(λ2, λ

′
2) = q. Since

β < q, T̃ ′ = T (λ′
1, λ

′
2) ⊂ T ′ is a β-Hölder triangle. Since λ1 ∈ Z̃ and λ2 ∈ Z̃, we have
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V (T̃ ′) ⊂ Z̃ ′. It follows from Proposition 3.3 that tord(γ, T ′\T̃ ′) < q for any arc γ ⊂ T̃ , thus

tord(γ, T̃ ′) = q for any arc γ ⊂ T̃ . Corollary 3.6 implies that tord(θ, T̃ ) = q for any arc

θ ⊂ T̃ ′. This implies that Z̃ ′ is a q-order zone for g. It follows from the non-Archimedean

property that νZ̃′(γ′, g) < q for any arc γ′ ∈ Z̃ ′.

Let Z ′ be the maximal q-zone for g containing Z̃ ′. By the construction this zone is

unique. Let us show that νZ′(γ′, g) ≥ q for any arc γ′ ∈ Z ′ \ Z̃ ′. If γ′ ∈ Z ′ \ Z̃ ′ and

νZ′(γ′, g) < q, applying the same arguments as above to Z ′ and g instead of Z and f , we

can show that any arc γ ⊂ T such that tord(γ, γ′) = q belongs to Z and νZ(γ, f) < q.

Thus γ ∈ Z̃, which implies γ′ ∈ Z̃ ′, a contradiction. The equality νZ(γ, f) = νZ′(γ′, g)

follows from the non-Archimedean property. �

Corollary 3.10. Let T and T ′ be normally embedded Hölder triangles with the distance

functions f(x) = dist(x, T ′) and g(x′) = dist(x′, T ). For any q ∈ F, the finite set Lq of

maximal q-order zones Z ⊂ V (T ) for f such that µ(Z) < q is nonempty if, and only if,

the set L′
q of maximal q-order zones Z ′ ⊂ V (T ′) for g such that µ(Z ′) < q is nonempty,

and there is a canonical one-to-one correspondence Z ′ = τq(Z) between the sets Lq and

L′
q such that tord(Z, τq(Z)) = q.

Proof. The finiteness of the set Lq follows from the fact that, for a given q ∈ F, each pizza

slice of a pizza on T associated with f contains at most one zone from Lq. �

Lemma 3.11. Let T and T ′ be normally embedded oriented Hölder triangles. Let Z ⊂

V (T ) and Z ′ ⊂ V (T ′) be maximal q-order zones for f and g respectively, of orders µ(Z) =

µ(Z ′) < q, related as in Proposition 3.9 and Corollary 3.10. Then the pairs (T̃ , T̃ ′) of

Hölder triangles T̃ ⊂ T and T̃ ′ ⊂ T ′ related as in Corollary 3.6, such that V (T̃ ) ⊂ Z and

V (T̃ ′) ⊂ Z ′, are either all positively oriented or all negatively oriented.

Proof. This follows from Remark 3.8, since for any two pairs of Hölder triangles in Lemma

3.11 there is a larger pair of Hölder triangles containing both of them and satisfying

conditions of Corollary 3.6. �

Definition 3.12. The pair of zones Z ⊂ V (T ) and Z ′ ⊂ V (T ′) in Lemma 3.11 is called

positively oriented (resp., negatively oriented) if the pairs (T̃ , T̃ ′) of Hölder triangles T̃ ⊂ T

and T̃ ′ ⊂ T ′ in Lemma 3.11 are positively oriented (resp., negatively oriented).

Lemma 3.13. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, such that T is elementary with respect to f(x) = dist(x, T ′) and tord(γ1, γ
′
1) =

tord(T, T ′). Then T ′ is elementary with respect to g(x′) = dist(x′, T ).

Proof. We have to show that, for any Hölder triangle T ′′ = T (θ1, θ2) ⊂ T ′ such that

tord(θ1, T ) = tord(θ2, T ) = q, we have tord(γ′, T ) = q for each arc γ′ ⊂ T ′′. Let us show

first that q′ = tord(γ′, T ) ≥ q for each arc γ′ ⊂ T ′′. If q′ < q, let λ1 and λ2 be arcs

in T such that tord(λ1, θ1) = tord(λ2, θ2) = q. Lemma 3.5 implies that there is an arc

λ ⊂ T (λ1, λ2) such that tord(λ, T ′) ≤ q′ < q, a contradiction with T being elementary

with respect to f .

Suppose now that q′ > q. We may assume that θ1 ⊂ T (γ′
1, γ

′) ⊂ T ′. Since tord(γ1, γ
′
1) =

tord(T, T ′), we have tord(γ1, γ
′
1) ≥ q′. Let γ ⊂ T be an arc such that tord(γ, γ′) = q′ (see

Fig. 2). Then Lemma 3.5 applied to T (γ1, γ) ⊂ T and T (γ′
1, γ

′) ⊂ T ′ implies that there

is an arc λ ⊂ T (γ1, γ) such that tord(λ, T ′) ≤ q, a contradiction with T being elementary

with respect to f . �
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Figure 1. Illustration to the proof of Lemma 3.5.
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Figure 2. Illustration to the proof of Lemma 3.13.

Corollary 3.14. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded Hölder

triangles, such that T is elementary with respect to f(x) = dist(x, T ′) and tord(γ1, γ
′
1) =

tord(T, T ′). Then, for any two Hölder triangles T̃ = T (γ1, λ) ⊂ T and T̃ ′ = T (γ′
1, λ

′) ⊂ T ′,

T̃ is elementary with respect to f̃(x) = dist(x, T̃ ′) and T̃ ′ is elementary with respect to

g̃(x′) = dist(x′, T̃ ).

Proof. Since T̃ is elementary with respect to f |T̃ , Lemma 3.13 applied to T̃ instead of T

implies that T ′ is elementary with respect to h(x′) = dist(x′, T̃ ). Thus T̃ ′ is elementary

with respect to g̃ = h|T̃ ′. Lemma 3.13 applied to T̃ ′ instead of T and T̃ instead of T ′

implies that T̃ is elementary with respect to f̃ . �

Lemma 3.15. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded β-Hölder

triangles satisfying (5). Suppose that T is a pizza slice associated with f(x) = dist(x, T ′).

Then conditions of Proposition 3.2 are satisfied for T and T ′. Moreover, µT,f ≡ µT ′,g,

where µT,f(q) and µT ′,g(q) are the width functions defined on Qf(T ) = Qg(T
′).

Proof. Since the five conditions of Proposition 3.2 are equivalent, it is enough to prove

condition 3: there is a bi-Lipschitz homeomorphism h : T → T ′ such that h(γ1) = γ′
1,

h(γ2) = γ′
2 and tord(γ, h(γ)) = tord(γ, T ′) for each arc γ ⊂ T .
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Let Q = Qf (T ), and let the width function µ(q) = µT,f(q) : Q → F ∪ {∞} be affine,

µ(q) = aq + b. We consider the following cases: (1) Q = {α} where α ≤ β, (2) Q = {α}

where α > β, (3) µ(q) ≡ q, (4) µ(q) < q for all q ∈ Q, (5) µ(q) = q only for the maximal

value of µ(q), (6) µ(q) = q only for the minimal value µ(q) = β.

Case 1. Any bi-Lipschitz homeomorphism h : T → T ′ such that h(γ1) = γ′
1 and

h(γ2) = γ′
2 satisfies tord(γ, h(γ)) = tord(γ, T ′) = α for all arcs γ ∈ V (T ).

Case 2. It follows from [7, Proposition 2.20] (see Proposition 3.3) that there is a bi-

Lipschitz homeomorphism h : T → T ′ such that tord(γ, h(γ)) ≥ α for any arc γ ⊂ T .

Since tord(γ, h(γ)) ≤ tord(γ, T ′) = α for any arc γ ⊂ T , we have tord(γ, h(γ)) = α.

Case 3. We may assume that Q is not a point and q1 = tord(γ1, T
′) is the maxi-

mal value of q ∈ Q. Then q = ordγf = µT (γ, f) = tord(γ, γ1) for all arcs γ ⊂ T

such that tord(γ, γ1) ≤ q1, otherwise ordγf = q1. Any bi-Lipschitz homeomorphism

h : T → T ′ such that h(γ1) = γ′
1 satisfies tord(h(γ), γ′

1) = tord(γ, γ1) for all arcs

γ ⊂ T . Thus q = ordγf = µT (γ, f) = tord(γ, γ1) = tord(h(γ), γ′
1) for all γ ⊂ T such

that tord(γ, γ1) ≤ q1. Since tord(γ1, γ
′
1) = q1 ≥ q, this implies that tord(γ, h(γ)) ≥ q.

If tord(γ, h(γ)) > q then tord(γ, T ′) > q, a contradiction. Thus tord(γ, h(γ)) = q for all

γ ⊂ T such that tord(γ, γ1) ≤ q1. Otherwise, if tord(γ, γ1) > q1, then tord(h(γ), γ′
1) > q1,

thus tord(γ, h(γ)) = tord(γ1, γ
′
1) = q1 = tord(γ, T ′).

Case 4. Using the same arguments as in the proof of [7, Proposition 2.20], we assume

that T ′ = Tβ ⊂ R2 is a standard β-Hölder triangle (1), T ∪T ′ ⊂ Rn, and π : T → R2 is an

orthogonal projection. We may also assume that Q is not a point, and that µ(q1), where

q1 = tord(γ1, T
′), is the maximal value of µ(q) for q ∈ Q. Then µT (γ, f) = tord(γ, γ1) for

all arcs γ ⊂ T such that tord(γ, γ1) ≤ µ(q1), otherwise ordγf = q1.

The set S ⊂ T where π is not smooth and orientation-preserving is a finite union of

isolated arcs and βj-Hölder triangles Tj = T (λj, λ
′
j) ⊂ T . We want to show that f has the

same order qj on each arc γ ⊂ Tj. It is enough to show that ordλj
f = ordλ′

j
f . We may

assume that λ′
j ⊂ T (γ1, λj) ⊂ T , thus µj = µT (λj, f) ≤ µ(λ′

j, f). If ordλj
f = qj 6= ordλ′

j
f

then βj ≤ µj = tord(λj, γ1). Since Tj is orientation-reversing and T is normally embedded,

we have βj ≥ qj, a contradiction with the condition µj < qj. Thus ordλj
f = ordλ′

j
f =

qj ≤ βj < µj , and there is a µj-Hölder triangle T̃j ⊂ T containing Tj such that ordγf = qj
for each arc γ ⊂ T̃j .

It follows from [7, Proposition 2.20] that there is a bi-Lipschitz orientation-preserving

homeomorphism hj : T̃j → π(T̃j) ∩ T ′ such that tord(γ, hj(γ)) = qj for each arc γ ⊂ T̃j.

One can choose triangles T̃j so that they are all disjoint. Replacing projection π with the

homeomorphisms hj on each triangle T̃j , a bi-Lipschitz homeomorphism h : T → T ′ can

be obtained, such that tord(γ, h(γ)) = tord(γ, T ′) for each arc γ ⊂ T .

Case 5. Assuming that µ(q1) = q1 = tord(γ1, γ
′
1) is the maximal value of µ(q), for any

arc γ ⊂ T such that tord(γ, T ′) = q1 we have tord(γ, γ1) ≥ µ(γ) = q1, thus tord(γ, h(γ)) =

tord(γ1, γ
′
1) = q1. For any arc γ ⊂ T such that q = tord(γ, T ′) > µ(q) = tord(γ, γ1), the

same arguments as in Case 4 apply.

Case 6. The same arguments as in Case 4 imply that, for any triangle Tj ⊂ T containing

an arc γ such that ordγf > β and π|T is orientation-reversing, the order qj of f is

the same on all arcs of Tj , and there is a µj-triangle T̃j containing Tj , where µj > β,

such that π|T̃j
can be replaced with a bi-Lipschitz orientation-preserving homeomorphism

hj : T̃j → π(T̃j) ∩ T ′, such that tord(γ, hj(γ)) = qj for each arc γ ⊂ T̃j . This allows
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one to find β-Hölder triangles T̃ = T (γ1, γ̃) ⊂ T and T̃ ′ = T (γ′
1, γ̃

′) ⊂ T ′ such that

T̄ = T (γ̃, γ2) ⊂ T and T̄ ′ = T (γ̃′, γ′
2) ⊂ T ′ are also β-Hölder triangles, ordγf = β for

each arc γ ⊂ T̄ , and to obtain a bi-Lipschitz homeomorphism h̃ : T̃ → T̃ ′ such that

tord(γ, h(γ)) = tord(γ, T ′) for each arc γ ⊂ T̃ . After that, h̃ combined with any bi-

Lipschitz homeomorphism h̄ : T̄ → T̄ ′, such that h̄(γ̃) = γ̃′ and h̄(γ2) = γ′
2, defines a

bi-Lipschitz homeomorphism h : T → T ′ such that tord(γ, h(γ)) = tord(γ, T ′) for each

arc γ ⊂ T .

The existence of a mapping h : T → T ′ satisfying condition 5 of Proposition 3.2 implies

that Qf (T ) = Qg(T
′) and µT,f ≡ µT ′,g. �

Definition 3.16. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded

oriented β-Hölder triangles satisfying (5), such that T is a pizza slice associated with

f(x) = dist(x, T ′) and tord(T, T ′) = tord(γ1, γ
′
1) > β. The pair (T, T ′) is called positively

oriented if either T is oriented from γ1 to γ2 and T ′ from γ′
1 to γ′

2, or T is oriented from

γ2 to γ1 and T ′ from γ′
2 to γ′

1. Otherwise, the pair (T, T ′) is called negatively oriented.

Lemma 3.17. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded β-Hölder

triangles in Definition 3.16 such that µT,f(q) 6≡ q. For q ∈ QT (f) such that µ(q) < q,

let Zq ⊂ V (T ) and Z ′
q ⊂ V (T ′) be the maximal q-order zones for f(x) = dist(x, T ′) and

g(x′) = dist(x′, T ) respectively. Then the pair of zones (Zq, Z
′
q) is positively oriented if the

pair of Hölder triangles (T, T ′) is positively oriented, and negatively oriented otherwise.

Lemma 3.18. Let a β-Hölder triangle T = T (γ1, γ2) and a β ′-Hölder triangle T ′ =

T (γ′
1, γ

′
2) be normally embedded, where β ≥ β ′, q1 = tord(γ1, γ

′
1) = tord(T, T ′) > β and

q2 = tord(γ2, T
′) ≥ β. If T is a pizza slice associated with f(x) = dist(x, T ′) then there is

an arc θ ⊂ T ′ such that tord(γ′
1, θ) = β, and

(6) tord(γ2, θ) = tord(θ, T ) = q2,

thus conditions (5) are satisfied for triangles T and T (γ′
1, θ) ⊂ T ′. Moreover, if q2 > β

then tord(γ′
1, θ) = β for any arc θ ⊂ T ′ satisfying condition (6), and if q2 = β then any

arc θ ⊂ T ′ such that tord(γ′
1, θ) = β satisfies condition (6).

Proof. Let θ ⊂ T ′ be an arc such that tord(γ2, θ) = q2. Note first that α = tord(θ, T ) ≥ q2.

Suppose that α > q2, and let λ ⊂ T be an arc such that tord(λ, θ) = α,thus q′ =

tord(λ, T ′) ≥ α > q2. Let µT (q) be the affine width function of T . Note that µ cannot

be constant, since q1 ≥ α > q2, If the maximum of µT (q) is at q = q2 then tord(λ, γ2) =

µ(q′) ≤ µ(α) < µ(q2) ≤ q2. Since q2 = tord(γ2, θ) and α = tord(λ, θ) > q2, this contradicts

the non-Archimedean property. Thus the maximum of µT (q) is at q = q1 and its minimum

is µ(q2) = β.

If q2 > β then tord(θ, γ′
1) = tord(γ1, γ2) = β for any arc θ ⊂ T ′ satisfying condition (6).

However, since tord(γ1, λ) > β, tord(γ1, γ
′
1) = µ(q1) > β and α = tord(λ, θ) > q2 ≥ β,

condition tord(γ′
1, θ) = β cannot be satisfied, a contradiction. Thus α = q2 in this case.

Otherwise, if q2 = β, then any arc θ ⊂ T ′ such that α = tord(θ, T ) > β satisfies

tord(θ, γ′
1) ≥ min(α, q1) > β, thus any arc θ ⊂ T ′ such that tord(γ′

1, θ) = β satisfies

condition (6). �

Proposition 3.19. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded β-Hölder

triangles with the distance functions f(x) = dist(x, T ′) and g(x′) = dist(x′, T ), such that

T is elementary with respect to f and tord(γ1, γ
′
1) = tord(T, T ′). Let λ ⊂ T and λ′ ⊂ T ′
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Figure 3. Illustration to the proof of Proposition 3.19.

be a regular pair of arcs such that T̃ = T (γ1, λ) and T̃ ′ = T (γ′
1, λ

′) are β̃-Hölder triangles

and Ť = T (λ, γ2) and Ť ′ = T (λ′, γ′
2) are β̌-Hölder triangles. If both pairs (T̃ , T̃ ′) and

(Ť , Ť ′) satisfy conditions of Proposition 3.2, then the pair (T, T ′) satisfies conditions of

Proposition 3.2.

Proof. Since conditions 1 - 5 of Proposition 3.2 are equivalent, it is enough to prove

condition 3, i.e., to find a bi-Lipschitz homeomorphism h : T → T ′ such that h(γ1) = γ′
1,

h(γ2) = γ′
2 and tord(γ, h(γ)) = tord(γ, T ′) for each arc γ ⊂ T . Conditions of Proposition

3.19 imply that there is a bi-Lipschitz homeomorphism h̃ : T̃ → T̃ ′ such that h̃(γ1) =

γ′
1, h̃(λ) = λ′ and tord(γ, h̃(γ)) = tord(γ, T̃ ′) = tord(h̃(γ, T̃ ) for each arc γ ⊂ T̃ , and

also a bi-Lipschitz homeomorphism ȟ : Ť → Ť ′ such that ȟ(λ) = λ′, ȟ(γ2) = γ′
2 and

tord(γ, ȟ(γ)) = tord(γ, Ť ′) = tord(ȟ(γ), Ť ) for each arc γ ⊂ Ť . We may assume that

h̃(x) = ȟ(x) for x ∈ λ.

We claim that a bi-Lipschitz homeomorphism h : T → T ′ with the necessary properties

can be defined as h(x) = h̃(x) for x ∈ T̃ and h(x) = ȟ(x) for x ∈ Ť . It is enough to show

that tord(γ, T ′) = tord(γ, T̃ ′) for any arc γ ⊂ T̃ and tord(γ, T ′) = tord(γ, Ť ′) for any arc

γ ⊂ Ť .

Since T is elementary with respect to f , Lemma 3.13 implies that T ′ is elementary

with respect to g. Corollary 3.14 implies that T̃ is elementary with respect to f̃ , T̃ ′ is

elementary with respect to g̃, Ť is elementary with respect to f̌ and Ť ′ is elementary with

respect to ǧ.

Let γ ⊂ T̃ . Then α = tord(γ, T ′) = max(tord(γ, T̃ ′), tord(γ, Ť ′) ≥ tord(γ, T̃ ′). If

α > tord(γ, T̃ ′) then there is an arc γ′ ⊂ Ť ′ such that tord(γ, γ′) = tord(γ, Ť ′) = α, thus

tord(γ′, T ) ≥ α. Then

α > tord(γ, h̃(γ)) = tord(h̃(γ), T̃ ) ≥ tord(λ′, T̃ ) = tord(λ, λ′) = tord(λ′, Ť )

Thus tord(γ′, T ) > tord(λ′, T ), a contradiction with T ′ being elementary with respect to

g.

Let γ ⊂ Ť . Then α = tord(γ, T ′) ≤ tord(λ, T ′) = tord(λ, λ′). If α > tord(γ, Ť ′) then

there is an arc γ′ ⊂ T̃ ′ such that tord(γ, γ′) = α > tord(γ, Ť ′ ≥ tord(γ, λ′) (see Fig. 3).

This implies that tord(γ′, λ′) = tord(γ, λ′). Since tord(h̃−1(γ′), γ) ≤ tord(h̃−1(γ′), λ) =

tord(γ′, λ′), we have tord(h̃−1(γ′), γ′) = tord(h̃−1(γ′), γ) < α. Since T is elementary with

respect to f , we have tord(h̃−1(γ′), γ′) ≥ tord(λ, λ′) ≥ α, a contradiction with condition

tord(h̃−1(γ′), γ) < α. Thus tord(γ, T ′) = tord(γ, Ť ). �
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Theorem 3.20. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded β-Hölder

triangles satisfying (5). Let f(x) = dist(x, T ′) for x ∈ T and g(x′) = dist(x′, T ) for

x′ ∈ T ′. If T is elementary with respect to f then T and T ′ satisfy conditions of Proposition

3.2. Moreover, µT,f ≡ µT ′,g, where µT,f(q) and µT ′,g(q) are the width functions defined on

Qf (T ) = Qg(T
′).

Proof. Since the triangles are elementary, we may assume that tord(γ1, γ
′
1) = tord(T, T ′).

Let {Ti}
p
i=1 be a minimal pizza decomposition of T associated with f , where each pizza

slice Ti = T (λi−1, λi) is a βi-Hölder triangle, λ0 = γ1 and λp = γ2. We proceed by induction

on the number p of pizza slices. The case p = 1 follows from Lemma 3.15. If p > 1 then

tord(λ1, T
′) > β, otherwise {Ti} would not be a minimal pizza decomposition. It follows

from Lemma 3.18 applied to T1 that there is an arc θ1 ⊂ T ′ such that tord(γ′
1, θ) = β1

and conditions of Proposition 3.2 are satisfied for T1 and T ′
1 = T (γ′

1, θ1).

Let Ť = T (λ1, γ2) and Ť ′ = T (θ1, γ
′
2). Since tord(λ1, T

′) > β, Ť and Ť ′ have the same

exponents (see Remark 3.4). The same arguments as in the proof of Proposition 3.19

show that tord(γ, Ť ′) = tord(γ, T ′) for any arc γ ⊂ Ť , thus {Ti}
p
i=2 is a minimal pizza

decomposition of Ť associated with the function f̌(x) = dist(x, Ť ′). By the inductional

hypothesis, Hölder triangles Ť and Ť ′ satisfy conditions of Proposition 3.2. Proposition

3.19 implies that T = T1 ∪ Ť and T ′ = T ′
1 ∪ Ť ′ satisfy conditions of Proposition 3.2. The

existence of a mapping h : T → T ′ satisfying condition 5 of Proposition 3.2 implies that

Qf (T ) = Qg(T
′) and µT,f ≡ µT ′,g. �

4. The στ-pizza invariant.

If two normally embedded Hölder triangles T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) satisfying

condition (5) are not elementary with respect to the distance functions, then T ∪ T ′ may

be not outer bi-Lipschitz equivalent to the union of T and a graph of a function defined

on T (see Fig. 4). In any case, a minimal pizza on T associated with the function f(x) =

dist(x, T ′), and a minimal pizza on T ′ associated with the function g(x′) = dist(x′, T ), are

outer Lipschitz invariants of the pair (T, T ′). The following example shows that two pairs

(T, T ′) and (T̃ , T̃ ′) of normally embedded triangles satisfying condition (5) may be not

outer bi-Lipschitz equivalent even when the minimal pizzas on T and T ′ are equivalent to

the minimal pizzas on T̃ and T̃ ′ respectively.

Example 4.1. The links of two normally embedded Hölder triangles T = T (γ1, γ2) and

T ′ = T (γ′
1, γ

′
2) are shown in Fig. 5. Triangle T is partitioned by the arcs λ1, λ2, λ3, λ4

into Hölder triangles T1 = T (γ1, λ1), T2 = T (λ1, λ2), T3 = T (λ2, λ3), T4 = T (λ3, λ4), T5 =

T (λ4, γ2) with exponents µ2, q2, µ1, q2, µ2, respectively, and triangle T ′ is partitioned by

the arcs λ′
1, λ

′
2, λ

′
3, λ

′
4 into Hölder triangles T ′

1 = T (γ′
1, λ

′
1), T

′
2 = T (λ′

1, λ
′
2), T

′
3 = T (λ′

2, λ
′
3),

T ′
4 = T (λ′

3, λ
′
4), T

′
5 = T (λ′

4, γ
′
2) with exponents µ2, q2, µ1, q2, µ2, respectively, so that the

following holds:

tord(γ, T ′) = q2 for any arc γ ⊂ T1, tord(γ, T
′) = q1 for any arc γ ⊂ T3, tord(γ, T

′) = q2
for any arc γ ⊂ T5; tord(γ, T

′) = tord(γ, λ′
2) for any arc γ ⊂ T2, tord(γ, T

′) = tord(γ, λ′
3)

for any arc γ ⊂ T4; tord(γ
′, T ) = q2 for any arc γ′ ⊂ T ′

1, tord(γ
′, T ) = q1 for any arc

γ′ ⊂ T ′
3, tord(γ

′, T ) = q2 for any arc γ′ ⊂ T ′
5; tord(γ

′, T ) = tord(γ′, λ2) for any arc

γ′ ⊂ T ′
2, tord(γ

′, T ) = tord(γ′, λ3) for any arc γ′ ⊂ T ′
4.

In particular, T and T ′ satisfy condition (5):

tord(γ1, T
′) = tord(γ1, γ

′
1) = tord(γ′

1, T ) = tord(γ2, T
′) = tord(γ2, γ

′
2) = tord(γ′

2, T ) = q2.
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T

T `

Figure 4. Two normally embedded β-Hölder triangles, not elementary

with respect to the distance functions. Shaded disks indicate zones with the

tangency order higher than β.

Assuming q1 > µ1 ≥ q2 > µ2, the arcs λ1, . . . , λ4 define a minimal pizza decomposition of

T associated with the function f(x) = dist(x, T ′).

Although T is not elementary with respect to f(x), the union T ∪T ′ is outer bi-Lipschitz

equivalent to the union of T and the graph of f(x). In particular, a minimal pizza on T ′

associated with the function g(x′) = dist(x′, T ) is equivalent to a minimal pizza on T

associated with the function f(x).

Hölder triangles T̃ and T̃ ′ in Fig. 6 are also normally embedded and satisfy condition

(5):

tord(γ1, T̃
′) = tord(γ1, γ

′
1) = tord(γ′

1, T̃ ) = tord(γ2, T̃
′) = tord(γ2, γ

′
2) = tord(γ′

2, T̃ ) = q2.

Triangle T̃ is partitioned by the arcs λ1, λ2, λ3, λ4 into Hölder triangles T̃1 = T (γ1, λ1),

T̃2 = T (λ1, λ2), T̃3 = T (λ2, λ3), T̃4 = T (λ3, λ4), T̃5 = T (λ4, γ2), and triangle T̃ ′ is parti-

tioned by the arcs λ′
1, λ

′
2, λ

′
3, λ

′
4 into Hölder triangles T̃ ′

1 = T (γ′
1, λ

′
1), T̃

′
2 = T (λ′

1, λ
′
2),

T̃ ′
3 = T (λ′

2, λ
′
3), T̃ ′

4 = T (λ′
3, λ

′
4), T̃ ′

5 = T (λ′
4, γ

′
2). Conditions satisfied by these trian-

gles are the same as for those in Fig. 5, except tord(γ, T̃ ′) = tord(γ, λ′
3) for any arc

γ ⊂ T̃2, tord(γ, T̃
′) = tord(γ, λ′

2) for any arc γ ⊂ T̃4; tord(γ
′, T̃ ) = tord(γ′, λ3) for any arc

γ′ ⊂ T̃ ′
2, tord(γ

′, T̃ ) = tord(γ′, λ2) for any arc γ′ ⊂ T̃ ′
4. Assuming q1 > µ1 ≥ q2 > µ2, the

arcs λ1, . . . , λ4 define a minimal pizza decomposition of T̃ associated with the function

f̃(x) = dist(x, T̃ ′).

One can show that minimal pizzas on T and T̃ are equivalent, and a minimal pizza on

T̃ ′ associated with the function g̃(x′) = dist(x′, T̃ ) is equivalent to a minimal pizza on T̃

associated with the function f̃(x). Thus minimal pizzas on T ′ and T̃ ′ are also equivalent.

However, the union T̃ ∪ T̃ ′ is not outer bi-Lipschitz equivalent to the union of T̃ and

the graph of f̃(x). In particular, T̃ ∪ T̃ ′ is not outer bi-Lipschitz equivalent to T ∪ T ′.

Definition 4.2. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded β-Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition (5).

Let f(x) = dist(x, T ′) and g(x′) = dist(x′, T ) be the distance functions defined on T

and T ′ respectively. Let Dℓ ⊂ V (T ), for ℓ = 0, . . . , p, be the pizza zones of a minimal

pizza on T associated with f(x), ordered according to the orientation of T , and let qℓ =
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tord(Dℓ, T
′) = ordγf for any arc γ ∈ Dℓ. A zone Dℓ is called a maximal exponent zone for

f(x) (or simply a maximum zone) if either 0 < ℓ < p and qℓ ≥ max(qℓ−1, qℓ+1), or ℓ = 0

and β < q0 ≥ q1, or ℓ = p and β < qp ≥ qp−1. If a zone Dℓ is not a maximum zone, it is

called a minimal exponent zone for f(x) (or simply a minimum zone) if either 0 < ℓ < p

and qℓ ≤ min(qℓ−1, qℓ+1), or ℓ = 0 and q0 ≤ q1, or ℓ = p and qp ≤ qp−1. Maximum and

minimum pizza zones D′
ℓ′ ⊂ V (T ′) for a minimal pizza on T ′ associated with g(x′) are

defined similarly, exchanging T and T ′.

Remark 4.3. Each of the singular pizza zones D0 = {γ1} and Dp = {γ2} is either a

maximum or a minimum zone. When p = 1 and q0 = q1 > β, both D0 and D1 are

maximum zones. When p = 1 and q0 = q1 ≤ β, both D0 and D1 are minimum zones.

If p > 1 and 0 < ℓ < p, then qℓ > min(qℓ−1, qℓ+1) if Dℓ is a maximum zone, qℓ <

max(qℓ−1, qℓ+1) if Dℓ is a minimum zone.

Proposition 4.4. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition (5).

Let {Mi}
m
i=1 and {M ′

i′}
m′

i′=1 be the maximum zones in V (T ) and V (T ′) for the distance

functions f(x) = dist(x, T ′) and g(x′) = dist(x′, T ) respectively, ordered according to the

orientations of T and T ′. Let q̄i = tord(Mi, T
′) and q̄′i′ = tord(M ′

i′ , T ). Then m′ = m, and
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there is a canonical one-to-one correspondence i′ = σ(i) between the zones Mi and M ′
i′,

such that µ(M ′
i′) = µ(Mi) and tord(Mi,M

′
i′) = q̄i = q̄′i′. If {γ1} = M1 is a maximum zone

then M ′
1 = {γ′

1} and σ(1) = 1. If {γ2} = Mm is a maximum zone then M ′
m = {γ′

2} and

σ(m) = m.

Proof. The case p = 1 follows from Lemma 3.15, thus we may assume p > 1.

Let us choose any arcs λi ∈ Di, so that {Ti = T (λi−1, λi)} is a minimal pizza on

T associated with the function f(x). Let qi = ordλi
f for i = 0, . . . , p, and let βi =

tord(λi−1, λi) be the exponent of a pizza slice Ti, for i = 1, . . . , p.

Consider first the case when {γ1} = {λ0} is a maximum zone for f(x). Then q0 =

tord(γ1, γ
′
1) and q1 = ordλ1

f ≤ q0. If q1 > β1, it follows from Lemma 3.15 that, for any

arc λ′ ⊂ T ′ such that tord(λ1, λ
′) = q1, Hölder triangles T1 and T ′

1 = T (γ′
1, λ

′) satisfy (5)

and conditions of Proposition 3.2. If γ′
1 is not a maximum zone for g(x′) then, for any

arc λ′
1 such that T ′

1 = T (γ′
1, λ

′
1) is a pizza slice for a minimal pizza associated with g(x′),

we have q′1 = tord(λ′
1, T ) > q0. Let λ ⊂ T be any arc such that tord(λ, λ′

1) = q′1. Then

Lemma 3.15 applied to T ′
1 and T̄ = T (γ1, λ) implies that T̄ is a pizza slice for f(x). Since

tord(γ, T ′) ≤ q0 for any arc γ ⊂ T1, we have T1 ⊂ T̄ , a contradiction with T1 being a

pizza slice for a minimal pizza associated with f(x).

Similarly, if {γ2} is a maximum zone for f(x) then {γ′
2} is a maximum zone for g(x′).

Suppose next that p > 1 and Mi is a maximum zone for f(x), where 0 < i < p. Let

λ′ ⊂ T ′ be any arc such that tord(λi, λ
′) = qi. We are going to show that λ′ belongs to a

maximum zone D′ for a minimal pizza on T ′ associated with g(x′).

Note first that, if λ′ belongs to a pizza zone D′ for a minimal pizza on T ′ associated

with g(x′), the same arguments as those for γ1 and γ′
1 show that D′ is a maximum zone

for g(x′).

Suppose that λ′ does not belong to a pizza zone. Let D′
j−1 and D′

j be two adjacent

pizza zones for a minimal pizza on T ′ associated with g(x′), λ′
j−1 ∈ D′

j−1 and λ′
j ∈ D′

j,

λ′ ⊂ T ′
j = T (λ′

j−1, λ
′
j) and λ′ /∈ D′

j−1 ∪ D′
j . The same arguments as those for γ1 and γ′

1

show that tord(λ′
j−1, T ) ≤ qi and tord(λ′

j, T ) ≤ qi. Since T ′
j is a pizza slice, at least one

of these inequalities is an equality, say tord(λ′
j, T ) = qi. Let µ

′
j = ν(λ′

j) ≤ qi be the order

of the pizza zone D′
j. Since any arc γ′ ⊂ T ′

j such that tord(γ′, λ′
j) ≥ ν(λ′

j) belongs to D′
j

and λ′ /∈ D′
j , we have tord(λ′, λ′

j) < µ′
j ≤ qi. Thus T̄ ′ = T (λ′, λ′

j) is a β̄-Hölder triangle,

where β̄ < qi, such that tord(γ′, T ) = qi for any arc γ′ ⊂ T̄ ′. �

Definition 4.5. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ

′
2 respectively, satisfying condition (5). Let

{Mi}
m
i=1 and {M ′

i′}
m′

i′=1 be the maximum zones in V (T ) and V (T ′) for the functions f(x) =

dist(x, T ′) and g(x′) = dist(x′, T ) respectively, ordered according to the orientations of

T and T ′. According to Proposition 4.4, we have m′ = m, and there is a canonical

permutation σ of the set {1, . . . , m}, the characteristic permutation of the pair T and T ′,

such that tord(Mi,M
′
σ(i)) = tord(Mi, T

′) = tord(M ′
σ(i), T ).

Definition 4.6. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition (5).

Let Dℓ ⊂ V (T ), for ℓ = 0, . . . , p, be the pizza zones of a minimal pizza {Tℓ = T (λℓ−1, λℓ)}

on T associated with the distance function f(x) = dist(x, T ′), ordered according to the

orientation of T . For ℓ = 1, . . . , p, let Yℓ = Dℓ−1 ∪ Dℓ ∪ V (Tℓ) be the maximal pizza

slice zones in V (T ) associated with f (see Corollary 2.31). Let Qℓ = Qf(Yℓ) = [qℓ−1, qℓ],
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where qℓ = ordλℓ
f , and µℓ = µYℓ,f : Qℓ → F ∪ {∞} be the corresponding exponent

intervals and affine width functions (see Definition 2.12). We say that a zone Yℓ, and a

pizza slice Tℓ = T (λℓ−1, λℓ) where λℓ−1 ∈ Dℓ−1 and λℓ ∈ Dℓ, is transversal if µℓ(q) ≡ q,

and non-transversal otherwise.

Proposition 4.7. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition (5).

Let Dℓ, Yℓ, Qℓ = [qℓ−1, qℓ] and µℓ be as in Definition 4.6. Let D′
ℓ′, for ℓ′ = 0, . . . , p′,

be the pizza zones of a minimal pizza on T ′ associated with g(x′) = dist(x′, T ), ordered

according to the orientation of T ′. Let Y ′
ℓ′ ⊂ V (T ′), Q′

ℓ′ = Qg(Y
′
ℓ′) = [qℓ′−1, qℓ′ ] ⊂ F∪ {∞}

and µ′
ℓ′ : Q

′
ℓ′ → F∪{∞} be the corresponding maximal pizza slice zones, exponent intervals

and affine width functions. Then, for each index ℓ such that the pizza slice zone Yℓ is non-

transversal, there is a unique index ℓ′ = τ(ℓ) such that Q′
ℓ′ = Qℓ, µ

′
ℓ′ ≡ µℓ and one of the

following two conditions holds:

(7) tord(Dℓ, T
′) = tord(Dℓ, D

′
ℓ′) = tord(D′

ℓ′, T ),

tord(Dℓ−1, T
′) = tord(Dℓ−1, D

′
ℓ′−1) = tord(D′

ℓ′−1, T );

(8) tord(Dℓ, T
′) = tord(Dℓ, D

′
ℓ′−1) = tord(D′

ℓ′−1, T ),

tord(Dℓ−1, T
′) = tord(Dℓ−1, D

′
ℓ′) = tord(D′

ℓ′, T ).

Proof. Let Yℓ ⊂ V (T ) be a non-transversal maximal pizza slice zone for a minimal pizza

associated with f . For each q ∈ Qℓ let Zq ⊂ Yℓ be the maximal q-order zone for f . If

Qℓ = {qℓ} is a point, then qℓ > µℓ since Yℓ is non-transversal. It follows from Proposition

3.9 and Corollary 3.10 that there is a unique maximal qℓ-order zone Z ′ ⊂ V (T ′) for g, of

order µℓ, containing all arcs γ′ ⊂ V (T ′) such that tord(γ′, Yℓ) = ordγ′g = qℓ. Let us show

that Z ′ is a maximal pizza slice zone for g. Let Z ′ ⊂ Y ′
ℓ′ where Y

′
ℓ′ is a maximal pizza slice

zone for a minimal pizza associated with g, of order µ′
ℓ′. If Z

′ 6= Y ′
ℓ′ then either Q′

ℓ′ = {qℓ}

is a point but µℓ > µ′
ℓ′ or Q

′
ℓ′ is not a point.

In the first case, there is a β ′-Hölder triangle T̃ ′ = T (γ̃′
1, γ̃

′
2) such that β ′ < µℓ, V (T̃ ′) ⊂

Y ′
ℓ′ and Z ′ ∩ V (T ′) is a µℓ-zone. Let T̃ = T (γ̃1, γ̃2) ⊂ T be a β ′-Hölder triangle, where γ̃1

and γ̃2 are two arcs in T such that tord(γ̃1, γ̃
′
1) = tord(γ̃2, γ̃

′
2) = qℓ. Since Y ′

ℓ′ is a pizza

slice zone, T̃ ′ is elementary with respect to g, and the pair (T̃ , T̃ ′) satisfies (5). It follows

from Theorem 3.20 applied to T̃ ′ that T̃ is elementary with respect to f , Qf (T̃ ) = {qℓ}

and Z ∩ V (T̃ ) is a µℓ-zone. Since β ′ < µℓ, this contradicts the assumption that Yℓ is a

minimal pizza slice zone.

The arguments for the second case, when Qℓ is a point but Q′
ℓ′ is not a point, are

similar: one can find a Hölder triangle T̃ ′ ⊂ T ′ such that Qg(T̃
′) = Q′

ℓ′ is not a point,

T̃ ′ is elementary with respect to g, and V (T̃ ′) ∩ Z ′ is a µℓ-zone. Then there is a Hölder

triangle T̃ ⊂ T such that the pair (T̃ , T̃ ′) satisfies (5). Theorem 3.20 applied to T̃ ′ implies

that Qf(T̃ ) is not a point, while the width function of T̃ is affine, a contradiction with

the assumption that Yℓ is a minimal pizza slice zone.

Suppose now that Qℓ = [qℓ−1, qℓ] is not a point. Then Proposition 3.9 and Corollary

3.10 applies to each q-order zone Zq ⊂ Yℓ for f when q ∈ Q̇ℓ = (qℓ−1, qℓ), but may be

not applicable when q = qℓ−1 or q = qℓ if µℓ(q) = q. For q ∈ Q̇ℓ, let Z ′
q ⊂ V (T ′) be the

q-order zone for g, of order µℓ(q), corresponding to Zq. Then Z =
⋃

q∈Q̇ℓ
Zq is a pizza slice

zone for f , and Z ′ =
⋃

q∈Q̇ℓ
Z ′

q is a pizza slice zone for g. Let ⊂ Y ′
ℓ′ ⊃ Ż ′ be the maximal
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pizza slice zone for a minimal pizza associated with g, of order µ′
ℓ′. The same arguments

as above show that Q′
ℓ′ = Qℓ and µ′

ℓ′ ≡ µℓ.

Note that the pairs of zones (Zq, Z
′
q) are either all positively oriented or all negatively

oriented (see Definition 3.12). Accordingly, either (7) or (8) holds for the pairs of maximal

pizza slice zones (Yℓ, Y
′
ℓ′). �

Definition 4.8. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ

′
2 respectively, satisfying condition (5). Let

{Tℓ} and {T ′
ℓ′} be minimal pizzas on T and T ′ for the distance functions f(x) = dist(x, T ′)

and g(x′) = dist(x′, T ) respectively, ordered according to the orientations of T and T ′.

Then, according to Proposition 4.7, there is a canonical one-to-one correspondence ℓ′ =

τ(ℓ) between the sets of non-transversal pizza slices Tℓ for a minimal pizza on T associated

with f(x) = dist(x, T ′), ordered according to the orientation of T , and the set of non-

transversal pizza slices T ′
ℓ′ for a minimal pizza on T ′ associated with g(x′) = dist(x′, T ),

ordered according to the orientation of T ′. This defines a characteristic correspondence

τ between the sets of non-transversal pizza slices of T and T ′. In particular, these two

sets have the same number of elements. We say that a pair of non-transversal pizza slice

zones Yℓ and Y ′
ℓ′ where ℓ′ = τ(ℓ), and a pair of non-transversal pizza slices Tℓ and T ′

ℓ′,

is positively oriented if (7) holds and negatively oriented otherwise (see Definition 3.16).

Thus τ is a signed correspondence, with the signs + and − assigned to the positively and

negatively oriented pairs of non-transversal pizza slice zones.

Remark 4.9. For each pair (Tℓ, T
′
ℓ′) of non-transversal pizza slices, where ℓ′ = τ(ℓ), the

signed correspondence τ defines a correspondence between the two pizza zones Dℓ−1 and

Dℓ and the two pizza zones D′
ℓ′−1 and D′

ℓ′, in the same (resp., opposite) order if the pair

is positively (resp., negatively) oriented. This correspondence between a subset of pizza

zones of T and a subset of pizza zones of T ′ may be not one-to-one: a pizza zone of T

common to two non-transversal pizza slices may correspond to two different pizza zones

of T ′, and two different pizza zones of T may correspond to the same pizza zone of T ′ (see

Fig. 7). However, it is one-to-one on the set of those pizza zones which are also maximum

zones (see Proposition 4.10).

Proposition 4.10. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition (5). Let

{Tℓ} and {T ′
ℓ′} be minimal pizzas on T and T ′ for the distance functions f(x) = dist(x, T ′)

and g(x′) = dist(x′, T ) respectively, ordered according to the orientations of T and T ′. Let

(Tℓ, T
′
ℓ′), where ℓ′ = τ(ℓ), be a pair of non-transversal pizza slices such that one of the

pizza zones of Tℓ, say D = Dℓ, is a maximum zone Mi ⊂ V (T ). Then the corresponding

pizza zone D′ of T ′
ℓ′ (either D′ = D′

ℓ′ for a positively oriented pair (Tℓ, T
′
ℓ′) or D′ = D′

ℓ′−1

for a negatively oriented pair) is a maximum zone M ′
i′ ⊂ V (T ′), where i′ = σ(i).

Proof. If D is a boundary arc of T then the statement follows from Proposition 4.4, since

D′ is also a boundary arc of T ′ and a (singular) maximum zone.

If D = Dℓ is not a boundary arc, and both maximal pizza slice zones Yℓ and Yℓ+1

containing Dℓ are non-transversal, then Proposition 4.7 implies that the corresponding

zones in V (T ′) are either Y ′
ℓ′ and Y ′

ℓ′+1 (if (Yℓ, Y
′
ℓ′) is a positively oriented pair) or Y ′

ℓ′

and Y ′
ℓ′−1 (if (Yℓ, Y

′
ℓ′) is a negatively oriented pair). In both cases, Proposition 4.7 implies
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Figure 7. Two normally embedded Hölder triangles in Remark 4.9.

Shaded disks indicate pizza zones of minimal pizzas on T and T ′. Assuming

q1 = q4 > µ1 = µ4 and q2 = µ2 = µ3 < q3, there are four non-transversal

pairs of pizza slices: (T1, T
′
1), (T2, T

′
3), (T3, T

′
2), (T4, T

′
4). The correspondence

τ(1) maps D1 to D′
1, while τ(2) maps D1 to D′

3.

that D′ is a maximum zone such that tord(D,D′) = tord(D, T ′) = tord(D′, T ) = qℓ, thus

i′ = σ(i).

Otherwise, if Yℓ is a non-transversal zone but Yℓ+1 is transversal, Lemma 3.18 implies

that there are two β̃-Hölder triangles T̃ = T (γ̃1, γ̃2) ⊂ Tℓ+1 and T̃ ′ = T (γ̃′
1, γ̃

′
2) ⊂ T ′

satisfying (5), where β̃ < qℓ, such that T̃ ′ ∩T ′
ℓ = {γ̃′

1}, γ̃1 ∈ D, γ̃′
1 ∈ D′ and tord(γ̃1, γ̃

′
1) =

qℓ. Theorem 3.20 applied to T̃ and T̃ ′ implies that D′ is a maximum zone such that

tord(D,D′) = tord(D, T ′) = tord(D′, T ) = qℓ, thus i
′ = σ(i). �

Proposition 4.11. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded

Hölder triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition

(5). Then the sign assigned to each pair (Tℓ, T
′
ℓ′) of non-transversal pizza slices such that

ℓ′ = τ(ℓ) is completely determined by the minimal pizzas {Tℓ} and {T ′
ℓ′}, the characteristic

permutation σ and the characteristic correspondence τ .

Proof. Let Yℓ ⊂ V (T ) and Y ′
ℓ′ ⊂ V (T ′) be two non-transversal pizza slice zones such that

ℓ′ = τ(ℓ). According to Definition 4.8, the pair (Yℓ, Y
′
ℓ′) is positively oriented if (7) holds

and negatively oriented if (8) holds. If Qℓ = [qℓ, qℓ+1] is not a point then qℓ 6= qℓ+1, thus

Q′
ℓ′ = [q′ℓ′, q

′
ℓ′+1] is also not a point, and the pair is positive when qℓ = q′ℓ′ and negative

otherwise. If Qℓ = {qℓ} is a point then µℓ < qℓ, and each of the pizza zones Dℓ and Dℓ+1

is either a maximum or a minimum zone. If, say, Dℓ = Mi is a maximum zone, then the

pair is positive when D′
ℓ′ = Mσ(i) and negative otherwise.

The case when each of them contains a boundary arc is trivial, so we may assume that

they are interior zones. If Qℓ = Qℓ′ is not a point then the sign is uniquely determined

by the maxima of non-constant affine functions µℓ(q) ≡ µ′
ℓ′(q). If Qℓ = Q′

ℓ′ = {qℓ} > µℓ is

a point, then the pizza zones Dℓ−1 and Dℓ correspond to the pizza zones D′
ℓ′−1 and D′

ℓ′

in the same order if the sign is positive, and in the opposite order if the sign is negative.

Note that each of these zones is either a maximum or a minimum zone, since on one side

of each of them q is constant. The correspondence between the pizza slice zones sends a
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maximum pizza zone in V (T ) to a maximum pizza zone in V (T ′), and a minimum pizza

zone in V (T ) to a minimum pizza zone in V (T ′). If one of the pizza zones in V (T ) is a

maximum zone and another is a minimum zone, then the same is true for the pizza zones

in V (T ′), and the correspondence is uniquely defined. If both pizza zones are maximum

zones then the correspondence is defined by σ. If both pizza zones in V (T ) are minimum

zones, since qℓ > µℓ, the two maximum pizza zones in V (T ) closest to Yℓ are mapped by

σ to the two maximum pizza zones in V (T ′) closest to Y ′
ℓ′ in the same order if the sign is

positive and in the opposite order if the sign is negative: one can only get from one side

of Yℓ to another side through a part of T ′ where q ≤ µℓ. �

Definition 4.12. Let T = T (γ1, γ2) and T ′ = T (γ′
1, γ

′
2) be two normally embedded Hölder

triangles, oriented from γ1 to γ2 and from γ′
1 to γ′

2 respectively, satisfying condition (5).

Let {Tℓ} and {T ′
ℓ′} be minimal pizzas on T and T ′ for the distance functions f(x) =

dist(x, T ′) and g(x′) = dist(x′, T ) respectively, ordered according to the orientations of T

and T ′. A στ -pizza on T ∪T ′ is a triplet consisting of the pair of minimal pizzas {Tℓ} and

{T ′
ℓ′}, the characteristic permutation σ of the maximum pizza zones in V (T ) and V (T ′),

and the characteristic correspondence τ of the non-transversal pizza slices of T and T ′.

Two στ -pizzas ({Tℓ}, {T
′
ℓ′}, σT , τT ) on T ∪ T ′ and ({Sℓ}, {S

′
ℓ′}, σS , τS) on S ∪ S ′ are

combinatorially equivalent if the pairs ({Tℓ}, {T
′
ℓ′}) and ({Sℓ}, {S

′
ℓ′}) are combinatorially

equivalent, σT = σS and τT = τS.

Theorem 4.13. Let (T, T ′) and (S, S ′) be two oriented pairs of normally embedded Hölder

triangles satisfying condition (5). If there is an orientation-preserving outer bi-Lipschitz

homeomorphism H : T ∪ T ′ → S ∪ S ′ such that H(T ) = S and H(T ′) = S ′, then the

στ -pizzas of the pairs (T, T ′) and (S, S ′) are combinatorially equivalent.

Proof. Let fT (x) = dist(x, T ′), gT (x
′) = dist(x′, T ), fS(y) = dist(y, S ′) and gS(y

′) =

dist(y′, S) be the distance functions defined on T, T ′, S and S ′ respectively. Let Mi ⊂

V (T ) and M ′
i′ ⊂ V (T ′) be the maximum zones for the pair (T, T ′), and let Ni ⊂ V (S)

and N ′
i′ ⊂ V (S ′) be the maximum zones for the pair (S, S ′).

Since H is an outer bi-Lipschitz homeomorphism, fT is Lipschitz contact equivalent

to fS, and gT is Lipschitz contact equivalent to gS. Theorem 2.19 implies that the cor-

responding pairs of minimal pizzas ({Tℓ}, {T
′
ℓ′}) and ({Sℓ}, {S

′
ℓ′}) are combinatorially

equivalent. Accordingly, H maps each maximum zone Mi to the maximum zone Ni, and

each maximum zone M ′
i′ to the maximum zone N ′

i′. A pair of maximum zones (Mi,M
′
i′),

where i′ = σT (i), is mapped to the pair of maximum zones (Ni, N
′
i′) preserving the order

of contact between these zones. This implies that i′ = σS(i), thus the permutations σT

and σS are equal.

Moreover, since H preserves the tangency orders between arcs, it maps each maximal

pizza slice zone Yℓ of a minimal pizza on T associated with fT to the maximal pizza

slice zone Zℓ of a minimal pizza on S associated with fS, and each maximal pizza slice

zone Y ′
ℓ′ of a minimal pizza on T ′ associated with gT to the maximal pizza slice zone

Z ′
ℓ′ of a minimal pizza on S ′ associated with gS, with the corresponding width functions

preserved. Accordingly, if (Tℓ, T
′
ℓ′) is a non-transversal pair of pizza slices of minimal pizzas

associated with fT and gT , where ℓ′ = τT (ℓ), then (H(Tℓ), H(T ′
ℓ′)) is a non-transversal

pair of pizza slices of minimal pizzas associated with fS and gS, such that V (H(Tℓ)) ⊂ Zℓ

and V (H(T ′
ℓ′)) ⊂ Z ′

ℓ′. This implies that ℓ′ = τS(ℓ), thus the correspondences τT and τS are
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equal. Proposition 4.11 implies that τT and τS are equal also as signed correspondences.

�

The following conjecture states that, conversely, two pairs of normally embedded Hölder

triangles satisfying condition (5) with the same στ -pizza invariant are outer bi-Lipschitz

equivalent, thus the στ -pizza is a complete combinatorial invariant of an outer bi-Lipschitz

equivalence class of pairs of normally embedded Hölder triangles.

Conjecture 4.14. Let (T, T ′) and (S, S ′) be two ordered oriented pairs of normally em-

bedded Hölder triangles satisfying condition (5). If the στ -pizza of the pair (T, T ′) is

combinatorially equivalent to the στ -pizza of the pair (S, S ′), then there is an orientation-

preserving outer bi-Lipschitz homeomorphism H : T ∪ T ′ → S ∪ S ′ such that H(T ) = S

and H(T ′) = S ′.
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